MA 265 Lecture 3

Section 1.3 Matrix Multiplication

Definitions

• The dot product or inner product, of the *n*-vectors in \mathbb{R}^n

$$\mathbf{a} = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix} \quad \text{and} \quad \mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}$$

is defined as

Example 1.

$$\mathbf{a} = \begin{bmatrix} -3\\2\\3 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} 4\\1\\2 \end{bmatrix}, \quad \mathbf{a} \cdot \mathbf{b} =$$

• Matrix Multiplication

If $A = [a_{ij}]$ is an _____ matrix and $B = [b_{ij}]$ is a _____ matrix, then the product of A and B, is the _____ matrix $C = [c_{ij}]$, defined by

 $c_{ij} =$

Remark The product of A and B is defined only when

Example 2. Compute the product matrix AB, where

$$A = \begin{bmatrix} 1 & 2 & -1 \\ 3 & 1 & 4 \end{bmatrix} \quad and \quad B = \begin{bmatrix} -2 & 5 \\ 4 & -3 \\ 2 & 1 \end{bmatrix}$$

Question: Let $A = [a_{ij}]$ be an $m \times p$ matrix, and $B = [b_{ij}]$ be a $p \times n$ matrix. Is the statement AB = BA true?

•

Matrix-Vector Product Written in Terms of Columns

=

Let $A = [a_{ij}]$ be an $m \times n$ matrix and **c** be an *n*-vector

$$\mathbf{c} = \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{bmatrix}$$

Then

$$A\mathbf{c} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{bmatrix}$$

Example 3. Let

$$A = \begin{bmatrix} 2 & -1 & -3 \\ 4 & 2 & -2 \end{bmatrix} \quad and \quad \mathbf{c} = \begin{bmatrix} 2 \\ -3 \\ 4 \end{bmatrix}.$$

Then

$$A\mathbf{c} =$$

Linear Systems

Consider the linear system of m equations in n unknowns:

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

$$\vdots$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$$
(1)

It can be written in matrix form $A\mathbf{x} = \mathbf{b}$, where

The matrix A is called ______ of the linear system (1).

The matrix $[A \mid \mathbf{b}]$ is called the ______ of the linear system (1) and has the form

If $b_1 = b_2 = \cdots = b_m = 0$ in (1), the linear system is called a ______

Note that the matrix-vector product $A\mathbf{x}$ can be expressed as $A\mathbf{x} = x_1\mathbf{a}_1 + x_1\mathbf{a}_2 + \cdots + x_n\mathbf{a}_n$ so that the linear system (1) can be written as

Therefore, $A\mathbf{x} = \mathbf{b}$ is **consistent** if and only if