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Abstract
Consider a time-harmonic electromagnetic plane wave incident on a medium
enclosed by a bounded domain in R

2. In this paper, existence and uniqueness
of the variational problem for the direct scattering are established. An energy
estimate for the scattered field is obtained on which the Born approximation is
based. The Fréchet differentiability of the scattering map is examined. A new
continuation method for the inverse medium scattering, which reconstructs the
scatterer of an inhomogeneous medium from the boundary measurements of the
scattered waves, is developed. The algorithm requires only single-frequency
scattering data. Using an initial guess from the Born approximation, each
update is obtained via recursive linearization on the spatial frequency of a
one-parameter family of plane waves by solving one forward and one adjoint
problem of the Helmholtz equation.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Consider the Helmholtz equation in two dimensions

�φ + k2
0(1 + q(x))φ = 0, (1.1)

where φ is the total field, k0 is the wavenumber, and q(x) > −1, which has a compact support
and a lower bound, is the scatterer.

Assume that the scatterer lies in the upper half plane R
2
+ = {(x1, x2) ∈ R

2 : x2 > 0}.
Denote the wave vector k = (η, k(η)), where η is the transverse part of the wave vector and

k(η) =




√
k2

0 − η2, for k0 � |η|,

i
√

η2 − k2
0, for k0 < |η|.

The number |η| is known as the spatial frequency.
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Figure 1. Evanescent plane wave at k0 = 4.0: (a) η = 4.7 and (b) η = 8.0.

The scatterer is illuminated by a one-parameter family of plane waves

φ0 = eik·x, (1.2)

which gives explicitly

φ0(x1, x2) =




exp
(
i
(
ηx1 +

√
k2

0 − η2x2
))

, for k0 � |η|,

exp
(
iηx1 −

√
η2 − k2

0x2
)
, for k0 < |η|.

The modes for which |η| � k0 correspond to propagating plane waves while the modes
with |η| > k0 correspond to evanescent plane waves. Therefore, the illuminating field could
consist of high spatial frequency evanescent plane waves. They may be generated at the
interface of two media by total internal reflection [10, 13], which has been in practical use for
decades and primarily been used in near-field optics [4, 5]. A recent review on the near-field
microscopy and near-field optics may be found in [9]. These waves are oscillatory parallel to
the x1 axis and decay exponentially along the x2 axis in the upper half plane R

2
+. The higher

the spatial frequency of the evanescent plane waves used to probe the scatterer, the more
rapidly the field decays as a function of depth into the scatterer. See figure 1 for an example.
Evidently, such incident waves satisfy the homogeneous equation

�φ0 + k2
0φ0 = 0. (1.3)

The total electric field φ consists of the incident field φ0 and the scattered field ψ :

φ = φ0 + ψ.

It follows from equations (1.1) and (1.3) that the scattered field satisfies

�ψ + k2
0(1 + q)ψ = −k2

0qφ0. (1.4)

Remark 1.1. In this paper, we adopt the non-global approach, i.e., the scattered field resulting
from the interaction of the incident field with the scatterer is analysed in the absence of any
other medium or tip. The scattering problem may be formulated in the free space. The global
approach which takes into account the entire system is the subject of our ongoing research.
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In the free space, the scattered field is required to satisfy the following Sommerfeld
radiation condition:

lim
r→∞

√
r

(
∂ψ

∂r
− ik0ψ

)
= 0, r = |x|,

uniformly along all directions x/|x|. In practice, it is convenient to reduce the problem to a
bounded domain by introducing an artificial surface. Let D = [−L1, L1]× [0, L2] be a square
which contains the compact support of the scatterer, �. Let ∂D be the boundary of D. Denote
by n the unit outward normal to ∂D. A suitable boundary condition needs to be imposed
on ∂D. For the sake of simplicity, we employ the first-order absorbing boundary condition
[15] as

∂ψ

∂n
− ik0ψ = 0, on ∂D. (1.5)

