MA 266 Lecture 13

Section 3.1 Homogeneous Equations with Constant Coefficients

Terminologies

Starting from this section, we study the second order differential equation of the form

The above equation is called <u>linear</u> if

For a linear equation, we usually write it as

• (standard form)

• (general form)

P(+)
$$y''$$
 + Q(+) y' + R(+) y' = (+(+))
An initial value problem consists of a differential equation and a pair of initial conditions:

A second order linear equation is called homogeneous if it has the form

$$9''+p(t+y'+q(t))y=0$$
 or $p(t)y''+Q(t)y'+R(t)y=0$
Otherwise, it is called hon-homogeneous

In this section, we focus on in homogeneous equations with constant coefficients, i.e.,

Example 1. Solve the initial value problem

$$\begin{cases} y'' - y = 0 \\ y(0) = 2, \quad y'(0) = -1. \end{cases}$$

For what functions, whose second-order derivative is the sume as itself.

JH = cre + cre-t

Any constant multiple of 4, 42 are solutions

CIET CIET

The owne is also solution

In general, consider the homogeneous equation

$$ay'' + by' + cy = 0,$$

where a, b, c are given constants.

we start by booking for websfus of $Y = e^{rt}$ so. $Y' = r \cdot e^{r \cdot t}$ or $e^{rt} + b \cdot r \cdot e^{r \cdot t} + c \cdot e^{rt} = 0$

ar'+ br + C = 0

The equation $ar^2 + br + c = 0$ is called <u>characteristic</u> equation has two distinct real roots r_1 and r_2 , then

Then y, (+) = e r, +.

The general solution is yeth = ciert + crent

MA 266 Lecture 13

Example 2. Solve the initial value problem

$$\begin{cases} y'' + 5y' + 6Y = 0 \\ y(0) = 2, \quad y'(0) = 3. \end{cases}$$

C.E.
$$\int_{1}^{2} + 5r + 6 = 0$$

 $(r+2)(r+3) = 0$

$$\Gamma_{i} = -3$$
 $\Gamma_{i} = -2$. $\gamma_{i}(t) = e^{-3t}$. $\gamma_{i}(t) = e^{-2t}$

Example 3. Consider the second order equation

$$y'' - (2\alpha - 1)y' + \alpha(\alpha - 1)y = 0.$$

Determine the value of α , if any, for which all solutions tend to zero as $t \to \infty$. Also determine the value of α . if any, for which all (nonzero) solutions become unbounded as $t \to \infty$.

C.T.
$$\Gamma^{2} - (2 \times -1) \Gamma + \times \cdot (x-1) = 0$$

 $(\Gamma - x) (\Gamma - (x-1)) = 0$
 $\Gamma_{1} = x-1$. $\Gamma_{2} = x$.

General with Y= CIE(x-Vt CIExt

If
$$\alpha = 0$$
 $\lim_{t \to \infty} 1 = c_1 \times 0 + c_1 \times 0 = 0$

If $\alpha = 0$ $\lim_{t \to \infty} 1 = \lim_{t \to \infty} c_1 e^{-t} + c_2 e = c_2$

If $\alpha < 0$ $\lim_{t \to \infty} 1 = \lim_{t \to \infty} c_1 e^{-t} + c_2 e = c_2$

If $\alpha < 0$ $\lim_{t \to \infty} 1 = \lim_{t \to \infty} c_1 e^{-t} + c_2 e = c_2 e^{-t}$

If $\alpha < 0$ $\lim_{t \to \infty} 1 = \lim_{t \to \infty} c_1 \times e^{-t}$

If $\alpha > 1$ $\lim_{t \to \infty} 1 = \lim_{t \to \infty} c_1 \times e^{-t}$

Hence: $\alpha < 0$

MA 266 Lecture 13

1 page 4 of 4