
Multi-Resolution Climate Ensemble Parameter Analysis with
Nested Parallel Coordinates Plots

Junpeng Wang, Xiaotong Liu, Han-Wei Shen, Member, IEEE, and Guang Lin

Fig. 1. The proposed visual analytics system: (A1) the nested parallel coordinates plot (NPCP) for analyzing multi-dimensional
parameter correlations across resolutions; (A2) high-dimensional range query in NPCP with a set expression; (B1, B2) heat maps for
ensemble quality overview and color legends for different quality levels; (B3) dendrograms for grouping similar ensemble members;
(C1, C2, C3) geographic views for one ensemble item, one observation item and the difference between them; (C4) equation for
calculating the difference between an ensemble item and an observation item; (C5) control widgets for ensemble exploration.

Abstract— Due to the uncertain nature of weather prediction, climate simulations are usually performed multiple times with different
spatial resolutions. The outputs of simulations are multi-resolution spatial temporal ensembles. Each simulation run uses a unique
set of values for multiple convective parameters. Distinct parameter settings from different simulation runs in different resolutions
constitute a multi-resolution high-dimensional parameter space. Understanding the correlation between the different convective pa-
rameters, and establishing a connection between the parameter settings and the ensemble outputs are crucial to domain scientists.
The multi-resolution high-dimensional parameter space, however, presents a unique challenge to the existing correlation visualization
techniques. We present Nested Parallel Coordinates Plot (NPCP), a new type of parallel coordinates plots that enables visualization
of intra-resolution and inter-resolution parameter correlations. With flexible user control, NPCP integrates superimposition, juxtaposi-
tion and explicit encodings in a single view for comparative data visualization and analysis. We develop an integrated visual analytics
system to help domain scientists understand the connection between multi-resolution convective parameters and the large spatial
temporal ensembles. Our system presents intricate climate ensembles with a comprehensive overview and on-demand geographic
details. We demonstrate NPCP, along with the climate ensemble visualization system, based on real-world use-cases from our
collaborators in computational and predictive science.

Index Terms—Parallel coordinates plots, parameter analysis, multi-resolution climate ensembles

1 INTRODUCTION

Weather predictions and climate projections are usually conducted
with numerical simulations taking into account of geophysical fluid
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dynamics and comprehensive physical processes, most notably atmo-
spheric convection [20, 46]. Given a certain state of the atmosphere
and the value of atmospheric movement parameters (convective pa-
rameters), the simulations execute iteratively based on the known in-
formation to derive the state of the next time step. Due to the intricate
and uncertain effects of convective parameters on weather prediction
models, accuracy is hard to achieve with just a single run of the simula-
tion [46, 47]. To improve the simulation accuracy, different parameter
adjusting strategies (parameterization schemes) have been introduced
based on the conceptual or empirical relationships between the input
convective parameters and the simulation outputs. These parameteri-
zation schemes sample the convective parameters space and adjust pa-
rameter settings using certain heuristic to strive for more accurate sim-



ulations. The outputs resulted from simulation runs with distinct pa-
rameter settings constitute an ensemble. Different spatial resolutions
of a simulation capture different scales of the physical features that
domain scientists intend to simulate. Consequently, multi-resolution
spatial temporal climate ensembles are common in climate modeling.

The knowledge of how different convective parameters interact
among themselves, i.e. pairwise correlations, when using a cer-
tain simulation resolution and whether the correlations stay the same
across different resolutions are crucial for domain scientists to under-
stand the behavior of convective parameters. In addition, understand-
ing how uncertainty in the output of a climate model is attributed to
difference sources of uncertainty in the model input is significantly
important to precisely portray the relationship between the convec-
tive parameters and the climate model. Specifically, domain scientists
are interested to know: (1) What is the correlation between different
parameters and is the correlation transferable across resolutions? (2)
What is the connection between the convective parameters and the spa-
tial temporal ensembles? These questions are still open for researchers
who study multi-resolution ensemble parameters. In the context of
visualization, multi-dimensional visualization techniques such as par-
allel coordinates plots [16] or scatterplot matrices [7] are not readily
applicable to understand the correlations of parameters used for dif-
ferent resolutions. Although parameter sensitivity analyses have been
conducted to reveal the scale to which one parameter is affecting the
accuracy of a simulation, the sensitivity analysis models [11, 17] that
measure parameter behaviors with monotonous numerical values are
not intuitive enough to demonstrate the intricate relationship between
the multi-resolution parameters and the large spatial temporal ensem-
bles. In addition, domain scientists are more interested in visually
quantifying the difference resulted from parameter changing (visual
parameter space analysis [34, 40]). Therefore, a visual analytics sys-
tem that involves domain scientists in the loop of exploration and pro-
vides both parameter and ensemble visualization is urgently needed.

In this paper, we present an integrated visualization system to
help scientists explore and analyze convective parameters and spa-
tial temporal ensembles, both in multiple resolutions. To tackle the
challenge of visualizing multi-resolution high-dimensional parameter
space, we propose Nested Parallel Coordinates Plot (NPCP), which
combines the superimposition and juxtaposition design to demonstrate
both the intra-resolution and inter-resolution correlations of differ-
ent parameters. It also supports multi-resolution high-dimensional
range queries with various set operations (such as union, intersec-
tion, and difference) for flexible visual filtering. To effectively ana-
lyze the multi-resolution spatial temporal climate ensembles, we apply
the overview+detail exploration technique [42] to our visualization.
Heat maps and dendrograms are linked together to help domain scien-
tists gain an overall understanding of large multi-resolution ensembles.
Furthermore, multiple side-by-side geographic views are provided to
show spatial and temporal details on demand, which allow scientists
to intuitively compare ensemble runs with the observed ground truth.
In the system, parameter visualization and ensemble visualization are
closely linked together to enhance the scientists’ ability of visual rea-
soning. In summary, our contributions in this paper are twofold:

1. We propose a novel design to augment Parallel Coordinates Plots
(PCPs). The design enhances the capability of PCPs in demon-
strating the relationship of numerous parameters from multiple res-
olutions in hybrid comparative views, integrating superimposition,
juxtaposition and explicit encodings. It also leverages the power of
logic set operations in visual filtering.

2. We work closely with climate scientists to study multi-resolution
convective parameters and provide an integrated visual analytics
system that visualizes both multi-resolution high-dimensional pa-
rameter space and large spatial temporal ensembles.