Given the incident field φ0, the direct problem is to determine the scattered field ψ for the
known scatterer q(x). Using the Lax–Milgram lemma and the Fredholm alternative, the direct
problem is shown in this paper to have a unique solution for all k0 > 0. An energy estimate for
the scattered field is given, which provides a criterion for the weak scattering. Furthermore,
properties on the continuity and the Fréchet differentiability of the nonlinear scattering map
are examined. For the regularity analysis of the scattering map in an open domain, the reader
is referred to [1, 8, 16]. The inverse medium scattering problem is to determine the scatterer
q(x) from the measurements of near-field currents densities, ψ |∂D , given the incident field φ0.
The inverse medium scattering problems arise naturally in diverse applications such as radar,
sonar, geophysical exploration, medical imaging and nondestructive testing [8]. However,
there are two major difficulties associated with these inverse problems: the ill-posedness and
the presence of many local minima. In [3, 6], stable and efficient continuation methods with
respect to the wavenumber were proposed to solve the two-dimensional Helmholtz equation
and the three-dimensional Maxwell’s equations, respectively, in the case of full aperture data.
A homotopy continuation method with limited aperture data may be found in [2]. These
approaches require multi-frequency scattering data and are based on recursive linearization
along wavenumbers.

The main purpose of this paper is to study the inverse medium problem for Helmholtz’s
equations at a single frequency. We present a new continuation method for the inverse medium
scattering problem. In the case of radially symmetric scatterers, Chen [7] developed a recursive
linearization algorithm with single-frequency data, where spherical incident waves were used.
In this paper, we attempt to remove the radially symmetric assumption on the medium.
Our approach is motivated by the recent studies of near-field optics. As a special feature,
the illuminating fields used in this paper including the high spatial frequency evanescent
plane waves are a one-parameter family of plane waves. When a medium is probed with
an evanescent plane wave at a high spatial frequency, only a thin layer of the medium is
penetrated. Corresponding to this exponentially decaying incident field, the scattered field
measured on the boundary contains information of the medium in that thin layer. Although
such a measurement is entirely inadequate to determine the whole medium, it does give
rise to an approximation. To accurately determine the medium, information at lower spatial
frequencies of the evanescent plane waves is needed to illuminate the medium. While the
probing field penetrates a thicker layer of the medium, the relation between the measurement
and the scatterer to be recovered in the thicker layer becomes more nonlinear. These nonlinear
equations can be considered as perturbations to the already solved equations in the previous
thicker layers. Therefore, they can be continually and recursively linearized by a standard
perturbation technique. Thus, the recursive linearization is a continuation method along the
transverse direction of the incident wave, which controls the depth of its penetration.
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The plan of this paper is as follows. The analysis of the variational problem for direct
scattering is presented is section 2. In particular, the well-posedness of the direct scattering
is proved. The Fréchet differentiability of the scattering map is also given. In section 3, an
initial guess of the reconstruction from the Born approximation is derived in the case of weak
scattering. Section 4 is devoted to numerical study of a regularized iterative linearization
algorithm. Numerical examples are presented. The paper is concluded with some general
remarks and directions for future research in section 5.

2. Analysis of the scattering map

In this section, the direct scattering problem is studied to provide some criterion for the weak
scattering, which plays an important role in the inversion method. The Fréchet differentiability
of the scattering map for the problem (1.4), (1.5) is examined.

Remark 2.1. Some analysis of the scattering map was given previously by Keys and
Weglein [16] based on the integral equation approach and contraction mapping theorem. The
assumption of small perturbation of the potential is necessary for their approach. Our approach
is different. Based on the Fredholm alternative and a uniqueness result, we develop a variational
approach to prove the existence of the scattered field for all k0 > 0, given q ∈ L∞(D), the
continuity of the scattering map, the boundedness of the formal linearized map and the Fréchet
differentiability of the scattering map. The assumption of small perturbation is not needed in
our analysis. More importantly, we give an explicit energy estimate for the scattered field,
which provides a criterion for weak scattering hence plays a central role in the development
of the inversion algorithm of section 3. An analysis of the Fréchet differentiability on the
scattering map for equation (1.4) along with the Sommerfeld radiation condition may also be
found in [1] using the integral equation approach.

