
1/8/2016 lec_01

http://localhost:8888/notebooks/lectures/lec_01.ipynb 1/20

Lecture 1 - Introduction to Uncertainty
Quantification

Ignorance is preferable to error and he is less remote from the truth who
believes nothing than he who believes what is wrong. Thomas Jefferson
(1781)

Objectives
To tell the difference between aleatory and epistemic uncertainties.
To define predictive modeling.
To get accustomed with the processes of verification, calibration, and
validation of a computer code.
To use probability theory to represent both aleatory and epistemic
uncertainties.

Definitions
We are not going to make a big effort to be consistent about the use of the following
terms, since their precise meaning is still under debate.

Uncertainty
In general, we are uncertain about a logical proposition if we do not know whether it is true
or false. In particular, we can be uncertain about:

the value of a model parameter
the mathematical form of a model
the initial conditions of a ordinary differntial equations
the boundary conditions of a partial differential equation
the value of an experimental measurment we are about to perform

Readings
Before coming to class, please read the following:

+ [Oden, Moser, Ghattas, Computer Predictions with Quantified Uncertainty,
Part I](http://www.siam.org/pdf/news/1842.pdf)

+ [Oden, Moser, Ghattas, Computer Predictions with Quantified Uncertainty,
Part II](http://www.siam.org/pdf/news/1857.pdf)

1/8/2016 lec_01

http://localhost:8888/notebooks/lectures/lec_01.ipynb 2/20

etc.

Uncertainty may be aleatory or epistemic. Aleatory uncertainty is associated with inherent
system randomness. Epistemic uncertainty is associated with lack of knowledge. If you
think too hard, the distinction between the two becomes philosophical. We are not going to
push this too hard. Fortunately, our approach (the Bayesian approach) treats both
uncertainty on an equal footing.

Predictive Modeling
Predictive modeling is the process of assigning error bars to the predictions of
computational models which rigorously quantify the effect of all (ideally) associated
uncertainties. This quantified uncertainty can be used to assess the risk of making
decisions based on these model predictions.

Verification
Verification is the process of convincing yourself that a computer code is actually solving
the right mathematical equations. Even though it is impossible to be 100% sure that a
complicated computer code works as intended, it is easy to verify that it does not.

Calibration
Calibration is the process of fitting the parameters of a computer code to experimental
data. It is most important problem of uncertainty quantification. The difficulties arise from
the experimental noise, insufficient data (observing part of the system), model discrepancy
and more.

Validation
Validation is the process of comparing the model predictions to experimental data not
used in the calibration process.

Example: Catalytic Conversion of Nitrate to
Nitrogen
This is Example 3.1 of (Tsilifis, 2014) (http://arxiv.org/abs/1410.5522).

Consider the catalytic conversion of nitrate () to nitrogen () and other by-products
by electrochemical means. The mechanism that is followed is complex and not well
understood. The experiment of \cite{katsounaros} confirmed the production of nitrogen (

), ammonia (), and nitrous oxide () as final products of the reaction, as well
as the intermediate production of nitrite (). The data are reproduced in Comma-
separated values (https://en.wikipedia.org/wiki/Comma-separated_values) (CSV) and

NO−3 N2

N2 NH3 ON2

NO−2

http://arxiv.org/abs/1410.5522
https://en.wikipedia.org/wiki/Comma-separated_values

1/8/2016 lec_01

http://localhost:8888/notebooks/lectures/lec_01.ipynb 3/20

stored in data/catalysis.csv (data/catalysis.csv). The time is measured in minutes and the
conentrations are measured in . Let's load the data into this notebook using
the Pandas (http://pandas.pydata.org) Python module:

In [5]:

Let's visualize the data using Matplotlib (http://matplotlib.org):

mmol ⋅ L−1

Out[5]: NO3 NO2 N2 NH3 N2O

Time

0 500.00 0.00 0.00 0.00 0.00

30 250.95 107.32 18.51 3.33 4.98

60 123.66 132.33 74.85 7.34 20.14

90 84.47 98.81 166.19 13.14 42.10

120 30.24 38.74 249.78 19.54 55.98

150 27.94 10.42 292.32 24.07 60.65

180 13.54 6.11 309.50 27.26 62.54

import pandas as pd
catalysis_data = pd.read_csv('../data/catalysis.csv', index_col=0)
catalysis_data

http://localhost:8888/notebooks/lectures/data/catalysis.csv
http://pandas.pydata.org/
http://matplotlib.org/