2 RELATED WORK

Parallel Coordinates Plots for High-Dimensional Visualization.
One of the most popular and effective high-dimensional correlation
visualization approaches is the Parallel Coordinates Plot (PCP) [18].

When the number of data instances is large, PCP tends to get clut-
tered because of the massive overplotting. Over the last decade, much
research has been conducted to reduce visual clutter, such as ordering
the axes of PCPs [2, 31] and the use of frequency and density plots [3].
The recent survey work [16] by Heinrich and Weiskopf has thoroughly
discussed these details. In addition, bundling polylines has been con-
sidered to be effective in conveying cluster information [8, 25, 48] in
PCPs. Palmas et al. [30] bundled polylines with polygonal strips for
a faster overview of the cluster information and data trend in high-
dimensional data sets. Heinrich et al. [14] replaced the line segment
between axes with a pair of cubic Bézier curves, and curves corre-
sponding to the data instances of the same cluster are bundled together
for better separation. Parallel coordinates matrices [6] demonstrate
correlation patterns between axes of PCPs in multiple small juxtaposed
views organized based on certain screen-space metrics. The continuity
of polylines is no longer maintained in these juxtaposed views. Effec-
tive preservation of users’ mental map [26] when shifting from one
view to another is a crucial issue. Another limitation of the matrix
based representations is the redundancy in the symmetric matrix lay-
out. Heinrich et al. [15] tried to eliminate the redundancy and maintain
the polyline continuity using a graph-theoretic approach. Their ap-
proach effectively utilizes the space and provides a quick correlation
overview, though it takes more time to identify the correlation between
two specific dimensions. We try to maintain the continuity of poly-
lines in our new PCP design in this paper. In our domain application,
quickly identifying the correlation between two specific dimensions is
more important than listing all possible correlation patterns.
Comparative Visualization. Visual analysis of multi-resolution data
involves visual comparison of data across resolutions. Gleicher et
al. [9] divided the design space of comparative visualization into su-
perimposition, juxtaposition and explicit encoding, while Javed and
Elmqvist [19] detailed explicit encoding by overloading and nesting.
Juxtaposition is the most popular visualization design for side-by-side
comparison, without overplotting or occlusion that may occur in su-
perimposition [9]. Conventional side-by-side visual comparison can
be further enhanced by alternative juxtaposition designs [21, 22, 23]
as well as interactions [44]. In this work, we propose a hybrid compar-
ative visualization of parallel coordinates plots by combining the three
comparative designs (i.e. superimposition, juxtaposition and explicit
encoding), and provide smooth view transition between alternative de-
signs through simple interactions.
Ensemble Visualization. An ensemble is a collection of outputs from
a sequence of simulation runs. Each simulation run (ensemble mem-
ber) uses slightly different input parameter settings. This type of data
is common in multiple domains, such as climate modeling [36, 39] and
high-energy physics [12, 32]. Domain scientists study ensemble data
to analyze uncertainties of their simulations [5, 35, 36, 37]. The com-
mon features of ensemble data are large, multi-dimensional and usu-
ally containing both spatial and temporal information. Due to these
complex features, ensemble visualization is a non-trivial task [29].
Numerous visualization approaches have been introduced to demon-
strate multi-dimensional spatial temporal ensembles. Glyph-based vi-
sualizations [4, 12, 39] encode different facets of data into distinct
visual channels. Small multiples and coordinated views show the
same facet of different ensemble members in different displays, thus
demonstrating effective side-by-side comparisons [33, 37]. Different
machine learning and statistical methods have also been adopted for
visual analytics on multi-dimensional data [1, 10]. Existing climate
ensemble visualization includes SimEnvVis [28], Ensemble-Vis [37]
and Noodles [39]. SimEnvVis applies comparative visualizations to
demonstrate the multi-dimensional and multi-variate facets of the cli-
mate ensemble. Ensemble-Vis is facilitated with numerous statistical
visualization tools. It demonstrates uncertainties in climate ensemble
with multiple linked displays. Noodles specializes in providing quanti-
tatively evaluations of geo-spatial uncertainties in meteorological en-
semble with glyph-based techniques. Our focus, in this paper, is on
exposing the input parameter correlations of climate models running
with different resolutions, and establishing the connection between the
convective parameter settings and the ensemble outputs.



3 MOTIVATION, BACKGROUND AND APPROACH OVERVIEW

In this section, we explain the motivation and background of climate
ensemble visualization. Following the specific requirements from our
domain science collaborator, we provide an overview of our approach.

3.1 Motivation

In meteorology, convection is responsible for the formation of rain-
fall. It is the transfer of heat from a warmer region to a cooler one
by moving warm liquid or gas from the heated area to the unheated
area. Weather predictions are conducted through climate simulation
models that simulate the atmospheric motions. Given a certain state of
the atmosphere, these models discretize the spatial region of interest
into small grid cells and compute iteratively on these cells to derive
the next state of the atmosphere. The simulation resolution indicates
the size of the grid cells. In these models, convective parameters have
been formalized to control the atmospheric convective motions, such
as the starting height, downdraft mass and kinetic energy etc. Convec-
tive parameterization is the process of tuning these parameters. Dif-
ferent parameter adjusting strategies, i.e. convection parameterization
schemes, have been proposed to accelerate the convergence of the sim-
ulations while maintaining the accuracy.

Given the fact that there are many sources of uncertainties in
weather predictions, it is necessary to quantify them through multiple
simulation runs with different parameter settings. The output of these
simulations is a climate ensemble. Averaging the result of different en-
semble runs can mitigate the effects of outliers and thus improving the
prediction accuracy. More sophisticated studies and analyses on the
ensemble are usually performed to derive more accurate predictions.
Climate models with different simulation resolutions can capture fea-
tures of different scales that scientists want to simulate. The perfor-
mance of climate models is sensitive to both physical parameteriza-
tion and the model resolution. It is not guaranteed that high resolution
models always perform better than low resolution models. In addition,
models with different simulation resolutions have different computa-
tional cost. Hence it is critical to develop an effective data analytics
tool to analyze multi-resolution simulation models and identify their
advantages and limitations.

