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Problem statement

Analysis of E&M waves in heterogeneous media with microscale
IS relevant in radar, optical imaging, communications...

Mathematical model: Maxwell’'s equations
V x E(&) = iwuoH (F),
V x H(@) = J(&) — iwe(2)E(D),
where (&) has uncertain small scale weak fluctuations.

—

Random model of uncertainty (&) = &, [1 + av <%) 1 L)(z)}

where v is zero mean stationary process, bounded differentiable
with bounded derivative a.s. It is mixing with autocorrelation

R(i) = E |v(d + @' )v (@)

normalized by R(0) =1 and [pzduR(u) = O(1).




Setup

U S

?J{ random medium

2 T =(z,2), o= (21,72)

Source J (&) = f(%) 5(z) ~ plane waves kK=t \with ampli-

tudes proportional to [p2 dx f(%) e~k — X2 (Xki).

The unit wave vectors kK = (k, \/1 — |k|?) are in a cone (beam)
of opening angle ~ (Xk)~1 where k = 2x/)\ is the wave number.

Evolution of the beam depends on relation between the distance
L of propagation, wavelength A and correlation length ¢, as well
as the amplitude o« of the random fluctuations.




Scattering regimes

e \\Weak scattering models like Born or Rytowv.

e Paraxial regime: waves propagate in a narrow beam. This is
well understood in mixing random media (Garnier, Solna). Re-
lated study for Schrodinger’'s equations (Erdos, Yau and Bal,
Komorowski, Ryzhik). Paraxial regime captures some random-
ization effects but not loss of polarization.

e Radiative transfer regime where waves propagate in all direc-
tions. Energy propagation is modeled by Chandrasekar’s trans-
port equations. Not completely mathematically justified. For-
mal derivations are based on multiple scale asymptotic analysis
(Keller, Ryzhik, Papanicolaou) and diagramatic (multiple scat-
tering series) expansions which assume Gaussian fluctuations v.

e \We consider a new wide-angle regime which bridges between
the paraxial and the radiative transfer regime®.

*Inspired by recent study in waveguides (Alonso and B.)



Wide-angle regime

Scale ordering A< ¢/ ~ X <« L and small amplitude fluctuations:

® c = % < 1 so waves propagate over many wavelengths.

V= % € (0,1) is independent of e. When v <« 1 ~» paraxial.

® v, = % < 1 controls opening angle of the emitted beam.

e Standard deviation of the fluctuations is a = €1/2.
Asymptotic analysis for ¢ — 0.

We use v, v, to control the wide-angle regime i.e., ensure waves
propagate in a cone of opening angle less than 180°.




First result: Wave decomposition

— d(kr) q I | ikR-&
E(x) = a(k,z)u(kK) +a(K,z)u (Kr)|e
(&) /| wm“ )i (k) + a'(k,2) @ (x)]
60 d(kk)

[a(li, ) dT (k) — at(k, 2) ﬁ(ﬂ)} SRR
NO k|<1 (27r)2 5(%)

where § = (K,,B(K,)), k€ R2, B(k) = \/1 — |k|? and k = 27/,

e Modes distinguished by unit vectors orthogonal to K

1
(k) = (5("‘)"‘,—|n|>, it (k) = (””—,o>, Kt = (—ko, K1).

|| K|

e Random amplitudes a(k, z) and a+(k,z) of TM and TE modes
model scattering.




Wave decomposition

e [ he electric and magnetic plane waves

E(k,2) = a(k, 2)td(k) + at(k, 2)td (k)
H(k,2) = ¢ 1 |a(k, 2)d" (k) — at (K, 2)ii(K))

are orthogonal to K and to each other.

e [ heir statistical expectation defines the coherent wave.
a(k,2) \ (a(r,2) '
at(k,2)) \at(k,2)

Diagonal entries of P, the mode powers E[|a|?] and E[|at|?]
give first two components of Stokes'’ vector. The off-diagonal
parts the other two components.

e The coherence matrix P(k,z) = E

defines state of polarization.




Mathematical justification of decomposition

e Eliminate longitudinal fields from Maxwell's equations

1

HA(&) = - -V - (@),
N i JR
Be(%) = o G0 V- H(E) — J(x/X)5(2)],

where & = (z, z), V is gradient in = and V= its rotation by 90°.

e Transverse fields E and U = —,/*;—OOHL satisfy

V- U(Z) ] g [ J.(z/X)
1+ av(E/0) 114 av(E/0)

9. E(%) = ikU(Z) + év [ .

=

O,U(E) = ik[1 + av(@/0]E(F) + évi Vi B@)] - J(@/X)6(2).

e Use scaling and Fourier transform in & ~» plane waves.




