MA 265 Lecture 6

Section 2.2 Solving Linear Systems

Example 1. Solve the linear system whose augmented matrix has the echelon form:

1	2	0	3
0	1	1	2
0	0	1	$\left -1 \right $

To solve a linear system $A\mathbf{x} = \mathbf{b}$,

- 1. form the augmented matrix
- 2. transform to a matrix $[C \mid \mathbf{d}]$ in
- 3. find solution of the linear system w.r.t. $[C \mid \mathbf{d}]$ using

Remark:

If A is $n \times n$, and the linear system $A\mathbf{x} = \mathbf{b}$ has a unique solution, then

Example 2. Solve the linear system

$$x + 2y + 3z = 9$$

$$2x - y + z = 8$$

$$3x - z = 3$$

In general, A is $m \times n$ and the augmented matrix $[C \mid \mathbf{d}]$ might have the following form

[1	c_{12}	•••		c_{1n}	d_1
0	1	C_{23}	• • •	c_{2n}	d_2
:	÷	۰.	۰.		
0	0		1	$c_{k-1,n}$	d_{k-1}
0	0	•••	0	$c_{k,n}$	d_k
0	0	• • •		0	d_{k+1}
:	÷			:	
0	0	•••		0	d_m

- If $d_{k+1} = 1$,
- If $d_{k+1} = 0$, $c_{k,n} = 1$
- If $c_{k,n} = 0$

Example 3. Let

$$[C \mid \mathbf{d}] = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & | & 6 \\ 0 & 1 & 2 & 3 & -1 & | & 7 \\ 0 & 0 & 1 & 2 & 3 & | & 7 \\ 0 & 0 & 0 & 1 & 2 & | & 9 \end{bmatrix}.$$

Example 4. Let

$$[C \mid \mathbf{d}] = \begin{bmatrix} 1 & 2 & 3 & 4 \mid 5 \\ 0 & 1 & 2 & 3 \mid 6 \\ 0 & 0 & 0 & 0 \mid 1 \end{bmatrix}.$$

Example 5. Solve the linear system

$$x + 2y + 3z = 6$$

$$2x - 3y + 2z = 14$$

$$3x + y - z = -2$$

Homogeneous System

Example 6. Solve the linear system

$$x + y + z + w = 0$$

$$x + w = 0$$

$$x + 2y + z = 0$$

Remark:

Relationship between nonhomogeneous and homogeneous systems

Let $A\mathbf{x} = \mathbf{b}, \, \mathbf{b} \neq \mathbf{0}$ be a consistent system. The associated homogeneous system is

- •
- •