1/8/2016 lec_01

http://localhost:8888/notebooks/lectures/lec_01.ipynb 4/20

In [3]:

The theory of catalytic reactions guarantees that the total mass must be conserved.
However, this is not the case in our dataset:

In [3]:

This inconsistency suggests the existence of an intermediate unobserved reaction product
X. (Katsounaros, 2012)
(http://www.sciencedirect.com/science/article/pii/S0013468612005208) suggested that the
following reaction path shown in the following figure.

C:\Users\Guang\Anaconda2\lib\site-packages\matplotlib__init__.py:872: Us
erWarning: axes.color_cycle is deprecated and replaced with axes.prop_cyc
le; please use the latter.
 warnings.warn(self.msg_depr % (key, alt_key))

Out[3]: <matplotlib.axes._subplots.AxesSubplot at 0x1a9737b8>

Out[3]: Time
0 500.00
30 385.09
60 358.32
90 404.71
120 394.28
150 415.40
180 418.95
dtype: float64

import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings('ignore')
%matplotlib inline
catalysis_data.plot()

catalysis_data.sum(axis=1)

http://www.sciencedirect.com/science/article/pii/S0013468612005208

1/8/2016 lec_01

http://localhost:8888/notebooks/lectures/lec_01.ipynb 5/20

The dynamical system associated with the reaction is:

where denotes the concentration of a quantity, and , are the kinetic
rate constants.

Questions
1) Assume that you are a chemical engineer and that you are assigned the task of
designing a reactor for the conversion of nitrate to nitrogen. Before you start designing,
you collect on information in an attempt to characterize your state of knowledge about the
problem. How many different sources of uncertainty can you think of?

2) Which of these uncertainties would you characterize as aleatoric uncertainties and
which as epistemic?

3) Is the distinction between aleatory and epistemic uncertainties always clear cut?

Computational Model

d[]NO−
3

dt

d[]NO−
2

dt

d[X]
dt

d[]N2

dt

d[]NH3

dt

d[O]N2

dt

= − [] ,k1 NO−3

= [] − (+ +)[],k1 NO−3 k2 k4 k5 NO−2

= [] − [X],k2 NO−2 k3

= [X] ,k3

= [] ,k4 NO−2

= [] ,k5 NO−2
[⋅] > 0ki i = 1, . . .5

1/8/2016 lec_01

http://localhost:8888/notebooks/lectures/lec_01.ipynb 6/20

We will develop a generic computational model for the solution of dynamical systems and
we will use it to study the catalysis problem. The code relies on the Fourth-order Runge-
Kutta method (https://en.wikipedia.org/wiki/Runge–Kutta_methods) and is a modified copy
of http://www.math-cs.gordon.edu/courses/ma342/python/diffeq.py (http://www.math-
cs.gordon.edu/courses/ma342/python/diffeq.py) developed by Jonathan Senning. The
code solves:

ẏ

y(0)

=

=

f (y, t),

.y0

https://en.wikipedia.org/wiki/Runge%E2%80%93Kutta_methods
http://www.math-cs.gordon.edu/courses/ma342/python/diffeq.py

1/8/2016 lec_01

http://localhost:8888/notebooks/lectures/lec_01.ipynb 7/20

In [6]:

1/8/2016 lec_01

http://localhost:8888/notebooks/lectures/lec_01.ipynb 8/20

import numpy as np
def rk45(f, y0, t, args=()):
 """Fourth-order Runge-Kutta method with error estimate.

 USAGE:
 y = rk45(f, x0, t, args=())

 INPUT:
 f - function of x and t equal to dx/dt. x may be multivalued,
 in which case it should a list or a NumPy array. In this
 case f must return a NumPy array with the same dimension
 as x.
 y0 - the initial condition(s). Specifies the value of x when
 t = t[0]. Can be either a scalar or a list or NumPy array
 if a system of equations is being solved.
 t - list or NumPy array of t values to compute solution at.
 t[0] is the the initial condition point, and the difference
 h=t[i+1]-t[i] determines the step size h.
 args - any other parameters of the function f.

