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Stand-alone medical imaging modalities

@ High contrast modalities:
o Optical Tomography (OT);

e Electrical Impedance Tomography

(EIT): — |ow resolution

o Elastographic Imaging (EI).

e High resolution modalities:

o Computerized Tomography (CT);
== sometimes

o Magnetic Resonance Imaging (MRI); low contrast

o Ultrasound Imaging (Ul).
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Coupled physics medical imaging modalities

Idea: use physical mechanism that couples two modalities to
improve resolution while keeping the high contrast capabilities.

High High
Contrast | Resolution Hybrid Inverse Problems
Photo-acoustic tomography - PAT
Ultrasound Thermo-acoustic tomography - TAT
Optical - OT (non-linear)
(non-linear) Ultrasound modulates optical tomography - UMOT or
Acoustic optic tomography - AOT
MRI (linear)
Ultrasound Ultrasound electrial imp
Electrical - (non-linear) UMEIT or Electro acoustic tomography - EAT
EIT (non-
linear) ) L
MRI (inear) Magnetic resonance electrical impedance tomography -
MREIT and Current density impedance imaging - CDII
(L:‘I;;a::::f) Transient elastography - TE
Elastic -
MRI (linear) Magnetic resonance elastography - MRE
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Photo-acoustic effect

Photo-acoustic effect:

Graham Bell: When rapid
pulses of light are inci-
dent on a sample of mat-
ter they can be absorbed
and the resulting energy
will then be radiated as b
heat. This heat causes de-
tectable sound waves due
to pressure variation in the
surrounding medium.

~—Optical
absorber

Optical absorber—f "
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Experimental result

Courtesy UCL (Paul Beard’s Lab).
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In R"

Model in R”

Let Q2 C R"” be a bounded domain with supp f C €. Assume the
speed c(x) is variable and known in Q. For T > 0, let u solve the
problem

(0? —?(x)A)u = 0 in(0,T)xR"
U‘t::O = f
3tu\t:0 = 0.

Measurement: Af := uljo 1)x00-

‘ Inverse Problem: recover f from Af.
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Literature in R"

Previous Results: Agranovsky, Ambartsoumian, Anastasio et. al.,
Burcholzer, Cox et. al., Finch, Grun, Haltmeier, Hofer, Hristova,
Jin, Kuchment, Nguyen, Paltauff, Patch, Rakesh,

Stefanov, Uhlmann, Wang, Xu, ...

For the Riemannian manifold (Q, c~2dx?), let

To := maxdist(x, 09Q).
Q

T1 := length of longest geodesic in Q.

Theorem (Stefanov and Uhlmann, 2009)

@ T < Ty = no uniqueness;
o Tp< T« % = uniqueness, no stability;

° % < T = stability and explicit reconstruction.
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Stefanov and Uhlmann’s Time Reversal

Define A(Af) := v(0,-) (pseudo-inverse of A) where v solve the

backward problem
(0 = (A =

V‘t:T =
Ov]t=T =
Vlo,TIx0Q =
where ¢ solves
Ap=0 inQ,

0 in(0,7T)xQ
¢

0

AVa

Plo = N(T, ).

’Harmomc extension of Af here:--._

S = —
g Vet :i(,)./, V=7 =0 \‘

-

A =T
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In R"

Stefanov and Uhlmann’s Time Reversal

Denote the error operator by
Kf :=f — A(Af)
or equivalently

(I — K)f = A(NF).

Stefanov and Uhlmann showed that ||K|| < 1 when T > L. This
leads to the Neumann series reconstruction:

f=(—K) AN = ZK’”A/\f

Numerical implementation: Qian-Stefanov-Uhlmann-Zhao (2011)
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In Q: Full Data
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In Q: Full Data

Model in Q

Motivation: placing reflectors around the patient proposed by the
UCL photoacoustic group.

Assume the speed c(x) is variable and known in Q. For T > 0, let
u solve the problem

(0F = (D) =
U|t:0

atU|t:0

Ay ul(0,Tyx00

in (0, T)xQ

I
oo wo

Measurement: Af := uljo 1)x00-

‘ Inverse Problem: recover f from Af.
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In Q: Full Data

Literature in Q2

Previous Results: Kunyansky, Holman, Cox, Acosta, Montalto,
Nguyen.

For the Riemannian manifold (Q, c~2dx?), let

To := maxdist(x, 09Q).
Q

T1 := length of longest geodesic in Q.

Theorem (Stefanov and Y., 2015)

@ T < Ty = no uniqueness;
o Tp<TK % = uniqueness, no stability;

° % < T = stability and explicit reconstruction.
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In Q: Full Data

Time reversal in € fails!

Let v solve the problem

(0? —2(x)A)v = 0 in(0,T)xQ
V=T = ¢
8tu\t:T =0
ulo,yxae = NMf.