3.2 Domain Data Characterization

Parameter Set. A parameter setting is a combination of values used
for different convective parameters in one execution/run of the climate
model. Different runs of the simulation model use different param-
eter settings. A collection of all parameter settings used in an en-
semble is a parameter set. Considering each parameter as a dimen-
sion, multiple parameters with different settings together form a high-
dimensional space. Multiple parameter sets will be used to generate
multi-resolution ensembles.
Ensemble Set. The output from one execution of the climate model
usually contains prediction results over a period of time. For example,
one execution of the simulation can output the precipitation of the fu-
ture 10 days. For each day, the output contains the precipitation values
at different 2D locations (latitude/longitude coordinates). We call the
predicted precipitation of a single day as an ensemble item, the entire
output from one execution of the simulation as an ensemble member.
All members of one ensemble usually contain the same number of en-
semble items. In this example, each ensemble member contains 10
ensemble items. Multiple ensemble members constitute one ensemble
set. Therefore, a climate ensemble set is a collection of the spatial
temporal ensemble members. Ensemble sets with different simulation
resolutions form multi-resolution climate ensembles.
Observation Set. To study convective parameters and evaluate cli-
mate ensembles, satellites are often used to observe and record real-
world weather conditions. One observation set is the observed weather
for a specific region over a period of time. The corresponding obser-
vation set of our previous example will be the precipitation of the sim-
ulated area over the 10 days. Each day is an observation item. This
observation set can be considered as the ground truth to calibrate the
convective parameter settings. It can also be used to measure the qual-

ity of the ensembles. Based on different settings during the collections,
the observation set can also have different resolutions.

3.3 Task Analysis
The main objectives of the domain scientist (from computational and
predictive science) that we collaborate with are to: (i) identify the cor-
relation between different parameters and compare the correlation of
convective parameters across simulation resolutions; (ii) establish con-
nections between convective parameter settings and the accuracy of
climate simulations. Over three months closely working with our col-
laborator and meeting biweekly to discuss the requirements, we refine
the two general objectives into the following detailed requirements.
R1: Understanding Intra-Set Parameter Correlation. The intra-set
parameter analysis targets at exposing the correlations between differ-
ent parameters over ensemble members of the same simulation reso-
lution. For example, what is the correlation between two specific con-
vective parameters when the output ensemble members are accurate?
How did the correlation change over the ensemble members (corre-
lation in early/later ensemble members) of the same resolution? The
answers to these questions will help the domain scientist gain better
understanding of the convection parameterization scheme.
R2: Comparing Inter-Set Parameter Correlations. Dissimilar be-
haviors of the convective parameters have been observed in different
simulation resolutions. This requirement aims to find out how the
convective parameters are different when accurate simulations were
achieved in different simulation resolutions and how significant the
difference is.
R3: High-Dimensional Parameter Range Query. The domain sci-
entist has some empirical expectations on the optimal range of certain
convective parameters. For example, probably the accurate simulation
results are more frequently observed when the coefficient related to
downdraft mass flux rate (one convective parameter, denoted as Pd) is
between [0.9, 1.0] and the maximum turbulent kinetic energy (another
convective parameter, denoted as Pt ) is in the range of [4.0, 6.0] or [8.0,
10.0]. What are the values of other parameters when both Pd and Pt
are within their empirical optimal ranges, i.e. {0.9≤Pd≤1.0}∩({4.0≤
Pt≤6.0}∪{8.0≤Pt≤10.0}), or at least one of them is in the ranges,
i.e. {0.9≤Pd≤1.0}∪({4.0≤Pt≤6.0}∪{8.0≤Pt≤10.0})? This requires
query on the high-dimensional convective parameter space.
R4: Ensemble Member/Item Quality Evaluation. Given an output
from the climate simulation, the domain scientist is eager to know its
accuracy and how it is different from the observed result (collected
from satellites). An overall quality distribution of ensemble mem-
bers/items will be helpful. In addition, it is crucial for the domain
scientist to examine the details of individual ensemble member/item.
R5: Ensemble Member Comparison. Finding the distribution of
similar ensemble members is also important. Comparing the param-
eter settings of similar ensemble members is one of the most effec-
tive ways to study parameter behaviors. Therefore, ensemble member
comparison is a critical task.
R6: Demonstrating Both Spatial and Temporal Facets of Ensem-
bles. The spatial information in climate ensembles is significantly im-
portant for domain scientists. For example, if scientists focus on the
precipitation prediction, they not only need to know the amount of
precipitation, but also need to know the spatial distribution of the pre-
cipitation. Temporal evolution of precipitation is another important
component when studying climate ensembles.

3.4 Approach Overview
Based on the requirements from the domain scientist, we formalize
two major visualization tasks: parameter visualization (R1, R2 and
R3) and ensemble visualization (R4, R5 and R6). To visualize the
multi-resolution high-dimensional parameter sets, we propose a novel
technique, called Nested Parallel Coordinates Plot (NPCP); whereas
an overview+detail exploration strategy has been employed for under-
standing the large spatial temporal ensemble sets.

Figure 2 shows the workflow of our visualization system. The qual-
ity of ensemble sets is evaluated through comparing with the corre-
sponding observation sets (R4). The quality values along with the



parameter sets are visualized in the NPCP to demonstrate the intra-
resolution (R1) and inter-resolution (R2) correlations of convective
parameters. Intuitive high-dimensional range query (R3) and smooth
view transition can be performed via simple interactions with the
NPCP. The quality values of ensemble members are also used to com-
pare them (R5). A linked visualization of heat maps and dendrograms
is employed to demonstrate the overall quality and similarity of en-
semble members. The interaction with NPCP, heat maps and dendro-
grams leads scientists to examine on the spatial temporal details of an
ensemble member/item (R6). Multiple juxtaposed geographic views
serve this requirement.

Fig. 2. Data processing pipeline and system overview.

4 MULTI-RESOLUTION CONVECTIVE PARAMETER VISUALIZA-
TION

This section focuses on fulfilling the requirement R1, R2 and R3. The
input datasets for visualization are sets of convective parameters from
climate simulations. Each set (i.e. parameter set) corresponds to en-
semble runs of a certain resolution. Multiple parameters with different
values in each resolution form a high-dimensional space. Most visu-
alization of such high-dimensional data employs Parallel Coordinates
Plot (PCP) [18], which is particularly useful in revealing the relational
patterns between multiple dimensions in a single visualization. A con-
ventional PCP visualization encodes high-dimensional data instances
as polylines across axes (Figure 3A). We base our parameter visual-
ization on PCP for its popularity and intuitiveness in visualizing multi-
dimensional data. However, when visualizing the parameter data from
multiple resolutions (sets), the effectiveness of PCPs is limited due to
overplotting of polylines, as in this case the number of polylines is pro-
portional to the number of parameter sets (Figure 3A). Consequently,
the question is how to improve PCP to facilitate visual comparative
analysis of multiple sets. To answer this question, we first review the
existing design of PCPs, and then present our design.

