MA 266 Lecture 5

Section 2.2 Separable Equations (contd)

Example 1. Consider the initial value problem

$$y' = ty(4-y)/3$$
, $y(0) = y_0 > 0$.

(a). Determine how the behavior of the solution as t increases depends on the initial value y_0 .

(b). Suppose that $y_0 = 0.5$. Find the time T at which the solution first reaches the value 3.98.

$$\frac{1}{y(4-y)}dy = \frac{1}{3}dt \Rightarrow \frac{1}{4}(\frac{1}{y} - \frac{1}{y-4})dy = d(\frac{t^3}{6})$$

$$\frac{1}{4}(\ln|y| - \ln|y-4|)dy = d(\frac{t^2}{6})$$

$$\frac{1}{4}(\ln|\frac{y}{y-4}| - \frac{1}{6})$$

${f Homogeneous}$	Equation
-------------------	----------

Consider the differential equation $\frac{dy}{dx} = f(x, y)$. If the right hand side

then the equation is said to be ______. Such equation can be transformed into _____ by a change of variable.

Example 2. Solve the differential equation

$$\frac{dy}{dx} = \frac{y - 4x}{x - y}.$$

Homogeneous Equation
Consider the differential equation $\frac{dy}{dx} = f(x,y)$. If the right hand side Con be expressed on
Consider the differential equation $\frac{dy}{dx} = f(x,y)$. If the right hand side Can be expressed of function of $\frac{dy}{dx} = f(x,y)$. If the right hand side Can be expressed of the function of $\frac{dy}{dx} = f(x,y)$. Such equation can be transformed into 4 example 2. Solve the differential equation
$\frac{dy}{dx} = \frac{y - 4x}{x - y}.$
$\frac{dy}{dx} = \frac{y/x - 4}{1 - y/x}$
Let $v = \frac{y}{x}$, $\frac{dy}{dx} = \frac{d(xy)}{dx} = \frac{dv}{dx} \cdot x + v$
$\frac{\partial v}{\partial x} \cdot x + v = \frac{v - 4}{1 - v}$
$\frac{dv}{dx} \cdot \chi + v = \frac{v - 4}{1 - v}$ $\frac{dv}{dx} = \left(\frac{v^2 - k}{1 - v}\right) \frac{1}{x}$
$\frac{(1-v)}{(v^2-y)}dv = d \ln x $
(-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1

 $\frac{1}{(x+2)^{5}} = |x|^{4}$ $= |x|^{4}$