Define the error operator Kf := f — v(0), but ||K|| = 1!

P Harmonic extension of Af here: -

R = e
< Vi=T :6)'/ Vli=r =0 \

k.

15/38
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In Q: Full Data

Time reversal in Q fails!

Figure: Failure of the time reversal to resolve all singularities.
T = 0.9 x diagonal, ¢ = 1. Increasing T does not help!
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In Q: Full Data

Propagation of singularities

Figure: Propagation of singularities in [0, T] x Q for the positive speed
only with Neumann boundary conditions (left) and time reversal with
Dirichlet ones (right). In the latter case, the sign changes at each
reflection.
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In Q: Full Data

Main idea: averaged time reversal

N

This leads to the following idea: Q

Average with respect to T!

Then the error will average as well and some of the positive and
negative contributions will cancel out. This will make the error
operator a microlocal contraction.

Let A(7) be the time reversal over [0, 7]. Define the averaged time
reversal operator as

18 /38
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In Q: Full Data

Averaging works!

N—"

Figure: Averaged time reversal. T = 0.9 x diagonal, ¢ = 1. This is not
our inversion yet!
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In Q: Full Data

Comparison with non-averaged time reversal

Figure: For comparison: Failure of the time reversal to resolve all
singularities. T = 0.9 x diagonal, ¢ = 1.
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In Q: Full Data

Explicit Inversion

Let T; be the length of the longest geodesic in (R, c~?dx?).

Theorem (Stefanov-Y., 2015)

Let (2, c2e) be non-trapping, strictly convex, and let T > Tj.
Let Qo € Q. Then Ao\ = Id — Ko on HD(Q()), where

1Kol 2(Hp (o)) < 1. In particular, Id — Kq is invertible on Hp( o),
and the inverse problem has an explicit solution of the form

f=> K§Ach, h:=Af.

m=0
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In Q: Full Data

Neumann series inversion

Figure: Full data Neumann series inversion, 10 terms, T =5, on the
square [—1,1]?, variable ¢ = 1+ 0.3sin(mx') 4 0.2 cos(mx?).

The artifacts are mainly due to the presence of corners. The L2 error on
the left is 0.44%; and on the right: 0.34%. The L* error on the left is
about 1.2%; and about 3% on the right.
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In Q: Partial Data

Partial data

Assume the speed c(x) is variable and known in Q. For T > 0, let
u solve the problem

(0 = () =
U’t:O =

atU|t:O =

Ay ul(0,Tyx00

in (0, T) xQ

oo +wo

Partial Data Measurement: Af := u|[0,7—]xr where [ is an open
subset of 0N).

‘ Inverse Problem: recover f from Af.
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In Q: Partial Data

Partial data: uniqueness

Uniqueness: follows from unique continuation. Let

To := maxdist(x, ).
Q

Theorem (Uniqueness)
Af =0 for some f € Hp(Q2) implies f(x) =0 for dist(x,I) < T.
In particular, if T > Ty, then f = 0.

24 /38
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In Q: Partial Data

Partial data: stability

Stability: follows from boundary control by Bardos-Lebeau-Rauch.

Theorem (Stability)

If each broken geodesic y(t) hits T for |t| < T = stability.
If some does not hit = no stability.

RV TAN

Bardos-Lebeau-Rauch condition: Left: unstable. Right: stable
25/38
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In Q: Partial Data

Partial data: smooth wave speed reconstruction

Figure: Partial data inversion with data on the indicated part of 09.
Neumann series inversion with 10 terms, T =5, Q = [—1,1]?. Left:
constant speed ¢ = 1, L? error = 0.7%. Right: variable speed

¢ =1+ 0.3sin(mx!) + 0.2 cos(rx?), L2 error = 2%. Again, the most
visible artifacts can be explained by the presence of corners.
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In Q: Partial Data

Partial data: discontinous speed

It works well with the following discontinuous speed AND partial
data.

27/38



TAT: models
00000®0000000000

In Q: Partial Data

Partial data: discontinuous speed, lteration =
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In Q: Partial Data

Partial data: discontinuous speed, lteration =
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In Q: Partial Data

Partial data: discontinuous speed, lteration =
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In Q: Partial Data

Partial data: discontinuous speed, lteration =
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In Q: Partial Data

Partial data: discontinuous speed, lteration =
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In Q: Partial Data

Partial data: discontinuous speed, lteration =




TAT: models

00000000000 e0000

In Q: Partial Data

Partial data: discontinuous speed, lteration =
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In Q: Partial Data

Partial data: discontinuous speed, lteration =
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In Q: Partial Data

Partial data: discontinuous speed, lteration =
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In Q: Partial Data

Partial data: discontinuous speed, lteration =
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