4.1 Reviewing PCPs from A Comparative Perspective
We review the existing designs for PCPs and highlight the need for a
new design of PCPs to visualize the unique features of multi-resolution
convective parameters in this section. A synthetic multi-set high-
dimensional dataset (3 sets, 5 dimensions) is generated. Table 1 shows
the formulas for the synthetic data. With distinct values of x, the for-
mulas in each row generate various data instances for each set. The
problems we are facing are: (1) visualizing the correlation between
different dimensions of a set, such as the correlation between x and

f unc1 in set 1 (x and ex), i.e. requirement R1 (intra-set correlation);
(2) comparing the correlations of specific dimensions in different sets,
such as the correlations between the dimension f unc2 and f unc3 in
set 2 (ex and six(x)) and set 3 (sin(x) and cos(x)), i.e. requirement R2
(inter-set correlation).

Table 1. Formulas for the synthetic data set used for experiments
set x f unc1 f unc2 f unc3
1 x ex −x cos(x)
2 x cos(x) ex sin(x)
3 x −x sin(x) cos(x)

Superimposed PCP. Figure 3A shows the result when we draw the
synthetic data in a typical PCP. This design is ineffective of demon-
strating the correlation between different dimensions (due to the over-
plotting), let alone the comparison between sets. From the compara-
tive visualization perspective, such typical PCP uses the Superimpo-
sition design [9], which overlays all three sets in a single visualization.
Nevertheless, since the three sets share the same axes, we can directly
compare the data range and data distribution of the three sets in this
design. For example, it is evident that set 1 (blue polylines) has a wider
value range on axis f unc1 than the other two sets.

Fig. 3. (A) a conventional PCP with superimposition design; (B) three
PCPs with juxtaposition design; (C) superimposed PCP with curve
bundling [14] as explicit encoding; (D) nested parallel coordinates plot.

Juxtaposed PCPs. A straightforward approach to address the over-
plotting problem is to separate the three sets and visualize them in
three distinct PCPs, as shown in Figure 3B. This design, which en-
courages side-by-side visual comparison of multiple facets of a com-
plex data set, is called Juxtaposition [9, 24]. Since sets are separated,
the correlation between different dimensions in each set (intra-set cor-
relation) is clearly revealed. The relational pattern of corresponding
dimensions from different sets (inter-set correlation) is also obvious.



The disadvantage for this design is the inconvenience of comparing
data range and data distribution from different sets. Although the jux-
taposition design alleviates the problem of visual clutter, it predom-
inantly relies on the use of the viewer’s memory and attention shifts
to make connections between different sets [9], which can add bur-
dens onto the viewer’s mental effort to interpret the relational patterns
between sets regarding one axis.
PCP with Explicit Encodings. Figure 3C shows the superimposed
PCP, but replacing each line segment between axes with two joint
Bézier curves [14]. The joints of curves belonging to the same set are
aggregated to a small vertical range to bundle the curves. The distor-
tion of curves helps to maintain the geometric continuity and to trace
data instances across axes. Different sets are effectively separated in
the superimposed PCP by virtue of the bundling. The above mentioned
visual encodings, such as bundling and distorting, are called Explicit
Encodings in comparative visualization [9]. Although bundling en-
hances the perception of inter-set correlations in PCPs, the relational
patterns between different axes regarding one set (intra-set correla-
tion) are hindered due to bundling distortion, as curves from the same
sets are aggregated to a single location or a small vertical range.
Hybrid PCP. To effectively show both intra-set and inter-set correla-
tions (R1 and R2), none of the aforementioned designs is solely suf-
ficient. Although one can resort to separate views of different PCP
designs for different tasks, users may need to switch between differ-
ent views multiple times during the exploration process, which can be
time-consuming and labor-intensive. In addition, since the focus of
interest is displayed separately in different views, users may lose their
mental map when the view changes. To solve this problem, we pro-
pose Nested Parallel Coordinates Plot (NPCP) (shown in Figure 3D),
which assembles superimposition, juxtaposition and explicit encoding
designs for combining their respective advantages. More importantly,
through simple interactions with the NPCP, users can control the ra-
tio of superimposition and juxtaposition in the 2D space and smoothly
transition from one design to the other, which significantly contributes
to preserving users’ mental map. The core idea is to nest multiple jux-
taposed PCPs into the original superimposed PCP and employ curve
bundling as explicit encoding. In this design, each line segment be-
tween axes is replaced with two cubic Bézier curves and one shorter
line segment. The short line segments from different data instances of
the same set constitute the relational pattern between axes (intra-set
correlation). The pattern is demonstrated in a nested juxtaposed PCP.
By virtue of the bundled curves on both sides of the shorter segments,
nested juxtaposed PCPs from different sets can be separated and flex-
ibly repositioned for side-by-side comparisons (inter-set correlation).
The NPCP also demonstrates the data range and distribution on the
axes of the original superimposed PCP.

4.2 Design of Nested Parallel Coordinates Plot
We now explain more details about the design of NPCP. Each original
line segment between axes of the superimposed PCP is replaced with
a pair of cubic Bézier curves (bi,1 and bi,2) and a shorter line segment
(li), as shown in Figure 4. The two curves enable us to flexibly dis-
tribute the nested juxtaposed PCPs, whereas the shorter line segment
maintains the original relational pattern. We present the design details
of NPCP through the explanation of its three parameters: horizontal
spread, vertical spread and curviness.
Horizontal Spread. We call the axes of the original superimposed
PCP as primary axes (Xi and Xi+1) and the axes of the nested juxta-
posed PCPs as secondary axes (Wi and Wi+1). Horizontally, the nested
juxtaposed PCPs will always be in the middle of two primary axes.
The distance between a pair of secondary axes is defined as horizontal
spread, denoted as α in Figure 4.
Vertical Spread. The nested juxtaposed PCPs of different sets are
uniformly distributed along the middle line of two primary axes. Their
vertical positions depend on the number of sets in the NPCP. For ex-
ample, if the number of set is three, three nested juxtaposed PCPs will
be listed between every two primary axes. To avoid overlap, the max-
imum vertical length of each will be one third length of the primary
axes. The vertical spread, denoted as β in Figure 4, describes the
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Fig. 4. One straight line segment
−−−→
PiPi+1 between axes is replaced by two

cubic Bézier curves (bi,1 and bi,2) and one shorter line segment (li). α, β

and γ represents the horizontal spread, vertical spread and curviness.

vertical length of the secondary axes.
Curviness. The curviness, denoted as γ , is used to depict the distortion
scale of the two cubic Bézier curves. The geometric shape of a cubic
Bézier curve is decided by four control points. The start and end con-
trol points, that are on the curve, will be decided by the corresponding
dimension’s value of the data instance. The other two control points
in the middle will be determined by the curviness value.

