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Lecture 2 - Introduction to Probability
Theory

Probability theory is nothing but common sense reduced to calculation. P.
Laplace (1812)

Objectives
To use probability theory to represent states of knowledge.
To use probability theory to extend Aristotelian logic to reason under uncertainty.
To learn about the pruduct rule of probability theory.
To learn about the sum rule of probability theory.
What is a random variable?
What is a discrete random variable?
When are two random variable independent?
What is a continuous random variable?
What is the cumulative distribution function?
What is the probability density function?

Readings
Before coming to class, please read the following:

Chapter 1 of Probabilistic Programming and Bayesian Methods for Hackers
(http://nbviewer.ipython.org/github/CamDavidsonPilon/Probabilistic-Programming-
and-Bayesian-Methods-for-
Hackers/blob/master/Chapter1_Introduction/Chapter1.ipynb)
Chapter 1 (http://home.fnal.gov/~paterno/images/jaynesbook/cc01p.pdf) of
(Jaynes, 2003).
Chapter 2 (http://home.fnal.gov/~paterno/images/jaynesbook/cc02p.pdf) of
(Jaynes, 2003) (skim through).

The basic desiderata of probability theory
It is actually possible to derive the rules of probability based on a system of common
sense requirements. Paraphrasing Chapter 1
(http://home.fnal.gov/~paterno/images/jaynesbook/cc01p.pdf) of \cite{jaynes2003}), we
would like our system to satisfy the following desiderata:

http://nbviewer.ipython.org/github/CamDavidsonPilon/Probabilistic-Programming-and-Bayesian-Methods-for-Hackers/blob/master/Chapter1_Introduction/Chapter1.ipynb
http://home.fnal.gov/~paterno/images/jaynesbook/cc01p.pdf
http://home.fnal.gov/~paterno/images/jaynesbook/cc02p.pdf
http://home.fnal.gov/~paterno/images/jaynesbook/cc01p.pdf
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1) Degrees of plausibility are represented by real numbers.

2) The system should have a qualitative correspondance with common sense.

3) The system should be consistent in the sense that:

If a conclusion can be reasoned out in more than one way, then every possible
way must lead to the same result.
All the evidence relevant to a question should be taken into account.
Equivalent states of knowledge must be represented by equivalent plausibility
assignments.

How to speak about probabilities?
Let

A be a logical sentence,
B be another logical sentence, and
and I be all other information we know.

There is no restriction on what A and B may be as soon as none of them is a
contradiction. We write as a shortcut:

not A ≡ ¬,

A and B ≡ A, B ≡ AB,

A or B ≡ A + B.

We write:

p(A |BI),

and we read:

the probability of A being true given that we know that B and I is true

or (assuming knowledge I is implied)

the probability of A being true given that we know that B is true

or (making it even shorter)

the probability of A given B.

p(something | everything known) = probability samething is true conditioned on what is known.
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p(A |B, I) is just a number between 0 and 1 that corresponds to the degree of plaussibility
of A conditioned on B and I. 0 and 1 are special.

If

p(A |BI) = 0,

we say that we are certain that A is false if B is true.
If

p(A |BI) = 1,

we say that we are certain that A is false if B is false.
If

p(A |BI) ∈ (0, 1),

we say that we are uncertain about A given that B is false. Depending on whether
p(A |B, I) is closer to 0 or 1 we beleive more on one possibiliy or another.
Complete ignorance corresponds to a probability of 0.5.

The rules of probability theory
According to Chapter 2 (http://home.fnal.gov/~paterno/images/jaynesbook/cc02m.pdf) of
\cite{jaynes2003} the desiderata are enough to derive the rules of probability. These rules
are:

The obvious rule (in lack of a better name):

p(A | I) + p(¬A | I) = 1.

The product rule (also known as the Bayes rule or Bayes theorem):

p(AB | I) = p(A |BI)p(B | I).

or

p(AB | I) = p(B |AI)p(A | I).

These two rules are enough to compute any probability we want. Let us demonstrate this
by a very simple example.

Example: Drawing balls from a box without replacement
Consider the following example of prior information I:

http://home.fnal.gov/~paterno/images/jaynesbook/cc02m.pdf
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We are given a box with 10 balls 6 of which are red and 4 of which are
blue. The box is sufficiently mixed so that so that when we get a ball from
it, we don't know which one we pick. When we take a ball out of the box,
we do not put it back.