To state our boundary value problem, we introduce the bilinear form a: H 1(D) ×
H 1(D) → C

a(u, v) = (∇u,∇v) − k2
0((1 + q)u, v) − ik0〈u, v〉,

and the linear functional on H 1(D)

b(v) = k2
0(qφ0, v).

Here, we have used the standard inner products

(u, v) =
∫

D

u · v dx and 〈u, v〉 =
∫

∂D

u · v ds,

where the overline denotes the complex conjugate.
Then, we have the weak form of the boundary value problem (1.4) and (1.5): to find

ψ ∈ H 1(D) such that

a(ψ, ξ) = b(ξ), ∀ ξ ∈ H 1(D). (2.1)

Throughout the paper, the constant C stands for a positive generic constant whose value
may change step by step, but should always be clear from the context.

For a given scatterer q and an incident field φ0, we define the map S(q, φ0) by ψ =
S(q, φ0), where ψ is the solution of the problem (1.4), (1.5) or the variational problem (2.1).
It is easily seen that the map S(q, φ0) is linear with respect to φ0 but is nonlinear with respect
to q. Hence, we may denote S(q, φ0) by S(q)φ0.

Concerning the map S(q), we have the following regularity results. Lemma 2.3 gives the
boundedness of S(q), while a continuity result for the map S(q) is presented in lemma 2.4.
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Lemma 2.1. Given the scatterer q ∈ L∞(D), the direct scattering problem (1.4), (1.5) has at
most one solution.

Proof. It suffices to show that ψ = 0 in D if φ0 = 0 (no source term). From the Green’s
formula

0 =
∫

D

(ψ�ψ − ψ�ψ) dx =
∫

∂D

(
ψ

∂ψ

∂n
− ψ

∂ψ

∂n

)
ds = −2ik0

∫
∂D

|ψ |2 ds,

we get ψ = 0 on ∂D. The absorbing boundary condition on ∂D yields further that ∂ψ

∂n
= 0

on ∂D. By the Holmgren uniqueness theorem, ψ = 0 in R
2\D. A unique continuation result

[14] concludes that ψ = 0 in D. �

Lemma 2.2. If the wavenumber k0 is sufficiently small, the variational problem (2.1) admits
a unique weak solution in H 1(D) and S(q) is a bounded linear map from L2(D) to H 1(D).
Furthermore, there is a constant C dependent on D, such that

‖S(q)φ0‖H 1(D) � Ck0‖q‖L∞(D)‖φ0‖L2(D). (2.2)

Proof. Decompose the bilinear form a into a = a1 + k2
0a2, where

a1(ψ, ξ) = (∇ψ,∇ξ) − ik0〈ψ, ξ 〉, a2(ψ, ξ) = −((1 + q)ψ, ξ).

We conclude that a1 is coercive from

|a1(ψ,ψ)| � C
(‖∇ψ‖2

L2(D) + k0‖ψ‖2
H 1/2(∂D)

)
� Ck0

(‖∇ψ‖2
L2(D) + ‖ψ‖2

H 1/2(∂D)

)
� Ck0‖ψ‖2

H 1(D),

where the last inequality may be obtained by applying standard elliptic estimates [12]. Next,
we prove the compactness of a2. Define an operator A: L2(D) → H 1(D) by

a1(Aψ, ξ) = a2(ψ, ξ), ∀ ξ ∈ H 1(D),

which gives

(∇Aψ,∇ξ) − ik0〈Aψ, ξ 〉 = −((1 + q)ψ, ξ), ∀ ξ ∈ H 1(D).

Using the Lax–Milgram lemma, it follows that

‖Aψ‖H 1(D) � C

k0
‖ψ‖L2(D), (2.3)

where the constant C is independent of k0. Thus, A is bounded from L2(D) to H 1(D)

and H 1(D) is compactly imbedded into L2(D). Hence, A: L2(D) → L2(D) is a compact
operator.