Mathematical justification of decomposition

e Equations to study in limit e=\/L — 0, for z > 0,

E<(kk, 2 1k E<(kk, 2 . [ E¢
02 (ff\egkz, z%) = —M(K,) <A ( z Z>) —+ 1(O,L)(z) [./\/l (ff\e)](k’{’ Z)

for kK = transverse wave vector and k£ = 2x (scaled wavenumber).

e Leading matrix M(k) = ( 0 1-r® FL)

I—K‘,‘L(X)FLJ‘ 0

e Perturbation by random medium

[./\/lE <E€>](kl<,, z) = K d(kr’) [17 (k(n — k') /v, yz/e) (CI) o 63 Rl)

Ue Vey2 ) (2r)2

ke one) o 75| (o)




Mathematical justification of decomposition

e Wave decomposition uses diagonalization of matrix M(k).

It has two double eigenvalues +58(k), where B(k) = \/1 — |k|?,
and the eigenvectors

T 5("3)% ( , /51(,45) Rfj|
Yo =| | and (k)= |
NEOIE \i\/ﬁ(ﬁ?)fﬂ)

e The eigenvectors are linearly independent for |k| # 1, so they
form a basis in which we can expand solution

/E\E(klﬁ‘,,z) - .
(fj\ﬁ(k’r{,, Z)) o [a(ﬁ,2)¢+(ﬁ3) +a‘l‘(lﬁ3,z)¢i(l€)_€€ﬁ( ) +

[bm, D (k) + b (k, 2)pt (k)] e e ARz,
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Mathematical justification of decomposition

e For Markovian limit ¢ — O use the propagator P¢

((a(s,2) \ (a(k,0) )
ey | = [Pz |05
\b (K, 2) ) \b(%,0)
satisfying
0P (K, z, ko) ik d(kr") T , z , 2
0z o 272 /e (2m)2 [V (k(’{ — R/ 72) F<KJ’ " 72)4—

Ver? (k(ﬁ - ,4)/%75) G(FL, K E)] Pe(K', z; Ko),
€ €
with initial condition P¢(k,0; ko) = 16(k — ko).

e Source excitation gives a(k,0) and a1 (k,0) and by causality
(outgoing condition) b(k, L) = b-(k,L) = 0.
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Markov limit (Papanicolaou, Weinryb)

e Let O be an open set in R? and D(O, RP) the space of infinitely
differentiable functions with compact support*.

o Let Y¢(z) be the process in C([0, L], D), the solution of

dY € 1 z z z z
— —F R Y€ <_7_) Yea
dz Ve (e e) o € €

with F(¢, ¢, G(¢, ¢ random linear operators from D’ to D’:

¢ — F(, ¢, G(¢,¢') = stationary, mixing and E[F(¢,¢)] = 0,

¢ — F(¢, ¢, G(¢,¢") = periodic.

e As ¢ — 0, Y¢(2) converges weakly in C([0,L],D") to Y(z), the
solution of a martingale problem with generator L.

12

*In our case O = {k € R?, |k| < 1} and Y€ is given by concatenation of real
and imaginary parts of propagator P'(k, z; ko).



Markov limit

e For all ¢ € D(O,RP) and smooth f: R — R,
E [f<<Y<z>, ) — /O d2' Lf((Y (), 8))[Y(0) = Yo] = f({Yo, ).
e [ he generator is

Z—00

o0 7
LIY, ) = / ac lim — /O AhE[ (Y, F*(0,h)é) (Y, F*(¢,¢ + W)Y ] £ (Y, $))
+ [Cacpm 2 [T e[ (v FmF M ] £ )

+ lim —/ dhE[(Y,G"(0,)¢) ] F'((Y, $)),

where star denotes adjoint operators.

e To calculate first moment (mean field) let f(y) = y. For second
moment f(y) = y2, etc.
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Markov limit of the propagator

Paa,e Pab,e
e Propagator has block structure P° = ( ba.e bbe)

P P

e Kernel of operator F(¢,(¢) is » (M'{T_R,),WQ F(k, k', ('),

F(k,k', (') = ( T (i, k)R BN =BIIC T, )ik B(RD) BRI )

I‘ba(li,m’)e—ik[ﬁ(m’)-l-ﬁ(%)]C/ I‘bb(l%, k') etkl=AED)+B(R)IC

where

||| _|_i ﬂ(fﬂ:)ﬁ(l{’) kKt [ B(k)
Faa(n, K,,) — v B(r)B(K) K| B K| l|"'3| ﬁl("i) ,
WiV B Il T8 T /B(s)B(R)

and similar for other I' matrices and operator G, quadratic in v.

"3_ .
||

e The phases in F(k,k’,¢’) are important in calculation of gen-
erator £, and determine interaction of forward/backward waves.
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Markov limit of the propagator

ba,e aa,e

e As ¢ — 0, coupling of P, P™* to P* P" is proportional to

. / / _ =
[ B (G R ORI CO B B (k(n K ))

3 v

where & = (k, 8(k)) and k' = (k', —B(K")).

e Coupling of entries within P*“* is proportional to 7—1393 (k(’%:”’)> .

