MA 266 Lecture 31

7.3 Linear Dependence, Eigenvalues, Eigenvectors

Linear Dependence
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On the other hand, if the only set ¢y, - - -, ¢ satisfying the equation is
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Example 1. Verify that the following vectors xV(t) and x? (t) are linearly independent on

the interval 0 < t < 1 .
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Eigenvalues and Eigenfunctions

The equation Ax = y can be viewed as a linear transform that maps a given vector x into
a new vector y. Vectors that are transformed into multiples of themselves are important in
many applications. To find such vectors, we let y = Ax, then
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Example 2. Find the eigenvalues and eigenvectors of the m&tm’? @‘\‘ZW(»@(/{VW We@'\oJ(M
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7.4 Theory of System of First Order Linear Equations

The general form of a system of n first order linear equations is
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We can write it in matrix form

- Py R gcf_)

The corresponding homogeneous system is
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Principle of Superposition If the vector functions x((¢),--- ,x(™(¢) are solutions
of the homogeneous system, then -
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We say the vector functions x(¢),---  x(™(¢) are solutions form a fundamental set
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In this case, each solution x(¢) of the homogeneous system can be express as
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If x,(¢) is a particular solution of the nonhomogeneous system, the general solution is
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