Let A be the sentence:

The first ball we draw is blue.

Intuitively, we would set the probability of A equal to:

p(A | I) =
4
10
.

This choice can actually be justified, but we will come to this later in this course. From the
"obvious rule", we get that the probability of not drawing a blue ball, i.e., the probability of
drawing a red ball in the first draw is:

p(¬A | I) = 1 − p(A | I) = 1 −
4
10

=
6
10
.

Now, let B be the sentence:

The second ball we draw is red.

What is the probability that we draw a red ball in the second draw given that we drew a
blue ball in the first draw? Just before our second draw, there remain 9 bals in the box, 3
of which are blue and 6 of which are red. Therefore:

p(B |AI) =
6
9
.

We have not used the product rule just yet. What if we wanted to find the probability that
we draw a blue during the first draw and a red during the second draw? Then,

p(AB | I) = p(A | I)p(B |AI) =
4
10

6
9
=
24
90
.

What about the probability o a red followed by a blue? Then,

p(¬AB | I) = p(¬A | I)p(B |AI) = [1 − p(A | I)]p(B | ¬AI) =
6
10

5
9
=
30
90
.

Other rules of probability theory
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All the other rules of probability theory can be derived from these two rules. To
demonstrate this, let's prove that:

p(A + B | I) = p(A | I) + p(B | I) − p(AB | I).

Here we go:

p(A + B | I) = 1 − p(¬A¬B | I) (obvious rule)
= 1 − p(¬A | ¬BI)p(¬B | I) (product rule)
= 1 − [1 − p(A | ¬BI)]p(¬B | I) (obvious rule)
= 1 − p(¬B | I) + p(A | ¬BI)p(¬B | I)
= 1 − [1 − p(B | I)] + p(A | ¬BI)p(¬B | I)
= p(B | I) + p(A | ¬BI)p(¬B | I)
= p(B | I) + p(A¬B | I)
= p(B | I) + p(¬B |AI)p(A | I)
= p(B | I) + [1 − p(B |AI)]p(A | I)
= p(B | I) + p(A | I) − p(B |AI)p(A | I)
= p(A | I) + p(B | I) − p(AB | I).

The sum rule
Now consider a finite set of logical sentences, B1, …, Bn such that:

1. One of them is definitely true:

p(B1 + ⋯ + Bn | I) = 1.

2. They are mutually exclusive:

p(B iB j | I) = 0, if i ≠ j.

The sum rule states that:

P(A | I) = ∑
i
p(AB i | I) = ∑

i
p(A |B iI)p(B i | I).

We can prove this by induction, but let's just prove it for n = 2:

p(A | I) = p[A(B1 + B2 | I]

= p(AB1 + AB2 | I)

= p(AB1 | I) + p(AB2 | I) − p(AB1B2 | I)

= p(AB1 | I) + p(AB2 | I),

since

p(AB1B2 | I) = p(A |B1B2 | I)p(B1B2 | I) = 0.
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Let's go back to our example. We can use the sum rule to compute the probability of
getting a red ball on the second draw independently of what we drew first. This is how it
goes:

p(B | I) = p(AB | I) + p(¬AB | I)
= p(B |AI)p(A | I) + p(B | ¬AI)p(¬A | I)

=
6
9
4
10

+
5
9
6
10

= …

Example: Medical Diagnosis
This example is a modified version of the one found in Lecture 1
(http://www.zabaras.com/Courses/BayesianComputing/IntroToProbabilityAndStatistics.pdf)
of the Bayesian Scientific Computing course offered during Spring 2013 by Prof. N.
Zabaras at Cornell University.

We are going to examine the usefullness of a new tuberculosis test. Let the prior
information, I, be:

The percentage of the population infected by tuberculosis is 0.4%. We
have run several experiments and determined that:

If a tested patient has the disease, then 80% of the time the test
comes out positive.
If a tested patient does not have the disease, then 90% of the
time, the test comes out negative.

Suppose now that you administer this test to a patient and that the result is positive. How
confident are you that the patient does indeed have the disease?

Let's use probability theory to answer this question. Let A be the event:

The patient's test is positive.

Let B be the event:

The patient has tuberculosis.

According to the prior information, we have:

p(B | I) = p(has tuberculosis | I) = 0.004,

and

p(A |B, I) = p(test is positive | has tuberculosis, I) = 0.8.

http://www.zabaras.com/Courses/BayesianComputing/IntroToProbabilityAndStatistics.pdf
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Similarly,

p(A | ¬B, I) = p(test is positive | does not have tuberculosis, I) = 0.1.