Conclusion: Forward/backward wave coupling is controlled by
the support of power spectral density R (smoothness assumption

on v) and domain of |R — k' |.
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Forward scattering approximation

o R supported in ball of radius 1, and source emits waves with
R = (k,B(r)) where* |k| <~;/k <1 and B(k) = /1 — |k|2.

klR—r_|  2kB(r))
Y

As long as |k| < k,, € (vs/k,1), s.t. > 1,

there is no coupling of forward to backward waves.
e Energy distribution in K obeys transport equations: makes

random walk (diffusion) with diffusion coefficient ~ v = \//.
Energy reaches k,, at scaled distance ~ /«',QM/y.

e Evanescent waves couple with propagating ones with |k| ~ 1.
In our regime these waves do not get excited.
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*Recall that v; = A/X and that kK = 2x is the scaled wavenumber.



Result: Characterization of the coherent (mean) field

e The mean amplitudes (E[a(ﬁ’ 2)] ) = exp [Q(n)z] <a0('{)> .

Elat(k, 2)] ay (K)

e Effect of random medium is in complex symmetric matrix

k2 rd(kk' = L k(R=R) =
Q(k) = — (K)I‘(R,n’)I‘(n,f@’)T de| dzR(X)e Ty
3 2
47 (27T) RQ 0
1k \m|2 1 0
—R(0
2 ( )ﬁ(n) <0 0)

e Q(k) has negative definite real part ~~ decay of mean field.
Scales of decay in z = scattering mean free paths.

e In statistically isotropic media Re[Q(x)] is a multiple of iden-
tity and depends only on |k]|.
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Scattering mean free paths S(k) in isotropic media
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e S(k) decrease monotonically with |k| because waves with larger
|| travel a longer path to reach the same range.

e S(k) are shorter for v = A/¢ small. High frequency waves lose
coherence faster:

k)2
S(H)=4’Y\/oj ll 14+ O()].
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Results: Wigner transform (energy density)

(2m)2°

Wik #) — [ 4FD ke (e+v8(@2) ( a(k+ 94, Z))) ( (k4 z))) .

satisfies transport equation

0:W(k,T) — VB(K) - VaW(k, T) = Q(r)W(k, &) + W(k, Z)Q(r) T+
ﬁ d(kr")
4~3 JIr'|<1 (27)2

T'(k, kYW )T (K, k)R (’“(’Z‘: ﬁl))

e Because of polarization we do not have scalar valued differential
and total scattering cross-sections, but linear operators.

e Connects to Chandrasekhar’'s radiative transport equations in
iIsotropic media ~» rigorous derivation in our regime and also to
paraxial regime in the limit vy = A\/¢ — 0.
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Results: State of polarization

e T he Hermitian, positive definite coherence matrix, which quan-
tifies the state of polarization, is

Efla(r,2)?]  Ela(x,2)a’ (k, 2)]
K,z) = = T K,T).
P(k, 2) [, dz Wk, )
Ela(r, 2)a*(k,2)]  Ellay(k,2)]

Two important effects displayed by the evolution of P(k, z):

1. Exchange of power between the T'M and T'E modes.

2. Diffusion of power in k.

e Illustration for initial condition* a(k,0) = ao(|&|), a=(x,0) = 0,
due to current source (J,J;) with J = V¢.

In isotropic media the coherence matrix remains diagonal.

20

*This gives linear initial polarization with Stokes vector &(k,0) ~ (1,1,0,0).



Results: State of polarization
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e Coherence matrix is diagonal in this case.
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e TM and TE mode powers couple strongly at smaller |k|.

e Diffusion spreads power to larger |k|.
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Results: Anisotropic initial condition.
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Results: High frequency analysis

At high frequency v = A\/¢ < 1 the transport equations simplify:

e We can change basis from {ﬁ(m),ﬁl(m),:?é} (that gave the
TM and TE modes) to {€1,€5,€;} for small |k|, as propaga-
tion is basically along e,.

e [ his diagonalizes the coupling term in the equations ~» there
is no polarization exchange between fields along €1 and €5 in
the cross-range plane. Agreement with paraxial results.

We need a large enough opening angle in order to see polariza-
tion exchange. This study considers a wide angle regime which
bridges between classic radiative transfer and paraxial.
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Summary

e \We presented a mathematical study of electromagnetic wave
propagation in random media in a wide-angle propagation
regime.

e T he main advantage is that we have a main direction of
propagation and we can reduce the problem to the study of
the random forward propagating mode amplitudes. This can
be carried using the Markovian limit.

e As a result we could justify mathematically the radiative
transport equations with polarization. This is in the forward
scattering regime, which is relevant in optical imaging.
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