 OUTPUT:
 y - NumPy array containing solution values corresponding to each
 entry in t array. If a system is being solved, x will be
 an array of arrays.

 NOTES:
 This version is based on the algorithm presented in "Numerical
 Mathematics and Computing" 6th Edition, by Cheney and Kincaid,
 Brooks-Cole, 2008.
 """

 # Coefficients used to compute the independent variable argument of f

 c20 = 2.500000000000000e-01 # 1/4
 c30 = 3.750000000000000e-01 # 3/8
 c40 = 9.230769230769231e-01 # 12/13
 c50 = 1.000000000000000e+00 # 1
 c60 = 5.000000000000000e-01 # 1/2

 # Coefficients used to compute the dependent variable argument of f

 c21 = 2.500000000000000e-01 # 1/4
 c31 = 9.375000000000000e-02 # 3/32
 c32 = 2.812500000000000e-01 # 9/32
 c41 = 8.793809740555303e-01 # 1932/2197
 c42 = -3.277196176604461e+00 # -7200/2197
 c43 = 3.320892125625853e+00 # 7296/2197
 c51 = 2.032407407407407e+00 # 439/216
 c52 = -8.000000000000000e+00 # -8
 c53 = 7.173489278752436e+00 # 3680/513
 c54 = -2.058966861598441e-01 # -845/4104
 c61 = -2.962962962962963e-01 # -8/27
 c62 = 2.000000000000000e+00 # 2
 c63 = -1.381676413255361e+00 # -3544/2565

1/8/2016 lec_01

http://localhost:8888/notebooks/lectures/lec_01.ipynb 9/20

Code Verification
It is obvious that even a small typo in the code above will have a significant impact in the
solution. How do we know that the code actually solves the right equation? Well, we
can't... However, we can convince ourselves about it. We need to find a case of a
dynamical system with a known solution. Consider the ODE governing a forced harmonic
oscillator:

This can be solved analytically. Let's use SymPy (http://docs.sympy.org/dev/index.html) to
solve it:

ÿ

y(0)

(0)ẏ

=

=

=

−ky + A sin(ωt),

0,

1.

 c63 = -1.381676413255361e+00 # -3544/2565
 c64 = 4.529727095516569e-01 # 1859/4104
 c65 = -2.750000000000000e-01 # -11/40

 # Coefficients used to compute 4th order RK estimate

 a1 = 1.157407407407407e-01 # 25/216
 a2 = 0.000000000000000e-00 # 0
 a3 = 5.489278752436647e-01 # 1408/2565
 a4 = 5.353313840155945e-01 # 2197/4104
 a5 = -2.000000000000000e-01 # -1/5

 b1 = 1.185185185185185e-01 # 16.0/135.0
 b2 = 0.000000000000000e-00 # 0
 b3 = 5.189863547758284e-01 # 6656.0/12825.0
 b4 = 5.061314903420167e-01 # 28561.0/56430.0
 b5 = -1.800000000000000e-01 # -9.0/50.0
 b6 = 3.636363636363636e-02 # 2.0/55.0

 n = len(t)
 y = np.array([y0] * n)
 for i in xrange(n - 1):
 h = t[i+1] - t[i]
 k1 = h * f(y[i], t[i], *args)
 k2 = h * f(y[i] + c21 * k1, t[i] + c20 * h, *args)
 k3 = h * f(y[i] + c31 * k1 + c32 * k2, t[i] + c30 * h, *args)
 # BUG: The ``-`` in the equation below should be a ``+``.
 k4 = h * f(y[i] - c41 * k1 + c42 * k2 + c43 * k3, t[i] + c40 * h,
 k5 = h * f(y[i] + c51 * k1 + c52 * k2 + c53 * k3 + c54 * k4, \
 t[i] + h, *args)
 k6 = h * f(\
 y[i] + c61 * k1 + c62 * k2 + c63 * k3 + c64 * k4 + c65 * k5, \
 t[i] + c60 * h, *args)

 y[i+1] = y[i] + a1 * k1 + a3 * k3 + a4 * k4 + a5 * k5
 y5 = y[i] + b1 * k1 + b3 * k3 + b4 * k4 + b5 * k5 + b6 * k6

 return y

http://docs.sympy.org/dev/index.html

1/8/2016 lec_01

http://localhost:8888/notebooks/lectures/lec_01.ipynb 10/20

In []:

