Again, assume that no charge or current is present in the field, then the timeharmonic Maxwell equations take the following form:

$$(1.17) \nabla \times E = i\omega \mu H,$$

$$(1.18) \nabla \times H = -i\omega \varepsilon E,$$

$$(1.19) \nabla \cdot (\varepsilon E) = 0,$$

$$(1.20) \nabla \cdot (\mu H) = 0.$$

It follows from (1.8)-(1.11) that the following jump conditions hold: the tangential components of E and H must be continuous crossing an interface, and the normal components of εE and μH must be continuous crossing an interface.

In a homogeneous and isotropic medium, taking the curl of (1.17) and eliminating the magnetic field yield

(1.21)
$$\nabla \times (\nabla \times E) - \omega^2 \varepsilon \mu E = 0,$$

which can be further reduce to the Helmholtz equation by using the vector identity of the curl

$$(1.22) \Delta E + \kappa^2 E = 0,$$

where $\kappa = \omega \sqrt{\varepsilon \mu}$ is the wavenumber. Similarly, we may obtain the Helmholtz equation for the magnetic field

$$\Delta H + \kappa^2 H = 0.$$

Note that in a dielectric medium κ is real and positive. It is easy to verify the relation between the wavenumber κ and the wavelength λ : $\kappa = 2\pi/\lambda$.

1.2 Vector spaces

We begin with a review of some basic concepts in functional analysis.

Definition 1.2.1. Let X be a nonempty set. Support that addition and scalar multiplication are defined on X, i.e., for any $x, y \in X$, $x + y \in X$ and for $\alpha \in \mathbb{R}$ or \mathbb{C} a scalar, $\alpha x \in X$. Assume also that for any $x, y, z \in X$ and $\alpha, \beta \in K$ (the scalar field):

1.
$$x + y = y + x$$
;

2.
$$x + (y + z) = (x + y) + z$$
;

7

- 3. there is a unique $0 \in X$ such that x + 0 = x for all $x \in X$;
- 4. for each $x \in X$ there is a unique element $-x \in X$ such that x + (-x) = 0;
- 5. $\alpha(x+y) = \alpha x + \alpha y$;
- 6. $(\alpha + \beta)x = \alpha x + \beta y$;
- 7. $(\alpha\beta)x = \alpha(\beta x)$;
- 8. 1x = x.

Then X is called a vector space with the scalar field K.

Definition 1.2.2. A vector space X is a normed vector space if there is a real valued function, the norm, on X whose value at $x \in X$ is denoted by ||x|| and satisfies

- 1. $||x|| \ge 0$;
- 2. ||x|| = 0 if and only if x = 0;
- 3. $\|\alpha x\| = |\alpha| \|x\|$, α is a scalar;
- 4. $||x+y|| \le ||x|| + ||y||$.

Definition 1.2.3. A complete normed linear vector space is called a Banach space.

Definition 1.2.4. A sequence x_n in a metric space x = (x, d) is said to be Cauchy if for all $\varepsilon > 0$, there exists $N = N(\varepsilon)$ such that

$$d(x_m, x_n) < \varepsilon$$
 for all $m, n > N$,

where d is the metric.

The space X is said to be complete if every Cauchy sequence in X converges.

Definition 1.2.5. Let X be a complete linear space. It is called an inner product space if for all $x, y \in X$, there is a number (x, y) such that

- 1. $(x,x) \ge 0$ and (x,x) = 0 if and only if x = 0;
- 2. (x + y, z) = (x, z) + (y, z);
- 3. $(\alpha x, y) = \alpha(x, y)$, α is a complex number;
- 4. $(x,y) = \overline{(y,x)}$.

Remark 1.2.6. An inner product space is a normed space.

Definition 1.2.7. A complete linear inner product space is called a Hilbert space.

Remark 1.2.8. Hilbert spaces are particular examples of Banach spaces.

Let $f: X \to K$ be a functional or mapping. It is said to be a linear functional if for all $x, y \in X$ and $\alpha, \beta \in K$,

$$f(\alpha x + \beta y) = \alpha f(x) + \beta f(y).$$

In addition if f is continuous, then f is called a continuous linear functional on X.

Proposition 1.2.9. If a linear functional is continuous at one point, then it is continuous everywhere.

Definition 1.2.10. A linear functional $f: X \to K$ is bounded if and only if there is a real number C such that

$$|f(x)| \le C \|x\|$$
 for all $x \in X$.

Proposition 1.2.11. A linear functional is continuous if and only if it is bounded.

Definition 1.2.12. Let X be a normed linear space. The dual space of X, denoted by X', is the normed space of all bounded linear functionals on X. If f, f_1 , and f_2 are bounded functionals on X, define $f_1 + f_2$ and αf_1 by

$$(f_1 + f_2)(x) = f_1(x) + f_2(x),$$

$$(\alpha f)(x) = \alpha f(x) \quad \text{for all } x \in X.$$

Theorem 1.2.13 (The Riesz representation theorm). If f is a bounded linear functional on a Hilbert space X, the there is a unique element $y \in X$ such that

$$f(x) = (x, y)$$
 for all $x \in X$

and $\parallel f \parallel = \parallel y \parallel$.

A sequence $\{x_n\} \subset X$ converges weakly to x, denoted by $x_n \to x$, if $\lim_{n\to\infty} (x_n, y) = (x, y)$ for all $y \in X$. The usual convergence, $||x_n - x|| \to 0$, is often referred to as strong convergence. It is easily seen that strong convergence implies weak convergence, but not vice versa. Also, the limiting point of a weakly convergent sequence is unique.

A set $S \subset X$ is weakly sequentially compact if every sequence $\{x_n\} \subset S$ contains a convergent sequence. Using the Riesz representation theorem, it can be proved:

Proposition 1.2.14. Any bounded set of a Hilbert space is weakly sequentially compact.