Define a function u ∈ L2(D) by requiring u ∈ H 1(D) and satisfying

a1(u, ξ) = b(ξ), ∀ ξ ∈ H 1(D).

It follows from the Lax–Milgram lemma again that

‖u‖H 1(D) � Ck0‖q‖L∞(D)‖φ0‖L2(D). (2.4)

Using the operator A, we can see that the problem (2.1) is equivalent to find ψ ∈ L2(D) such
that (

I + k2
0A

)
ψ = u. (2.5)
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When the wavenumber k0 is small enough, the operator I + k2
0A has a uniformly bounded

inverse. We then have the estimate

‖ψ‖L2(D) � C‖u‖L2(D), (2.6)

where the constant C is independent of k0. Rearranging (2.5), we have ψ = u − k2
0Aψ , so

ψ ∈ H 1(D) and, by the estimate (2.3) for the operator A, we have

‖ψ‖H 1(D) � ‖u‖H 1(D) + Ck0‖ψ‖L2(D).

The proof is complete by combining the estimates (2.6) and (2.4) and observing that
ψ = S(q)φ0. �

For a general wavenumber k0 > 0, from equation (2.5), the existence follows from the
Fredholm alternative and the uniqueness result. However, the constant C in the estimate (2.2)
depends on the wavenumber.

Lemma 2.3. Given the scatterer q ∈ L∞(D), the variational problem (2.1) admits a unique
weak solution in H 1(D) for all k0 > 0 and S(q) is a bounded linear map from L2(D) to
H 1(D). Furthermore, the estimate

‖S(q)φ0‖H 1(D) � C‖q‖L∞(D)‖φ0‖L2(D), (2.7)

holds, where the constant C depends on k0 and D.

Remark 2.2. It follows from the explicit form of the incident field (1.2) and the estimate (2.7)
that

‖ψ‖H 1(D) � C|�| 1
2 ‖q‖L∞(D),

where � is the compact support of the scatterer q and the constant C depends on k0,D.
Moreover, we have for |η| > k0 that

‖ψ‖H 1(D) � C
(
η2 − k2

0

)−1/4‖q‖L∞(D), (2.8)

where the constant C depends on k0 and D.

Remark 2.3. The estimate of the scattered field in remark 2.1 provides a criterion for the
weak scattering. For a fixed wavenumber k0 and a scatterer q, the scattered field is weak if the
spatial frequency of the incident wave, |η|, is large.

Lemma 2.4. Assume that q1, q2 ∈ L∞(D). Then,

‖S(q1)φ0 − S(q2)φ0‖H 1(D) � C‖q1 − q2‖L∞(D)‖φ0‖L2(D), (2.9)

where the constant C depends on k0,D and ‖q2‖L∞(D).

Proof. Let ψ1 = S(q1)φ0 and ψ2 = S(q2)φ0. It follows that for j = 1, 2

�ψj + k2
0(1 + qj )ψj = −k2

0qjφ0.

By setting w = ψ1 − ψ2, we have

�w + k2
0(1 + q1)w = −k2

0(q1 − q2)(φ0 + ψ2).

The function w also satisfies the boundary condition (1.5).
We repeat the procedure in the proof of lemma 2.3 to obtain

‖w‖H 1(D) � C‖q1 − q2‖L∞(D)‖φ0 + ψ2‖L2(D).

Using lemma 2.3 again for ψ2 yields

‖ψ2‖H 1(D) � C‖q2‖L∞(D)‖φ0‖L2(D),
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which gives

‖S(q1)φ0 − S(q2)φ0‖H 1(D) � C‖q1 − q2‖L∞(D)‖φ0‖L2(D),

where the constant C depends on D, k0 and ‖q2‖L∞(D). �

Let γ be the restriction (trace) operator to the boundary ∂D. By the trace theorem, γ is a
bounded linear operator from H 1(D) onto H 1/2(∂D). We can now define the scattering map
M(q) = γ S(q).

