MA 265 Lecture 8

Section 3.1 Definition of Determinants

Definition of Permutation

Let $S = \{1, 2, \dots, n\}$ be the set of integers from 1 to n, arranged in ascending order.

We can consider a permutation of S to be a one-to-one mapping of S to itself. For example, let $S = \{1, 2, 3, 4\}$

Question: How many permutations does $S = \{1, 2, \dots, n\}$ have?

Example 1. Let $S = \{1, 2, 3\}$. Find all permutations of S.

A permutation $j_1 j_2 \cdots j_n$ is said to have an <u>inversion</u> if

A permutation is called \underline{even} if

A permutation is called <u>odd</u> if

Example 2. .

- S_1
- S_2
- The permutation 4312 is in S_4
- S_3

Definition of Determinant

Let $A = [a_{ij}]$ be an $n \times n$ matrix. The <u>determinant</u> function,

Remark

Example 3. Calculate det(A) if

$$A = \left[\begin{array}{cc} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array} \right]$$

Example 4. Calculate det(A) if

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

Another way to calculate det(A), <u>if A is a 3 × 3 matrix</u>:

Example 5. Compute the determinant

$$\det\left(\left[\begin{array}{rrrr}1&2&3\\2&1&3\\3&1&2\end{array}\right]\right) =$$