In [9]:

Out[9]:
+ (−Aω + k −)A sin (ωt)

k − ω2

sin (t)k
⎯⎯

√

(k −)k
⎯⎯

√ ω2
ω2

import sympy
from sympy import init_printing
init_printing()
from sympy import Function, dsolve, Eq, Derivative, sin, symbols
from sympy.abc import t
t, k, A, omega = sympy.symbols('t k A omega', real = True, positive = True)
y = Function('y')
generic_solution = dsolve(Derivative(y(t), t, t) + k * y(t) - A * sin(omega
generic_solution

Apply the initial conditions
constants = sympy.solve((generic_solution.rhs.subs(t, 0), generic_solution.
solution = generic_solution.rhs.subs(constants)
solution

1/8/2016 lec_01

http://localhost:8888/notebooks/lectures/lec_01.ipynb 11/20

In [12]:

--
CodeWrapError Traceback (most recent call las
t)
<ipython-input-12-b2969149f892> in <module>()
 1 # Turn this into a Python function that we can actually evaluate
 2 from sympy.utilities.autowrap import ufuncify
----> 3 y_true = ufuncify([t, k, A, omega], solution)

C:\Users\Guang\Anaconda2\lib\site-packages\sympy\utilities\autowrap.py in
ufuncify(args, expr, language, backend, tempdir, flags, verbose, helpers)
 862 code_wrapper = UfuncifyCodeWrapper(CCodeGen("ufuncify"),
tempdir,
 863 flags, verbose)
--> 864 return code_wrapper.wrap_code(routine, helpers=helps)
 865 else:
 866 # Dummies are used for all added expressions to prevent n
ame clashes

C:\Users\Guang\Anaconda2\lib\site-packages\sympy\utilities\autowrap.py in
wrap_code(self, routine, helpers)
 142 self._generate_code(routine, helpers)
 143 self._prepare_files(routine)
--> 144 self._process_files(routine)
 145 mod = __import__(self.module_name)
 146 finally:

C:\Users\Guang\Anaconda2\lib\site-packages\sympy\utilities\autowrap.py in
_process_files(self, routine)
 161 raise CodeWrapError(
 162 "Error while executing command: %s. Command outpu
t is:\n%s" % (
--> 163 " ".join(command), e.output.decode()))
 164 if not self.quiet:
 165 print(retoutput)

CodeWrapError: Error while executing command: C:\Users\Guang\Anaconda2\py
thon.exe setup.py build_ext --inplace. Command output is:
running build_ext
running build_src
build_src
building extension "wrapper_module_2" sources
build_src: building npy-pkg config files
customize MSVCCompiler
customize MSVCCompiler using build_ext
building 'wrapper_module_2' extension
compiling C sources
error: Unable to find vcvarsall.bat

Turn this into a Python function that we can actually evaluate
from sympy.utilities.autowrap import ufuncify
y_true = ufuncify([t, k, A, omega], solution)

1/8/2016 lec_01

http://localhost:8888/notebooks/lectures/lec_01.ipynb 12/20

To solve this initial value problem numerically using rk45, we must first turn it into a
system. This is done by setting and :

Thus .

In [8]:

Use the interactive widget (https://github.com/ipython/ipywidgets) below to verify that our
code acutally solves the right mathematical equations.

Questions
4) Can you verify (using the widget below) that our code solves the right mathematical
equation?

5) If you can't, skim through the code of rk45 to find a BUG and fix it. It should be fairly
easy. The rerun the cell defininig the solver and play with the widget again.

5) What is the parameter that controls the accuracy of the solution?

= yy1 =y2 y1̇

ẏ1

ẏ2

(0)y1

(0)y2

=

=

=

=

,y2

−k + A sin(ωt),y1

0,

1.
f(y, t) := f(, , t; k, A, ω) = (,−k + A sin(ωt))y1 y2 y2 y1

def f(y, t, k, A, omega):
 """
 RHS of the ODE we want to solve.