Next, consider the Fréchet differentiability of the scattering map. Recall the map S(q) is
nonlinear with respect to q. Formally, by using the first-order perturbation theory, we obtain
the linearized scattering problem of (1.4), (1.5) with respect to a reference scatterer q,

�v + k2
0(1 + q)v = −k2

0δq(φ0 + ψ), (2.10)

∂v

∂n
− ik0v = 0, (2.11)

where ψ = S(q)φ0.
Define the formal linearization T (q) of the map S(q) by v = T (q)(δq, φ0), where v is

the solution of the problem (2.10), (2.11). The following is a boundedness result for the map
T (q). A proof may be given by following step by step the proofs of lemmas 2.2 and 2.3.
Hence, we omit it here.

Lemma 2.5. Assume that q, δq ∈ L∞(D) and φ0 is the incident field. Then v =
T (q)(δq, φ0) ∈ H 1(D) with the estimate

‖T (q)(δq, φ0)‖H 1(D) � C‖δq‖L∞(D)‖φ0‖L2(D), (2.12)

where the constant C depends on k0,D and ‖q‖L∞(D).

The next lemma is concerned with the continuity property of the map.

Lemma 2.6. For any q1, q2 ∈ L∞(D) and an incident field φ0, the following estimate holds:

‖T (q1)(δq, φ0) − T (q2)(δq, φ0)‖H 1(D) � C‖q1 − q2‖L∞(D)‖δq‖L∞(D)‖φ0‖L2(D), (2.13)

where the constant C depends on k0,D and ‖q2‖L∞(D).

Proof. Let vi = T (qi)(δq, φ0), for i = 1, 2. It is easy to see that

�(v1 − v2) + k2
0(1 + q1)(v1 − v2) = −k2

0δq(ψ1 − ψ2) − k2
0(q1 − q2)v2,

where ψi = S(qi)φ0.
Similar to the proof of lemma 2.3, we get

‖v1 − v2‖H 1(D) � C(‖δq‖L∞(D)‖ψ1 − ψ2‖H 1(D) + ‖q1 − q2‖L∞(D)‖v2‖H 1(D)).

From lemmas 2.2 and 2.3, we obtain

‖v1 − v2‖H 1(D) � C‖q1 − q2‖L∞(D)‖δq‖L∞(D)‖φ0‖L2(D),

which completes the proof. �

The following result concerns the differentiability property of S(q).

Lemma 2.7. Assume that q, δq ∈ L∞(D). Then there is a constant C dependent on k0,D

and ‖q‖L∞(D), for which the following estimate holds:

‖S(q + δq)φ0 − S(q)φ0 − T (q)(δq, φ0)‖H 1(D) � C‖δq‖2
L∞(D)‖φ0‖L2(D). (2.14)
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Proof. By setting ψ1 = S(q)φ0, ψ2 = S(q + δq)φ0 and v = T (q)(δq, φ0), we have

�ψ1 + k2
0(1 + q)ψ1 = −k2

0qφ0,

�ψ2 + k2
0(1 + q + δq)ψ2 = −k2

0(q + δq)φ0,

�v + k2
0(1 + q)v = −k2

0δqψ1 − k2
0δqφ0.

In addition, ψ1, ψ2 and v satisfy the boundary condition (1.5).
Denote U = ψ2 − ψ1 − v. Then,

�U + k2
0(1 + q)U = −k2

0δq(ψ2 − ψ1).

Similar arguments as in the proof of lemma 2.3 give

‖U‖H 1(D) � C‖δq‖L∞(D)‖ψ2 − ψ1‖H 1(D).

From lemma 2.3, we obtain further that

‖U‖H 1(D) � C‖δq‖2
L∞(D)‖φ0‖L2(D).

