MA 265 Lecture 40

Section 8.5 Dynamic System

Consider a 2×2 homogeneous system of differential equations

$$\frac{dx}{dt} = ax + by$$
$$\frac{dy}{dt} = cx + dy$$

If the independent variable t denotes time, then the above system is a **dynamic system**.

- The solution x = x(t) and y = y(t) represents
- The *xy*-plane is called
- A sketch of trajectory in the phase plane is called a
- $\frac{dx}{dt}$, $\frac{dy}{dt}$ represent velocity in x and y direction. A point in the phase plane at which both $\frac{dx}{dt}$ and $\frac{dy}{dt}$ are zero is called

Different Types of Equilibrium Points:

Stable

Unstable

Saddle Point

The coefficient matrix A will determine features of the phase portraits of the system.

Case 1: $\lambda_1 < 0, \ \lambda_2 < 0$

Case 2: $\lambda_1 > 0, \ \lambda_2 > 0$

Case 3: $\lambda_1 < 0, \ \lambda_2 > 0$

Case 4: λ_1 , λ_2 are Complex Numbers

Example 1. Determine the phase portrait of the dynamic system:

$$\mathbf{x}'(t) = \begin{bmatrix} -2 & -2\\ 1 & -5 \end{bmatrix} \mathbf{x}(t)$$

Example 2. Determine the phase portrait of the dynamic system:

$$\mathbf{x}'(t) = \begin{bmatrix} 1 & -1 \\ -2 & 0 \end{bmatrix} \mathbf{x}(t)$$