The secondary axes are shorter than the primary axes in NPCP, but
the corresponding primary and secondary axis (such as Xi and Wi) are
representing the same dimension of the data and using the same value
range. With the positions of a data instance on axis Xi and Xi+1, Pi
and Pi+1, we can derive its positions on Wi and Wi+1. The shorter line
segment li can then be decided by connecting the two points on Wi and
Wi+1, i.e. the two red points in Figure 4. As we can see, li will be
parallel to

−−−→
PiPi+1. The value range of the same dimension from differ-

ent sets may vary a lot. For example, in Figure 3A, the value ranges
of three sets in dimension f unc2 are very different. When separating
three sets from a superimposed primary axis to three juxtaposed sec-
ondary axes, if the secondary axes all use the same value range, some
of them cannot be fully utilized and the correlation pattern in nested
juxtaposed PCPs will be hindered, as shown in Figure 5 (left). To
address this problem, we allow NPCP to normalize the values of the
same dimension in different sets and map them to the entire range of
the corresponding secondary axis, as demonstrated in Figure 5 (right).

Fig. 5. The sin(x)− cos(x) correlation pattern in NPCP. Left: values on
the secondary axes are not normalized; right: values on the secondary
axes have been normalized. In the right figure, li is not parallel to

−−−→
PiPi+1,

but the correlation pattern is more obvious.

The data instance’s coordinates on Xi and Wi decide the positions of
the start and end control points of the curve bi,1. The other two control
points are between Xi and Wi. Point Pi−1 in Figure 4 denotes the inter-
section of the original polyline with axis Xi−1, i.e. the primary axis on
the left of Xi. The extension of

−−−→
Pi−1Pi beyond Pi and

−−−→
PiPi+1 form an

angle. The second control point of bi,1 is on the bisector of this angle
but γ away from axis Xi. If Xi is the leftmost axis, the bisector of the
horizontal line and the segment

−−−→
PiPi+1 will be used instead. The third

control point is on the extension of li beyond axis Wi and its distance
to Wi is γ . With these four control points in order, we derive the cubic



Bézier curve bi,1. Similarly, one can derive bi,2. The curve generation
method explained here is similar to [14]. The last question is how to
decide the vertical order of the nested juxtaposed PCPs. Two methods
have been used. One is using the index of sets, in which the verti-
cal position of each set’s nested juxtaposed PCPs is consistent across
primary axes. For example, if we have three sets, the first set’s juxta-
posed PCPs will always take the first 1/3 vertical space of the primary
axes. Figure 3D is an example of this case. Another way is to sort sets
based on the centroid of the original line segments in each set between
every pair of neighboring primary axes. This method respects the val-
ues of data instances and usually has less curve distortion. However,
the vertical positions of sets’ nested juxtaposed PCPs may be different
across primary axes. Figure 6B and Figure 6C are examples of this
case. The nested juxtaposed PCPs of the second set (green curves) are
not always in the middle.

With the horizontal, vertical spread (α , β ) and the number of sets,
one can derive the ratio of space used for the nested juxtaposed PCPs.
For example, if the number of sets is three, the juxtaposed space ra-
tio will be 3αβ . The continuous value ranges of α and β guarantee
smooth transitions among completely superimposed, completely jux-
taposed and hybrid views. The control on curviness helps to preserve
the continuity of polylines across axes.

4.3 Interaction with NPCP
Except the basic interactions for PCP, such as zooming and brushing,
we provide several additional interaction techniques in NPCP.
View Switching. NPCP demonstrates intra-set and inter-set correla-
tions with superimposed and juxtaposed views. These views are con-
trolled by the horizontal spread and vertical spread of the NPCP. The
curviness adjusts the geometric shape of curves and enhances conti-
nuity. In NPCP, we offer three default combinations of these param-
eters. These combinations avoid the tuning of these parameters and
help to efficiently switch between completely juxtaposed view (Fig-
ure 6A), completely superimposed view (Figure 6D) and hybrid view
(Figure 6B, C). Users can also adjust the value of parameters in each
combination on demand. To simplify the user interface, we hide the
widgets for the three control parameters. They will only be displayed
when users want to adjust the value of the three parameters.

Fig. 6. The effects of three NPCP parameters. (A) α = 1.0, β = 0.33,
γ = 0.0 (juxtaposition ratio is: 3αβ=100%); (B) α = 0.4, β = 0.25, γ = 0.1;
(C) α = 0.16, β = 0.12, γ = 0.0; (D) α = 0.0, β = 0.0, γ = 0.15.

Flexible Color Encoding. The color of a polyline in conventional
PCPs is decided by a certain dimension’s value of the corresponding
data instance. The axis corresponding to this dimension is called the
active axis in NPCP. The rest axes are passive axes. We embed a
color/transparency control widget (Figure 7) on the active axis to en-
able flexible color encoding of polylines in NPCP. The control points
on the widget control the color/transparency of the color strip overlaid
on the axis, as well as the color/transparency of polylines. Linear inter-
polation between control points smooths the color/transparency tran-

sition. Users can add/edit/remove control points to modify the visual
appearance of polylines. Similar control widgets are also embedded
in passive axes. However, passive axes have no control on colors; they
only affect the transparency of polylines. Control points on these axes
have opacity value either 0 or 1. The transparency value of a polyline
is derived from the multiplication of the opacity values from all axes
(both active and passive). Therefore, as long as one axis has opacity 0,
the entire polyline (high-dimensional data instance) will be invisible.

