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4.1 Helmholtz decomposition

Let Ω ⊂ R3 be an open set. For any scalar function u ∈ H1(Ω) and vector function
u ∈ (H1(Ω))3, define
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For simplicity, we denote ∇u = gradu,∇ · u = div u,∇× u = curl u.

Define corresponding Hilbert spaces

H1(Ω) = {u ∈ L2(Ω) : ∇u ∈ L2(Ω)},
H(div,Ω) = {u ∈ (L2(Ω))3 : ∇ · u ∈ L2(Ω)},
H(curl,Ω) = {u ∈ (L2(Ω))3 : ∇× u ∈ (L2(Ω))3},

and subspaces with zero traces

H1
0 (Ω) = {u ∈ H1(Ω) : u = 0 on Γ},

H0(div,Ω) = {u ∈ H(div,Ω) : u · n = 0 on Γ},
H0(curl,Ω) = {u ∈ H(curl,Ω) : n× u = 0 on Γ}.

Define the differential operators in two dimensions

Gradu =
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Let Γ be a two-dimensional Lipschitz continuous manifold. Define the surface gra-
dient and scalar curl as follows:

∇Γu = −n× (n×∇u) and CurlΓu = (∇× u) · n, on Γ.

The surface divergence and vector curl can be defined by using the duality∫
Γ

divΓu v = −
∫

Γ

u · ∇Γv for all v ∈ C∞0 (Γ),∫
Γ

curlΓu · v =

∫
Γ

ucurlΓv, v ∈ (C∞0 (Γ))3.
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Lemma 4.1.1. Let K1 and K2 be two Lipschitz domains. Denote Σ = ∂K1 ∩ ∂K2

and D = K1 ∪K2Σ.

1. Let u1 ∈ H1(K1), u2 ∈ H1(K2) and define u ∈ L2(D)

u =

{
u1 in K1,

u2 in K2.

If u1 = u2 on Σ, then we have u ∈ H1(D).

2. Let u1 ∈ H(curl, K1),u2 ∈ H(curl, K2) and define u ∈ L2(D)

u =

{
u1 in K1,

u2 in K2.

If u1 × n = u2 × n on Σ, then we have u ∈ H(curl, D).

3. Let u1 ∈ H(div, K1),u2 ∈ H(div, K2) and define u ∈ L2(D)

u =

{
u1 in K1,

u2 in K2.

If u1 · n = u2 · n on Σ, then we have u ∈ H(div, D).

Proof. 1. It suffices to prove ∇u ∈ (L2(D))3 and

(4.1) ∇u =

{
∇u1 in K1,

∇u2 in K2.

For any v ∈ H0(div, D), it follows from the integration by parts that∫
D

u∇ · v =

∫
K1

u1∇ · v +

∫
K2

u2∇ · v

= −
∫
K1

∇u1 · v −
∫
K2

∇u2 · v +

∫
Σ

(u1 − u2)v · n

= −
∫
K1

∇u1 · v −
∫
K2

∇u2 · v.

Hence we have ∇u ∈ (L2(D))3. Taking v ∈ H0(div, Ki), i = 1, 2 yields (4.1.3).
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2. If suffices to prove ∇× u ∈ (L2(D))3 and

(4.2) ∇× u =

{
∇× u1 in K1,

∇× u2 in K2.

Taking v ∈ (C∞0 (D))3, we have from the integration by parts that∫
D

u · (∇× v) =

∫
K1

u1 · (∇× v) +

∫
K2

u2 · (∇× v)

=

∫
K1

∇× u1 · v +

∫
K2

∇× u2 · v −
∫

Σ

(u1 − u2)× n · v

=

∫
K1

∇× u1 · v +

∫
K2

∇× u2 · v.

Hence ∇× u ∈ (L2(D))3. Taking v ∈ (C∞0 (Ki))
3, i = 1, 2 yields (4.1.4).

3. Similar to the proof of 2.

Theorem 4.1.2. Let Ω ⊂ R3 be a bounded Lipschitz domain and Ω ⊂⊂ O. There
exits a bounded linear operator E : H(curl,Ω)→ H(curl,R3) such that

Eu = u in Ω, supp(Ev) ⊂ O, for all u ∈ H(curl,Ω).

Theorem 4.1.3. Let Ω be a simply connected Lipschitz domain. For u ∈ (L2(Ω))3,∇×
u = 0 if and only if there exists ϕ ∈ H1(Ω)/R such that u = ∇ϕ.

Theorem 4.1.4. Let Ω be a bounded Lipschitz domain with boundary Γ. For u ∈
(L2(Ω))3 and satisfying

∇ · u = 0 in Ω,

∫
Γ

u · n = 0,

if and only if there exists w ∈ (H1(Ω))3 such that u = ∇×w. Furthermore, w can
be chose to satisfy ∇ ·w = 0 and

‖ w ‖(H1(Ω))3≤ C ‖ u ‖(L2(Ω))3 .

It follows from Theorem 4.1.3 and Theorem 4.1.4 that we have the following
Helmholtz decomposition theorem.

Theorem 4.1.5. For any vector field u ∈ (L2(Ω))3, it has the following decomposi-
tion

u = ∇q+∇×w, q ∈ H1(Ω)/R, w ∈ (H1(Ω))3 satisfying ∇·w = 0, (∇×w)·n = 0 on Γ.
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Theorem 4.1.6. Let Ω ⊂ R3 be a Lipschitz domain.

1. For any u ∈ H0(curl,Ω), there exists u0 ∈ (H1
0 (Ω))3 and ψ ∈ H1

0 (Ω) such that

u = u0 +∇ψ, ‖ u0 ‖(H1(Ω))3 + ‖ ψ ‖H1(Ω)≤ C ‖ u ‖H(curl,Ω) .

2. For any u ∈ H(curl,Ω), there exists u0 ∈ (H1(Ω))3 and ψ ∈ H1(Ω) such that

u = u0 +∇ψ, ‖ u0 ‖(H1(Ω))3 + ‖ ψ ‖H1(Ω)≤ C ‖ u ‖H(curl,Ω) .


