MA 266 Lecture 31

7.3 Linear Dependence, Eigenvalues, Eigenvectors

Linear Dependence

A set of k vectors $\mathbf{x}^{(1)}$, ..., and $\mathbf{x}^{(k)}$ is said to be <u>linear dependent</u> if there exist a set of real or complex number c_1, c_2, \ldots, c_k at least one which is nonzero, such text

On the other hand, if the only set c_1, \dots, c_k satisfying the equation is

then $\mathbf{x}^{(1)}, \cdots,$ and $\mathbf{x}^{(k)}$ is said to be __(inequality_independent).

Example 1. Verify that the following vectors $\mathbf{x}^{(1)}(t)$ and $\mathbf{x}^{(2)}(t)$ are linearly independent on the interval 0 < t < 1

$$\mathbf{x}^{(1)}(t) = \begin{pmatrix} e^{t} \\ te^{t} \end{pmatrix}, \quad \mathbf{x}^{(2)}(t) = \begin{pmatrix} 1 \\ t \end{pmatrix}.$$

$$\mathbf{c}_{1} \mathbf{x}^{(1)}(t) + \mathbf{c}_{2} \mathbf{x}^{(2)}(t) = \mathbf{c}_{1} \begin{pmatrix} e^{t} \\ te^{t} \end{pmatrix} + \mathbf{c}_{2} \begin{pmatrix} 1 \\ te^{t} \end{pmatrix}$$

$$= \begin{pmatrix} \mathbf{c}_{1} e^{t} + \mathbf{c}_{1} \\ \mathbf{c}_{1} t e^{t} + \mathbf{c}_{2} t = 0 \end{pmatrix}$$

$$\mathbf{c}_{1} \mathbf{c}_{1} \mathbf{c}_{2} \mathbf{c}_{3} \mathbf{c}_{4} \mathbf{c}_{3} \mathbf{c}_{4} \mathbf{c}_{4} \mathbf{c}_{3} \mathbf{c}_{4} \mathbf{c}_{4} \mathbf{c}_{5} \mathbf{c}_{5} \mathbf{c}_{6} \mathbf{c}_{7} \mathbf$$

Eigenvalues and Eigenfunctions

The equation $A\mathbf{x} = \mathbf{y}$ can be viewed as a linear transform that maps a given vector \mathbf{x} into a new vector y. Vectors that are transformed into multiples of themselves are important in many applications. To find such vectors, we let $\mathbf{y} = \lambda \mathbf{x}$, then

$$A\overrightarrow{x} = \lambda \overrightarrow{x}$$
 or $A\overrightarrow{x} = \lambda \overrightarrow{1}\overrightarrow{x}$

$$(A - \lambda \overrightarrow{1}) \overrightarrow{x} = \overrightarrow{0}$$

$$(A - \lambda \overrightarrow{1}) \overrightarrow{x} = \overrightarrow{0}$$

$$(A - \lambda \overrightarrow{1}) \overrightarrow{x} = \overrightarrow{0}$$

$$(A - \lambda \overrightarrow{1}) = 0$$

$$(A$$

det (A - 17) = 0

with &

Example 2. Find the eigenvalues and eigenvectors of the matrix
$$A = \begin{pmatrix} 3 & -1 \\ 4 & -2 \end{pmatrix}$$

$$C.E. \quad A - \lambda ? = \begin{pmatrix} 3 - \lambda & -1 \\ 4 & -2 - \lambda \end{pmatrix}$$

$$det(A - \lambda ?) = 0 \qquad (1 - \lambda)(-2 - \lambda) + 4 = 0$$

$$\lambda^{2} - \lambda - 2 = 0 \qquad (\lambda - 1)(\lambda^{4}) > 0 \qquad \lambda = -1. \quad \lambda = 2$$

$$for \lambda = -1.$$

For
$$\lambda = 2$$

$$\begin{pmatrix} 1 & -1 \\ 4 & -4 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$x_1 - x_2 = 0$$

 $\begin{pmatrix} & 4 & -1 \\ & 4 & -1 \end{pmatrix} \begin{pmatrix} & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\$ 441 - X2=0

4x = X~

let x== U

K1=1

X1 = X~

choose Xx=1

X1=1

X = (|

7.4 Theory of System of First Order Linear Equations

The general form of a system of n first order linear equations is

$$x'_{1} = \rho_{n}(t) \times_{1} + \cdots + \rho_{n}(t) \times_{n} + g_{n}(t)$$

$$\vdots = \vdots$$

$$x'_{n} = \rho_{n}(t) \times_{1} + \cdots + \rho_{n}(t) \times_{n} + g_{n}(t)$$

We can write it in matrix form

The corresponding homogeneous system is

Principle of Superposition If the vector functions $\mathbf{x}^{(1)}(t), \dots, \mathbf{x}^{(n)}(t)$ are solutions of the homogeneous system, then

the $C(\vec{x}_i|t) + (\vec{x}_i|t) + \cdots + (\vec{x}_i|t)$ is also a solution for any court to The Wronskian of these n functions are

$$W(\vec{x}_1, \vec{x}_2, \dots, \vec{x}_n) = \det \left[\vec{x}^{(i)}(t) \vec{x}_1^{(i)}(t) \dots \vec{x}^{(i)}(t) \right]$$

We say the vector functions $\mathbf{x}^{(1)}(t), \cdots, \mathbf{x}^{(n)}(t)$ are solutions form a fundamental set of solutions if they are lively independent at each part of the Morskian is not serve

In this case, each solution $\mathbf{x}(t)$ of the homogeneous system can be express as

If $\mathbf{x}_p(t)$ is a particular solution of the nonhomogeneous system, the general solution is