We are looking for:

p(has tuberculosis | test is positive, I) = P(B |A, I)

=
p (AB | I )
p (A | I )

=
p (A |B , I ) p (B | I )

p (A |B , I ) p (B | I ) +p (A | ¬B , I ) p ( ¬B | I )

=
0.8 ×0.004

0.8 ×0.004 +0.1 ×0.996

≈ 0.031.

How much would you pay for such a test?

Conditional Independence
We say that A and B are independent (conditional on I), and write,

A ⊥ B | I,

if knowledge of one does not yield any information about the other. Mathematically, by 
A ⊥ B | I, we mean that:

p(A |B, I) = p(A | I).

Using the product rule, we can easily show that:

A ⊥ B | I ⟺ p(AB | I) = p(A | I)p(B | I).

Question
Give an example of I, A and B so that A ⊥ B | I.

Now, let C be another event. We say that A and B are independent conditional on C (and
I), and write:

A ⊥ B |C, I,

if knowlege of C makes information about A irrelevant to B (and vice versa).
Mathematically, we mean that:

p(A |B, C, I) = p(A |C, I).

Question
Give an example of I, A, B, C so that A ⊥ B |C, I.

Random Variables
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Random Variables
The formal mathematical definition of a random variable involves measure theory and is
well beyond the scope of this course. Fortunately, we do not have to go through that route
to get a theory that is useful in applications. For us, a random variable X will just be a
variable of our problem whose value is unknown to us. Note that, you should not take the
word "random" too literally. If we could, we would change the name to uncertain or
unknown variable. A random variable could correspond to something fixed but unknown,
e.g., the number of balls in a box, or it could correspond to something truely random, e.g.,
the number of particles that hit a Geiger counter
(https://en.wikipedia.org/wiki/Geiger_counter) in a specific time interval.

Discrete Random Variables
We say that a random variable X is discrete, if the possible values it can take are discrete
(possibly countably infinite). We write:

p(X = x | I)

and we read "the probability of X being x". If it does not cause any ambiguity, sometimes
we will simplify the notation to:

p(x) ≡ p(X = x | I).

Note that p(X = x) is actually a discrete function of x which depends on our beliefs about X.
The function p(x) = p(X = x | I) is known as the probability density function of X.

Now let Y be another random variable. The sum rule becomes:

p(X = x | I) = ∑
y
p(X = x, Y = y | I) = ∑

y
p(X = x | Y = y, I)p(Y = y | I),

or in simpler notation:

p(x) = ∑
y
p(x, y) = ∑

y
p(x | y)p(y).

The function p(X = x, Y = y | I) ≡ p(x, y) is known as the joint probability mass function of X
and Y.

The product rule becomes:

p(X = x, Y = y | I) = p(X = x | Y = y, I)p(Y = y | I),

or in simpler notation:

p(x, y) = p(x | y)p(y).

We say that X and Y are independent and write:

X ⊥ Y | I,

https://en.wikipedia.org/wiki/Geiger_counter
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if knowledge of one does not yield any information about the other. Mathematically, Y
gives no information about X if:

p(x | y) = p(x).

From the product rule, however, we get that:

p(x) = p(x | y) =
p(x, y)
p(y)

,

from which we see that the joint distribution of X and Y must factorize as:

p(x, y) = p(x)p(y).

It is trivial to show that if this factorization holds, then

p(y | x) = p(y),

and thus X yields no information about Y either.

Continuous Random Variables
A random variable X is continuous if the possible values it can take are continuous. The
probability of a continuous variable getting a specific value is always zero. Therefore, we
cannot work directly with probability mass functions as we did for discrete random
variables. We would have to introduce the concepts of the cumulative distribution
function and the probability density function. Fortunately, with the right choice of
mathematical symbols, the theory will look exactly the same.

Let us start with a real continuous random variable X, i.e., a random variable taking values
in the real line R. Let x ∈ R and consider the probability of X being less than or equal to x:

F(x) := p(X ≤ x | I).

F(x) is known as the cumulative distribution function (CDF). Here are some properties
of the CDF whose proof is left as an excersise:

The CDF starts at zero and goes up to one:

F( − ∞) = 0 and F( + ∞) = 1.