 k, A, and omega are model parameters.
 """
 return np.array([y[1], -k * y[0] + A * np.sin(omega * t)])

def plot_ode_sol(T = 30., k = 0.5, A = 1., omega = 2., nt = 10):
 """
 Compare the numerical solution to the analytical one.
 """
 t = np.linspace(0, T, int(nt))
 y = rk45(f, (0., 1.), t, args=(k, A, omega))
 plt.plot(t, y[:, 0], label='Numerical solution')
 plt.plot(t, y_true(t, k, A, omega), '--', label='Analytical solution')
 plt.legend()

https://github.com/ipython/ipywidgets

1/8/2016 lec_01

http://localhost:8888/notebooks/lectures/lec_01.ipynb 13/20

In [9]:

Calibrating the Catalysis Model to the Experimental
Data
Now that we are certain that our generic ODE solver works, let us use it to develop a
solver for the catalysis model. All, we need to do is define the right hand side of Eq. ():

In [13]:

Let's try to calibrate the parameters of the model to the data, manually. Because the
parameters are two small, let us work with the transformed version:

???

= log () .ξi
ki

180

from ipywidgets import interactive
interactive(plot_ode_sol, T = (20, 100), k = [0., 1.], A = [0., 2.], omega = [

def f_catalysis(y, t, kappa):
 rhs = np.zeros((6,))
 rhs[0] = -kappa[0] * y[0]
 rhs[1] = kappa[0] * y[0] - (kappa[1] + kappa[3] + kappa[4]) * y[1]
 rhs[2] = kappa[1] * y[1] - kappa[2] * y[2]
 rhs[3] = kappa[2] * y[2]
 rhs[4] = kappa[3] * y[1]
 rhs[5] = kappa[4] * y[1]
 return rhs

1/8/2016 lec_01

http://localhost:8888/notebooks/lectures/lec_01.ipynb 14/20

In [11]: def compare_model_to_data(xi1 = 1.359, xi2 = 1.657, xi3 = 1.347, xi4 = -.162
 """
 Compare the model predictions to the data.
 """
 t = np.linspace(0, 180, 100)
 kappa = np.exp([xi1, xi2, xi3, xi4, xi5]) / 180.
 y = rk45(f_catalysis, (500., 0., 0., 0., 0., 0.), t, args=(kappa,))
 fig, ax = plt.subplots(figsize=(10, 10))
 catalysis_data.plot(ax=ax, style='s')
 ax.plot(t, y[:, 0], color=sns.color_palette()[0], label='Model NO3-')
 ax.plot(t, y[:, 1], color=sns.color_palette()[1], label='Model NO2-')
 ax.plot(t, y[:, 2], color=sns.color_palette()[5], label='Model X')
 ax.plot(t, y[:, 3], color=sns.color_palette()[2], label='Model N2')
 ax.plot(t, y[:, 4], color=sns.color_palette()[3], label='Model NH3')
 ax.plot(t, y[:, 5], color=sns.color_palette()[4], label='Model N2O')
 plt.legend()

interactive(compare_model_to_data, xi1 = (-2, 2, 0.05), xi2 = (-2, 2, 0.05),
 xi4 = (-2, 2, 0.05), xi5 = (-2, 2, 0.05))

1/8/2016 lec_01

http://localhost:8888/notebooks/lectures/lec_01.ipynb 15/20

This is the calibration problem.

Questions
1) Obviously, you do not want to be calibrating models by hand. Can you think of a natural
way to calibrate a model?

2) No matter what we do, we cannot really match the data to the model exactly? List at
least two reasons why this is the case?

Uncertainty Propagation
As discussed in Question 2 above, there various reasons why a model cannot be
calibrated perfectly. Some of these are:

lack of data;

1/8/2016 lec_01

http://localhost:8888/notebooks/lectures/lec_01.ipynb 16/20

the existence of measurement noise;
the fact that the model is just not perfect.

Ignoring for the moment the possibility that the moment is just bluntly wrong, we see that
the lack of data or the presence of noise will induce some uncertainty in the values of the
calibrated parameters. We are going to represent uncertainty on parameters by assigning
a probability density on them. There are systematic ways of estimating the uncertainty
induced because of the calibration process, but this will not concern us now. For the
moment, assume that somebody told us that the uncertainty in the scaled parameters
of the model is as follows:

Variable Value

But what does this information actually mean? As we will discuss in the following lectures,
this information can be used to assign a probability density on each one of these
parameters, say , that models our state of knowledge about them. For example, let
us assume that our state of knowledge about is given by a Gaussian probability
density:

which we can visualize as follows:

