MA 266 Lecture 13

Section 3.1 Homogeneous Equations with Constant
Coefficients

Terminologies

Starting from this section, we study the second order differential equation of the form
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The above equation is called linear if
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For a linear equation, we usually write it as
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An initial value problem consists of a differential equation and a pai¥ of initial conditions:

Jere I, THW =Y

A second order linear equation is called homogeneous if it has the form
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In this section, we focus on in homogeneous equations with constant coefficients, i.e.,
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Example 1. Solve the initial value problem
{ y' —y=0
y(0) =2, y'(0)=-1
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where a, b, ¢ are given constants. ot
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Example 2. Solve the initial value problem

{ y' 45y +6Y =0
y(0) =2, ¥'(0)=3.
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Example 3. Consider the second order equation
vy — (2a—1)y +a(a—1)y=0.

Determine the value of o, if any, for which all solutions tend to zero as t — oo. Also

determine the value of . if any, for which all (nonzero) solutions become unbounded as
t — o0.
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