Selections are usually performed via brushing on polylines in
PCPs. However, due to the overlap of polylines, preciseness is hardly
achieved when data size is large. With the flexible color encoding of
NPCP, many polylines can be hidden (set to be transparent) before
the brushing. The color/transparency control widgets, together with
brushing, provide two-step selections in NPCP. The widgets also help
in flexibly adjusting the transparency of polylines, which can effec-
tively fade off uninterested data instances when the data size is large.
High-Dimensional Range Query. As explained in Section 3.3 (R3),
the domain scientist needs to perform range query on the high-
dimensional parameter space. The query calculation can be done of-
fline and be separated from the visualization. In this case, the offline
calculation results will be taken as the input of the visualization. Con-
versely, the visualization results, which will guide the domain scientist
to refine his query, affect the next offline calculation. Parameter anal-
ysis is usually conducted through such a loop between calculation and
visualization with the interaction from domain scientists. The offline
calculation introduces I/O overhead and the resulted latency discour-
ages the analysis process. NPCP supports real-time high-dimensional
range query by enabling set operations, i.e. unions and intersections,
between the primary axes. The differences operations can be done
through adjusting the control points of the color/transparency control
widgets embedded in each axis (Figure 7).

Fig. 7. High-dimensional range query in NPCP with the help of
color/transparency control widgets embedded in each axis.

When performing high-dimensional range query with NPCP, the
query expression needs to be determined first. Axes of NPCP can
then be shuffled based on the appearance order of operands (dif-
ferent dimensions of the data) in the expression. With the help
of the control points on the color/transparency control widgets, ac-
curate numerical value range/ranges of each dimension can be se-
lected. In the enlarged view of Figure 7, two control points pre-
cisely select the value range [−2.57, −0.74] on axis f unc1. Next,
the query expression is visually composed by changing the set op-
erators between axes and adding/removing parentheses on demand.
The query expression in Figure 7 is: {1≤ set≤ 3}

⋂
{3.14≤ x≤

3.14}
⋂
({−2.57≤ f unc1≤−0.74}

⋃
{1.36≤ f unc1≤3.33}

⋃
{0.61≤

f unc2≤3.29})
⋂
{−1≤ f unc3≤1}. After the expression is finalized,

NPCP evaluates the query expression at background to query out the
desired data instances and visualizes them immediately.

5 MULTI-RESOLUTION ENSEMBLE VISUALIZATION

Our visualization system adopts the overview+detail exploration tech-
nique to demonstrate the multi-resolution spatial temporal ensembles.
An overview of the ensembles is demonstrated by heat maps and den-
drograms, whereas small multiple geographic views are employed for
detailed examination on one particular ensemble member/item.



5.1 Understanding the Big Picture
The first thing that the domain scientist wants to see from the ensem-
bles is the accuracy of the simulations (R4). The predicted precipita-
tion is the scientist’s research focus and its accuracy can be measured
by comparing each ensemble item with the corresponding observa-
tion item collected from satellites. Mean Square Error (MSE) is the
most commonly used comparison metric. However, the metric does
not consider the spatial structure of data, which leads to inaccurate
comparisons in certain cases. To improve the reliability of accuracy
evaluation, we have also calculated the Structure Similarity (SSIM)
index [45], in addition to the MSE, for each ensemble item. The SSIM
algorithm has been used extensively for image comparison. In our
case, the latitude/longitude of a grid point in an ensemble item is sim-
ilar to the row/column index of a pixel in a 2D image. Therefore, we
can easily adapt the SSIM algorithm to assess the quality of ensemble
items. Similar to the MSE calculation, the output of SSIM is a nu-
merical value denotes the similarity between an ensemble item and an
observation item. Similar items are considered as accurate. Since each
ensemble member contains multiple ensemble items, the quality of an
ensemble member is described by an accuracy vector whose elements’
value represents the corresponding ensemble items’ accuracy.

Next, Dynamic Time Warping (DTW) [41] is applied on the accu-
racy vectors of different ensemble members to measure the similarity
between them (R5). The DTW algorithm was originally invented for
speech recognition [38]. It measures the similarity of two temporal
sequences (feature vectors) by aligning the best matching elements
between the two sequences. Since each climate ensemble member has
a sequence of time-related accuracy values, DTW can be used here to
better align them and provide a more reliable similarity quantification.
For example, the precipitation of ensemble member B might be very
similar to ensemble member A, but only delayed for one day (ensemble
item). Simply comparing these two members day by day may lead to
the conclusion that they are very dissimilar. DTW can help to handle
this case. We compare all pairs of ensemble members using DTW and
the output is organized as a symmetric matrix, in which the element of
row i and column j represents the similarity value between the ith and
jth ensemble member. We then apply agglomerative clustering [13] on
the similarity matrix to group similar ensemble members. The cluster-
ing generates a hierarchical tree, in which ensemble members are the
leaves and similar members are grouped into the same branch.

Algorithm 1 demonstrates the accuracy calculation, similarity quan-
tification and agglomerative clustering processes. Line 6 computes the
SSIM index. For MSE, one can simply replace the SSIM calculation
in this line. The result, matSSIM, is a 2D matrix with the first di-
mension (column) representing the ensemble members and the second
dimension (row) representing the ensemble items. Every pair of rows
in matSSIM is then taken as the input of DTW (line 12). The output,
matSimilarity, is the symmetric similarity matrix. The agglom-
erative clustering algorithm can then apply on matSimiliarity to
derive the hierarchical cluster tree (line 16).

Algorithm 1 Quality, similarity quantification and clustering
1: num member⇐ number of ensemble member
2: num item⇐ number of ensemble item in each ensemble member
3: // compute SSIM index of each ensemble item
4: for i⇐ 1; i≤ num member; i++ do
5: for j⇐ 1; j ≤ num item; j++ do
6: matSSIM[i][ j]⇐ SSIM(ensemble item, observation item);
7: end for
8: end for
9: // compute similarity matrix using DTW

10: for i⇐ 1; i≤ num member; i++ do
11: for j⇐ 1; j ≤ num member; j++ do
12: matSimilarity[i][ j]⇐ DTW (matSSIM[i], matSSIM[ j]);
13: end for
14: end for
15: // use similarity matrix for clustering
16: hierarchicalTree⇐ AgglomerativeClustering(matSimilarity);

A linked visualization of a heat map and a dendrogram is designed
to provide an overview of one ensemble set (Figure 8). Multiple en-
semble sets will need multiple such linked visualization views.

Fig. 8. Ensemble dissimilarity resulted from distinct parameter settings.