ξi

ξ1
1.35
± 0.05

ξ2
1.65
± 0.08

ξ3
1.34
± 0.11

ξ4
−0.16
± 0.16

ξ5
−3.84
± 0.20

p()ξi

ξ1

p() =  (| = 1.35, =),ξ1 ξ1 μ1 σ2 0.052

1/8/2016 lec_01

http://localhost:8888/notebooks/lectures/lec_01.ipynb 17/20

In [12]:

This means that we do not beleive that the value of the parameter can be less than 1.0 or
greater than 1.6. Note that, we are deliberately trying to avoid the use of the term
"random". There is nothing random in our example. Probability models a state of
knowledge.

How does this uncertainty propagate throw the model? We will study this question with a
simple numerical experiment. We are going to assign Gaussian probability densities on all
the 's, sample them a few times, and run our catalysis model for each one.ξi

Out[12]: [<matplotlib.lines.Line2D at 0x10f5ab990>]

import scipy.stats
from scipy.stats import norm
xi1 = np.linspace(-0, 2, 200)
plt.plot(xi1, norm.pdf(xi1, loc=1.35, scale=0.05))

1/8/2016 lec_01

http://localhost:8888/notebooks/lectures/lec_01.ipynb 18/20

In [13]: def plot_samples(mu1 = 1.359, sig1=0.055,
 mu2 = 1.657, sig2=0.086,
 mu3 = 1.347, sig3=0.118,
 mu4 = -.162, sig4=0.167,
 mu5 = -1.009, sig5=0.368,
 num_samples=10):
 """
 Take a few samples of the model to study uncertainty propagation.
 """
 fig, ax = plt.subplots(figsize=(10, 10))
 catalysis_data.plot(ax=ax, style='s')
 t = np.linspace(0, 180, 100)
 for i in xrange(num_samples):
 xi1 = norm.rvs(loc=mu1, scale=sig1)
 xi2 = norm.rvs(loc=mu2, scale=sig2)
 xi3 = norm.rvs(loc=mu3, scale=sig3)
 xi4 = norm.rvs(loc=mu4, scale=sig4)
 xi5 = norm.rvs(loc=mu5, scale=sig5)
 kappa = np.exp([xi1, xi2, xi3, xi4, xi5]) / 180.
 y = rk45(f_catalysis, (500., 0., 0., 0., 0., 0.), t, args=(kappa,))
 ax.plot(t, y[:, 0], linewidth=0.5, color=sns.color_palette()[0])#, label='Model NO3-')
 ax.plot(t, y[:, 1], linewidth=0.5, color=sns.color_palette()[1])#, label='Model NO2-')
 ax.plot(t, y[:, 2], linewidth=0.5, color=sns.color_palette()[5])#, label='Model X')
 ax.plot(t, y[:, 3], linewidth=0.5, color=sns.color_palette()[2])#, label='Model N2')
 ax.plot(t, y[:, 4], linewidth=0.5, color=sns.color_palette()[3])#, label='Model NH3')
 ax.plot(t, y[:, 5], linewidth=0.5, color=sns.color_palette()[4])#, label='Model N2O')
 plt.legend()

interactive(plot_samples, mu1 = (-2, 2, 0.05), sig1=(0.02, 0.4, 0.01),
 mu2 = (-2, 2, 0.05), sig2=(0.02, 0.4, 0.01
 mu3 = (-2, 2, 0.05), sig3=(0.02, 0.4, 0.01
 mu4 = (-2, 2, 0.05), sig4=(0.02, 0.4, 0.01
 mu5 = (-2, 2, 0.05), sig5=(0.02, 0.4, 0.01

1/8/2016 lec_01

http://localhost:8888/notebooks/lectures/lec_01.ipynb 19/20

Questions
1) It was pretty easy to propagate uncertainty through this simple model. When would you
face difficulties with such a program?

2) Can you come up with any idea of accelerating the uncertainty propagation process?

References
[1] Katsounaros I, Dortsiou M, Polatides C et al., ``Reaction pathways in the
electrochemical reduction of nitrate on tin'', Electrochimica Acta, vol. 71, number , pp. 270-
-276, 2012.

1/8/2016 lec_01

http://localhost:8888/notebooks/lectures/lec_01.ipynb 20/20