F(x) is an increasing function of x, i.e.,

x1 ≤ x2 ⟹ F(x1) ≤ F(x2).

The probability of X being in the interval [x1, x2] is:

p(x1 ≤ X ≤ x2 | I) = F(x2) − F(x1).

Now, assume that the derivative of F(x) with respect to x exists. Let us call it f(x):
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f(x) =
dF(x)
dx

.

Using the fundamental theorem of calculus, it is trivial to show Eq. (???) implies:

p(x1 ≤ X ≤ x2 | I) = ∫x2x1f(x)dx.

f(x) is known as the probability density function (PDF) and it is measured in probability
per unit of X. To see this note that:

p(x ≤ X ≤ x + δx | I) = ∫x+δxx f(x ′)dx ′ ≈ f(x)δx,

so that:

f(x) ≈
p(x ≤ X ≤ x + δx | I)

δx
.

The PDF should satisfy the following properties:

It should be positive

f(x) ≥ 0,

It should integrate to one:

∫∞−∞f(x)dx = 1.

Notation about the PDF of continuous random variables

In order to make all the formulas of probability theory the same, we define for a
continuous random variable X:

p(x) := f(x) =
dF(x)
dx

=
d
dx
p(X ≤ x | I).

But keep in mind, that if X is continuous p(x) is not a probability but a probability density.
That is, it needs a dx to become a probability.

Let the PDF p(x) of X and the PDF p(y) of Y (Y is another continuous random variable). We
can find the PDF of the random variable X conditioned on Y, i.e., the PDF of X if Y is
directly observed. This is the product rule for continuous random variables:

p(y | x) =
p(x, y)
p(y)

,

where p(x, y) is the joint PDF of X and Y. The sum rule for continous random variables is:

p(x) = ∫p(x, y)dy = ∫p(x | y)p(y)dy.
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The similarity between these rules and the discrete ones is obvious. We have prepared a
table to help you remember it.

Concept Discrete Random Variables Continuous Random Variables

p(x) in units of robability in units of probability per unit of X

sum rule ∑yp(x, y) = ∑yp(x | y)p(y) ∫yp(x, y)dy = ∫yp(x | y)p(y)

product rule p(x, y) = p(x | y)p(y) p(x, y) = p(x | y)p(y)

Expectations
Let X be a random variable. The expectation of X is defined to be:

E[X] := E[X | I] = ∫xp(x)dx.

Now let g(x) be any function. The expectation of g(X), i.e., the random variable defined
after passing X through g( ⋅ ), is:

E[g(X)] := E[g(X) | I] = ∫g(x)p(x)dx.

As usual, calling E[ ⋅ ] is not a very good name. You may think of E[g(X)] as the expected
value of g(X), but do not take it too far. Can you think of an example in which the expected
value is never actually observed?

Conditional Expectation
Let X and Y be two random variables. The conditional expectation of X given Y = y is
defined to be:

E[X | Y = y] := E[X | Y = y, I] = ∫xp(x | y)dx.

Properties of Expectations
The following properties of expectations of random variables are extremely helpful. In
what follows, X and Y are random variables and c is a constant:

Sum of random variable with a constant:

E[X + c] = E[X] + c.

Sum of two random variables:
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E[X + Y] = E[X] + E[Y].

Product of random variable with constant:

E[cX] = cE[X].

If X ⊥ Y, then:

E[XY] = E[X]E[Y].

NOTE: This property does not hold if X and Y are not independent!
If f( ⋅ ) is a convex function, then:

f(E[X]) ≤ E[f(X)].

NOTE: The equality holds only if f( ⋅ ) is linear!

Variance of a Random Variable
The variance of X is defined to be:

V[X] = E X − E[X])2 .

It is easy to prove (and a very useful formulat to remember), that:

V[X] = E[X2] − (E[X])2.

Covariance of Two Random Variables
Let X and Y be two random variables. The covariance between X and Y is defined to be:

C[X, Y] = E[(X − E[X])(Y − E[Y])]

Properties of the Variance
Let X and Y be random variables and c be a constant. Then:

Sum of random variable with a constant:

V[X + c] = V[X].

Product of random variable with a constant:

V[cX] = c2V[X].

Sum of two random variables:

V[X + Y] = V[X] + V[Y] + 2C(X, Y).

[ ]
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Sum of two independent random variables:

V[X + Y] = V[X] + V[Y].
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