Heat Map. The horizontal dimension of the heat map is the ensem-
ble members in the same ensemble set. They are ordered according to
the agglomerative clustering steps (i.e. the order of leaves in the hier-
archical tree). The vertical dimension represents the ensemble items
with earlier ones at the bottom. This dimension, therefore, presents the
quality of ensemble items over time. We categorize ensemble items in
to four groups based on their quality: Very Accurate, Accurate, Inac-
curate and Very Inaccurate (Figure 1 B2), one color for each group in
the heat map. Certain groups of ensemble items in the heat map can
be filtered out by domain science users. Clicking a certain ensemble
item leads the users to its detail in the geographic views.
Dendrogram. The leaves of the hierarchical cluster tree represent the
ensemble members. They are ordered according to the agglomera-
tion steps. So, the leftmost two leaf nodes (the first two agglomer-
ated members) are the most similar ensemble members. The height
(vertical position) of a internal node indicates the dissimilarity scale
between its two children. Users can select on the dendrogram to ex-
amine certain branches of the tree. The selection will be synchronized
in the NPCP view to show the convective parameters used for these
ensemble members. Figure 8 demonstrates an example. The domain
scientist zoomed into the top left corner of the heat map and selected
the first five ensemble members (one branch of the dendrogram). The
difference between convective parameters used for the first three mem-
bers and the last two members is clearly demonstrated in the NPCP.

5.2 Drilling Down to Spatial Geographic Views
The geographic views enable scientists to thoroughly examine on a
particular ensemble member/item. We present ensembles with geo-
graphic views since the spatial information is one of the most impor-
tant dimensions of ensemble sets (R6).
Spatial Facet of Ensemble Items. Three geographic views, one for a
climate ensemble item (denoted as V1, Figure 1 C1), one for an obser-
vation item (denoted as V2, Figure 1 C2) and one for their difference
(denoted as V3, Figure 1 C3), are shown side-by-side. The difference
value at each spatial location (grid point) in V3 is derived by the value
at the same location of the ensemble item in V1 and observation item
in V2. We allow scientists to customize the calculation of this differ-
ence value in the system by providing their own equation to describe
the relation between V 1, V 2 and V 3 (Figure 1 C4). The most straight-
forward difference calculation is simply minus the observation item
from the ensemble item, which is shown in Figure 1 C3.

Our system supports ensemble items aggregation in V1. It causes
confusion if multiple parameter settings or ensemble members are se-
lected from the NPCP, heat maps or dendrograms, but only the item
of one member is visualized in V1. To address this issue, we provide
the option to merge the corresponding items of all selected ensemble
members. If selected members are all from the same resolution, the



Fig. 9. One ensemble member with 30 items: the predicted precipitation over June 2007, from the 33rd member of the 12 km ensemble set.

aggregation of ensemble members on a particular item is conducted
through a weighted sum. The weight is decided by the opacity value
of the corresponding polyline in the NPCP, which can be adjusted by
the color/transparency control widget embedded in each axis. On the
other hand, if selected ensemble members are from different resolu-
tions, linear interpolations will be applied first to up-sample the lower
resolution ensemble items before the aggregation.
Spatial Facet of Ensemble Members. To study spatial temporal cli-
mate ensembles, domain scientists need to understand the temporal
evolution of ensemble members over geo-locations (R6). The ensem-
ble item visualization view (V1) can only show the spatial informa-
tion of one ensemble item. Although we provide scientists with some
control widgets (Figure 1 C5) to help them switch between different
items, it is difficult to preserve their mental map during view switch-
ing. For this reason, we provide the option of showing all items of one
ensemble member in multiple juxtaposed geographic views (multiple
V1). The content of these views can also be multiple observation items
(multiple V2), or multiple difference views (multiple V3) between en-
semble items and observation items. Figure 9 shows one ensemble
member with 30 items in 30 small multiple views.

6 REAL-WORLD USE-CASES

In this section, we demonstrate the effectiveness of our system with
real-world climate ensemble sets from the domain scientist.

6.1 Data Description

The domain scientist used the Weather Research and Forecasting
(WRF) [43] model to generate climate ensembles with three differ-
ent spatial resolutions: 50 km, 25 km and 12 km. The number of grid
points in each resolution is (latitude×longitude): 43×44, 87×89 and
182×187 respectively. The 50 km ensemble has the lowest grid reso-
lution. These three ensembles were generated to simulate the weather
over the Southern Great Plains (SGP) region (latitude: 25.0◦∼44.0◦,
longitude: −112.0◦∼−90◦) in June 2007. The Kain-Fritsch [20] con-
vection parameterization scheme is applied in the study and the sci-
entist is interested in the effects of five convective parameters on the
precipitation output. These parameters are: the coefficient related to
downdraft mass flux rate (Pd), the coefficient related to entrainment
mass flux rate (Pe), the maximum turbulent kinetic energy (Pt ), the
starting height of downdraft above updraft source layer (Ph) and the av-
erage consumption time of convective available potential energy (Pc).
Parameter Set. Three sets of parameters have been used to generate
the three ensemble sets with the resolution of 50 km, 25 km and 12 km
respectively. We use P50, P25 and P12 to denote these three param-
eter sets and they are the input of our NPCP. Each set contains 150
parameter settings; and each setting is a combination of five values
representing the values used for the five convective parameters.
Ensemble Set. We use E50, E25 and E12 to distinguish the three en-
semble sets generated using P50, P25 and P12 respectively. Each en-
semble set has 150 ensemble members. Members of the three ensem-

ble sets all have 30 ensemble items. Each item represents the precipi-
tation of one day. So, the 30 items cover the month of June 2007.
Observation Set. Three sets of observed precipitation values over
the SGP region in June 2007 were collected from satellites. Their
resolutions are: 50 km, 25 km and 12 km; we use O50, O25 and O12

to represent them. Each set also contains the precipitation of 30 days.
The observed precipitation of one day is one observation item, which
can be used to assess the corresponding ensemble item.

6.2 Case Studies with Domain Scientists’ Feedback
We have verified the effectiveness and usefulness of our system with
two domain experts. The first one is the scientist who provided the
ensemble data. He was deeply involved in the task abstraction [27]
process during the design of our system. The layout of different views
(Figure 1) was also suggested by him. The second one is an expert
from atmospheric sciences, focusing on dynamical predictability and
multiscale convective systems. Both experts have been working with
climate data over ten years and are ideal users of our system.