Finally, by combining the above lemmas, we arrive at �

Theorem 2.1. The scattering map M(q) is Fréchet differentiable with respect to q and its
Fréchet derivative is

DM(q) = γ T (q). (2.15)

3. Inverse medium scattering

In this section, a regularized recursive linearization method for solving the inverse medium
scattering problem of the Helmholtz equation in two dimensions is proposed. The algorithm,
obtained by a continuation method on the spatial frequency of a one-parameter family of
incident plane waves, requires only single-frequency scattering data. At each transverse
part of the incident wave, the algorithm determines a forward model which produces the
prescribed scattering data. Since the incident wave at a high spatial frequency can only
penetrate a thin layer of the scatterer, the scattered field is weak. Consequently, the nonlinear
equation becomes essentially linear, known as the Born approximation. The algorithm first
solves this nearly linear equation at the largest |η| to obtain an approximation of the scatterer.
This approximation is then used to linearize the nonlinear equation at the next smaller spatial
frequency of the incident wave, which can penetrate a thicker layer of the scatterer, to produce a
better approximation. When the spatial frequency, |η|, is smaller than the fixed wavenumber k0,
the incident wave becomes usual propagating plane wave and the whole scatterer is illuminated.
This process is continued until the spatial frequency is zero, where the approximation of the
scatterer is considered as the final reconstruction.

3.1. Born approximation

Rewrite (1.4) as

�ψ + k2
0ψ = −k2

0q(φ0 + ψ). (3.1)

Consider a test function ψ0 = eik0x· 
d , 
d = (cos θ, sin θ), θ ∈ [0, 2π ]. Hence, ψ0 satisfies (1.3).
Multiplying equation (3.1) by ψ0 and integrating over D on both sides, we have∫

D

ψ0�ψ dx + k2
0

∫
D

ψ0ψ dx = −k2
0

∫
D

q(φ0 + ψ)ψ0 dx.
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Integration by parts yields∫
D

ψ�ψ0 dx +
∫

∂D

(
ψ0

∂ψ

∂n
− ψ

∂ψ0

∂n

)
ds + k2

0

∫
D

ψ0ψ dx = −k2
0

∫
D

q(φ0 + ψ)ψ0 dx.

We have by noting (1.3) and the boundary condition (1.5) that∫
D

q(φ0 + ψ)ψ0 dx = 1

k2
0

∫
∂D

ψ

(
∂ψ0

∂n
− ik0ψ0

)
ds.

Using the special form of the incident wave and the test function, we then get∫
D

q(x) exp(i(η + k0 cos θ)x1) exp(i(k(η) + k0 sin θ)x2) dx

= i

k0

∫
∂D

ψ(n · 
d − 1) eik0x· 
d ds −
∫

D

qψψ0 dx. (3.2)

From lemma 2.3 and remark 2.2, using an evanescent incident plane wave at a high
spatial frequency, the scattered field is weak and the inverse scattering problem becomes
essentially linear. Dropping the nonlinear (second) term of (3.2), we obtain the linearized
integral equation∫

D

q(x) exp i(η + k0 cos θ)x1) exp
((−√

η2 − k2
0 + ik0 sin θ

)
x2

)
dx

= i

k0

∫
∂D

ψ(n · 
d − 1) eik0x· 
d ds, (3.3)

which is the Born approximation.
Since the scatterer q(x) has a compact support, (3.3) can be rewritten as∫ L2

0
q̂(ξ, x2) exp

((−√
η2 − k2

0 + ik0 sin θ
)
x2

)
dx2 = i

k0

∫
∂D

ψ(n · 
d − 1) eikx· 
d ds,

where ξ = η + k0 cos θ and q̂(ξ, x2) is the Fourier transform of q(x) with respect to x1. When
the spatial frequency |η| is large, the incident wave penetrates a thin layer of the scatterer.
Thus, the Born approximation allows a reconstruction containing information of the true
scatterer in that thin layer. In [6, 3], the inversion involves data related to the scatterer
through the Fourier transform in the case of weak scattering. Here, due to the presence of
the evanescent wave, the inversion involves data related to the scatterer through a Fourier
(with respect to x1)–Laplace (with respect to x2) transform in the case of the weak scattering.
Since the inversion of the Laplace transform is ill-posed, we consider the Landweber iteration
to implement the linear integral equation (3.3) in order to reduce the computation cost and
instability [17].

