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4.1 Helmholtz decomposition

Let Q C R? be an open set. For any scalar function v € H'(2) and vector function

u € (H'(Q2))3, define
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For simplicity, we denote Vu = grad u,V - u = divu, V x u = curlu.
Define corresponding Hilbert spaces
HY(Q) ={uc L*Q): Vu € L*(Q)},
H(div,Q) = {u € (L*(Q)*: V-uec L*(Q)},
H(curl, Q) = {u € (L*(Q))* : V x u € (L*(Q))*},
and subspaces with zero traces
Hy(Q)={ue H(Q):u=0onT},
Hy(div,2) = {u e H(div,Q) :u-n=0onTI},
Ho(cwrl, ) ={ue H(cwl, ) :nxu=0onTI}.

Define the differential operators in two dimensions
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Let I' be a two-dimensional Lipschitz continuous manifold. Define the surface gra-
dient and scalar curl as follows:

Viu=-nx(nxVu) and Curlpu=(V xu)-n, onl.

The surface divergence and vector curl can be defined by using the duality

/dinuv:—/u-va for all v € C5°(T),
r r

/curlpu-v = /ucurlpv, v e (Ce ().
r r
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Lemma 4.1.1. Let Ky and Ky be two Lipschitz domains. Denote ¥ = 0K1 N 0K,
and D = K1 U KQZ

1. Letuy € HY(K}),uy € HY(K>) and define u € L*(D)

uy i Kj,
u = ,
us 1 K.

If uy = uy on X, then we have u € H'(D).

2. Let uy € H(curl, Ky),uy € H(curl, Ky) and define u € L*(D)

u; m Kl,
u =

Uy m KQ.
Ifu; x n=uy x n on X, then we have u € H(curl, D).

3. Let uy € H(div, Ky),uy € H(div, K5) and define u € L*(D)

u; m Kl,
u= '
u, in K.

Ifu; -n=uy-n on X, then we have u € H(div, D).

Proof. 1. Tt suffices to prove Vu € (L*(D))? and

<4 1) Vi — Vul in Kl,
. VUQ in Kg.

For any v € Hy(div, D), it follows from the integration by parts that

/uV-v:/ ulv-v+/ sV - v
D K Ky
= — Vul-v—/ Vuz-v+/(u1—u2)v-n
K Ko P

= — Vul-v—/ Vug - v.
K1 K2

Hence we have Vu € (L?(D))3. Taking v € Hy(div, K;),i = 1,2 yields (4.1.3)).
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2. If suffices to prove V x u € (L*(D))? and

(42) V xu— qul iIlKl,
' VXUQ n KQ.

Taking v € (C5°(D))3, we have from the integration by parts that

/u-(va):/ ul-(VXV)—l—/ uy - (V xv)
D K K>
:/vxu1'v+/VXUQ‘V_/(UI_UQ)XH‘V
K Ka b

=/ qul-v—i—/ V xuy-v.
K1 K2

Hence V x u € (L*(D))?. Taking v € (C§°(K;))3,i = 1,2 yields (4.1.4).
3. Similar to the proof of 2.
O

Theorem 4.1.2. Let Q C R? be a bounded Lipschitz domain and QQ CC O. There
exits a bounded linear operator E : H(curl,Q) — H(curl, R3) such that

Fu=uinQ, supp(Ev)C O, forallué€ H(curl,Q).

Theorem 4.1.3. Let Q) be a simply connected Lipschitz domain. Foru € (L*(Q2))3,V x
u = 0 if and only if there exists p € H(Q2)/R such that u = V.

Theorem 4.1.4. Let Q) be a bounded Lipschitz domain with boundary I'. For u €
(L*(2))? and satisfying
V-u=0inQ, /u-nzo,
r

if and only if there exists w € (H'(Q))3 such that u =V x w. Furthermore, w can
be chose to satisfy V- w =0 and

| W [l )s< C || u |2y -

It follows from Theorem [4.1.3] and Theorem that we have the following
Helmholtz decomposition theorem.
Theorem 4.1.5. For any vector field u € (L*(Q2))3, it has the following decomposi-

tion

u=Vq¢+Vxw, g€ H'(Q)/R, w € (H'(Q))? satisfying V-w =0, (Vxw)n=0onT.
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Theorem 4.1.6. Let Q C R3 be a Lipschitz domain.
1. For any u € Hy(curl,Q), there exists ug € (H}(2))? and ¢ € H}(Q) such that
u=u+ VY, |+ | YImolCllal|gearo) -
2. For any u € H(curl,Q), there exists uyp € (H'(Q))* and ¢» € H*(Q) such that

u=u+ VY, | llm@p + | ¢ @< Cllullmewo) -