We asked the experts to use the conventional superimposed PCP,
juxtaposed PCPs and our NPCP to describe the difference between
intra/inter-set correlation patterns. Figure 10 (left) shows part of the
NPCP visualization of the convective parameters. Values on all axes
increase from bottom to top. The axis id corresponds to the index of
ensemble members, which is their execution order (earlier ensemble
members have smaller indices), and the polylines are colored by the
id value of corresponding data instances. Polylines representing early
ensemble members are in red; while polylines for later members are in
blue. The color strip embedded in axis id shows the color mapping. It
can be seen from the NPCP that the red polylines intersect with the axis
Pe, Ph and Pt in wider ranges; whereas the blue polylines intersect with
them in narrower ranges. The narrow ranges where most of the blue
polylines intersect with each axis imply the more stable values for each
parameter in the later runs of the simulation. The nested juxtaposed
PCPs in the bottom, middle and top row of the NPCP demonstrate the
correlation patterns between different dimensions in P50, P25 and P12

respectively. The differences of the correlation patterns between Ph
and Pt in P50 and P25 (Figure 10 A, B), and in P50 and P12 (Figure 10
A, C) can be seen from the nested juxtaposed PCPs. The experts can-
not tell the differences when using the conventional superimposed PCP
since patterns from three sets are overlapped, as shown in Figure 10
(middle). The differences can also be identified from the juxtaposed
PCPs (Figure 10 D and E, D and F). Nevertheless, when the correla-
tion patterns are very similar, the conventional juxtaposed PCPs will
not be effective. For example, the experts can hardly differentiate the
correlation patterns between Ph and Pt in P25 and P12 (Figure 10 E, F).
These two patterns in the nested juxtaposed PCPs of NPCP are also
hard to differentiate (Figure 10 B, C). However, by virtue of the con-
tinuous geometric shape of Bézier curves, both experts can trace the
blue polylines and find the narrow ranges where they intersect with
the primary axis Pt . The stable values of Pt in P25 are a little greater
than its stable values in P12 (Figure 10 G). Similarly, they can find



Fig. 10. Left: multi-resolution convective parameter visualization in NPCP; middle: the correlation patterns between Ph and Pt in P50, P25 and P12

are overlapped in the conventional superimposed PCP; right: the correlation patterns between Ph and Pt in P50, P25 and P12 in juxtaposed PCPs.

the stable values of Ph used in P25 are smaller than its stable values in
P12 (Figure 10 H). The difference of Ph values in these two sets also
helped the experts to differentiate the two patterns in Figure 10 I and
J. Both superimposed and juxtaposed comparisons are necessary here.
The experts performed high dimensional range query by visually com-
posing set expressions in NPCP. Previously, to find out desired data
instances, they have to write different Python/Matlab scripts and use
separate visualization packages. A minor change to the query requires
to repeat the entire data processing pipeline. The intuitive visual query
interaction of NPCP significantly reduced the time for data query.

We also asked the experts to describe their findings about the three
ensemble sets and describe the predicted precipitation according to the
most accurate member they found using our system. Three heat maps
in Figure 1 B1, from left to right, demonstrate the overall quality of 50
ensemble members selected from E50, E25 and E12 respectively. With
the help of the color legends (Figure 1 B2), both experts agreed that
the precipitation predictions for early days are more accurate than later
days and the lower resolution ensembles have higher overall quality.
They commented that simulations with finer grid resolutions are not
guaranteed to have higher overall quality. With the ensemble quality
and cluster information from heat maps and dendrograms, the system
directed both experts to the 33rd member of E12 (the leftmost leaf in
the dendrogram of E12). Figure 9 shows the precipitation predicted
by this member. The color red specifies the spatial regions where the
precipitation is high. In general, the 5th, 9th, and 21st of June have
less precipitation than other days and the west coast regions have less
precipitation than the east coast regions. Temporal evolutions, like the
moving of precipitation from the south east corner to the middle region
from the 25th to the 27th of June, can also be found in the figure.

6.3 Discussion

Overall, both domain experts found the results promising. The first
expert was satisfied with the effectiveness of the NPCP in demonstrat-
ing parameter correlations across resolutions; while the second expert
liked the heat maps and dendrograms in assessing and clustering en-
semble members. Meanwhile, both experts confirmed that the linked
views helped them build the connection between parameter settings
and ensemble members. The system has the potential to be used for
other applications and NPCP can be easily adapted to other multi-set
data. In this work, we specifically focused on addressing the domain
tasks from the first domain expert, as well as fulfilling the functionality
of the system. Generalizing the technique and analyzing other datasets
with the system would be good directions for future exploration.

There are several limitations in our current design of NPCP. First,
the visual representation of NPCP looks complex in certain cases.
We designed NPCP particularly for the objective of revealing the
intra/inter-set correlations, which can hardly be accomplished by the
conventional PCPs. For more general multi-variate data analysis, we
would expect the conventional PCPs to be used more often. Second,
short-time training may be required to help users get familiar with the
system, especially for users who have no prior experience with the

conventional PCPs. Our first expert used PCPs before this work. We
only spent time on explaining the three parameters of NPCP to him
and he could adjust NPCP to desired views and explore ensembles
with the system independently in less than 30 minutes. The second
expert had no prior knowledge about PCPs. It took her around one
hour to fully understand the system (including the time to understand
the data). Therefore, we would expect the average training time to be
less than or around one hour. Third, similar to the conventional PCPs,
the superimposed facet (primary axes) of NPCP could result in visual
clutter if the number of data instances is large. The nested juxtaposed
PCPs separate data instances by sets, thus reducing visual clutter to
some extent. This is more obvious when the number of sets is large
since more juxtaposed PCPs will be used. Given that the size of the
domain data we are dealing with is not extremely large, we put less
emphasis on the scalability issue in the current work.

7 CONCLUSION AND FUTURE WORK

In this paper, we proposed Nested Parallel Coordinates Plot (NPCP)
for the visualization and analysis of multi-resolution high-dimensional
convective parameter space in climate modeling. NPCP integrates su-
perimposed PCP and juxtaposed PCPs into one view and employs
curve bundling as explicit encoding to demonstrate intra-resolution
and inter-resolution parameter correlations. It is also equipped with
intuitive high-dimensional range query that assists domain scientists
to promptly retrieve the desired data instances. An overview+detail
spatial temporal ensemble exploration and visualization system is also
developed. We integrated NPCP into the system to help domain scien-
tists establish the connection between the complex parameter settings
and the intricate climate ensembles. Several use-cases with real-world
climate data demonstrate the effectiveness of the system. In the future,
we would like to work with more domain scientists, explore other cli-
mate data using the system, and develop more formal and statistical
case studies to further establish the effectiveness of the system in pa-
rameter analysis and ensemble visualization. We also plan to apply
NPCP to other application areas, in which the domain data can be
generalized as multi-set high-dimensional data.
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