MA 265 Lecture 4

Section 1.4 Algebraic Properties of Matrix Operations

1. Properties of Matrix Addition

- Let A, B, and C be $m \times n$ matrices
- (a) A + B =
- (b) A + (B + C) =
- (c) There is a unique $m \times n$ zero matrix, denoted by O, such that
- (d) For each $m \times n$ matrix A, there is a unique $m \times n$ matrix D such that

2. Properties of Matrix Multiplication

Let A, B, and C be matrices of appropriate sizes.

- (a) A(BC) =
- **(b)** (A+B)C =
- (c) C(A+B) =

Remark:

Example 1. Let

$$A = \begin{bmatrix} 2 & 2 & 3 \\ 3 & -1 & 2 \end{bmatrix}, \quad B = \begin{bmatrix} 0 & 0 & 1 \\ 2 & 3 & -1 \end{bmatrix}, \quad and \quad C = \begin{bmatrix} 1 & 0 \\ 2 & 2 \\ 3 & -1 \end{bmatrix}$$

Compute (A + B)C and AC + BC.

3. Properties of Scalar Multiplication

Let r and s be real numbers. Let A and B be matrices of appropriate sizes.

- (a) r(sA) =
- **(b)** (r+s)A =
- (c) r(A+B) =
- (d) A(rB) =

4. Properties of Transpose

Let r and s be real numbers. Let A and B be matrices of appropriate sizes.

- (a) $(A^T)^T =$
- (b) $(A+B)^T =$
- (c) $(AB)^T =$
- (d) $(rA)^T =$

Questions

1. Does $A^2 = O$ imply A = O?

2. Does AB = AC imply B = C?

Section 1.5 Special Types of Matrices

Diagonal Matrices

• An $n \times n$ matrix $A = [a_{ij}]$ is called a _____ if

Question: Is the zero matrix *O* a diagonal matrix?

- If the diagonal elements of a diagonal matrix are equal, we call it a ______
- If the diagonal elements of a diagonal matrix and are equal to 1, we call it a

 $I_m A =$

_____ and write it as ______.

Property: $AI_n =$

Symmetric Matrices

• An $n \times n$ matrix $A = [a_{ij}]$ is called ______ if

It is called ______ if

- A matrix A with real entries is called ______ if _____.
- A matrix A with real entries is called ______ if _____.

Property: Every square matrix can be decomposed as the sum of a symmetric matrix and a skew symmetric matrix.

Proof:

Nonsingular Matrices An $n \times n$ matrix A is called ______ or _____ if Such a matrix B is called an ______ of A and denoted by ______.

If A is not invertible, we call it ______ or _____.

Theorem The inverse of a matrix, if

Proof:

Example 2. Let

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}, \qquad B = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$$

Find the inverse A^{-1} and B^{-1} , if they exist.

Properties of Inverse

- (a) $(A^{-1})^{-1} =$
- (b) $(AB)^{-1} =$
- (c) $(A^T)^{-1} =$

Application to Linear System

If A is an $n \times n$ matrix, then the linear system $A\mathbf{x} = \mathbf{b}$ is a system of n equation in n unknowns.