Define the data

f (η, θ) =



i

k0

∫
∂D

ψ(n · 
d − 1) eikx· 
d ds, for |η| � ηmax,

0, for |η| < ηmax,

where ηmax is some large positive number.
The integral equation (3.3) can be written as the operator form

A(η, θ; x)q(x) = f (η, θ). (3.4)

Following the idea of the Kaczmarz method, we use partial measurement data instead of using
all them simultaneously for each sweep. Let ηi, i = 1, . . . , I, be the discretization of η, where
I is the number of sweeps. Then, we can rewrite (3.4) as

A(ηi, θ; x)q(x) = f (ηi, θ), i = 1, . . . , I,
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Figure 2. Example 1: true scatterer q1.

or in short

Aiq = fi, i = 1, . . . , I.

For each sweep i, the Landweber iteration takes the form

q
(l)
i = q

(l−1)
i + αA∗

i

(
fi − A

(
q

(l−1)
i

))
, l ∈ N,

where α is a relaxation parameter. Since we just need an initial guess for the iteration in
the recursive linearization, we only take one step Landweber iteration for each sweep, which
yields

qi = qi−1 + αA∗
i (fi − A(qi−1)), i = 1, . . . , I, (3.5)

where qI is used as the starting point of the following recursive linearization algorithm.

3.2. Recursive linearization

As discussed in the previous section, when the spatial frequency |η| is large, the Born
approximation allows a reconstruction of the thin layer for the true scatterer. In this section, a
regularized recursive linearization method for solving the two-dimensional Helmholtz equation
at fixed frequency is proposed.

Choose a large positive number ηmax and divide the interval [0, ηmax] into N subdivisions
with the endpoints {η0, η1, . . . , ηN }, where η0 = 0, ηN = ηmax and ηi−1 < ηi for 1 � i � N .
We intend to obtain qη recursively at η = ηN, ηN−1, . . . , η0.

Suppose now that the scatterer qη̃ has been recovered at some η̃ = ηi+1 and that η = ηi is
slightly less than η̃. We wish to determine qη, or equivalently, to determine the perturbation

δq = qη − qη̃.

For the reconstructed scatterer qη̃, we solve at the spatial frequency η the forward scattering
problem

�ψ̃(j,i) + k2
0(1 + qη̃)ψ̃

(j,i) = −k2
0qη̃φ

(j,i)

0 , (3.6)

∂ψ̃(j,i)

∂n
− ik0ψ̃

(j,i) = 0, (3.7)
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Figure 3. Example 1: final reconstruction q1.

Table 1. Recursive linearization reconstruction algorithm.

Initialization
ηN = ηmax largest ηmax

qηmax Born approximation
Reconstruction loop:

FOR i = N : 0 (ηi = ηmax : η0) march along spatial frequency
FOR j = N : i(|ηj | = ηmax : ηi) perform refinement

solve (3.6), (3.7) for ψ̃(j,i) one forward problem
solve (3.17), (3.18) for φ(j,i) one adjoint problem

δq
j

i = k2
0β(φ

(j,i)

0 + ψ̃(j,i))φ(j,i)

q
j

i := q
j

i + δq
j

i

END
qi := qi

i

END
q := q0 final reconstruction

where the incident wave

φ
(j,i)

0 = exp(iηjx1 + ik(ηj )x2), |j | � i.

For the scatterer qη, we have

�ψ(j,i) + k2
0(1 + qη)ψ

(j,i) = −k2
0qηφ

(j,i)

0 , (3.8)

∂ψ(j,i)

∂n
− ik0ψ

(j,i) = 0. (3.9)

Subtracting (3.6), (3.7) from (3.8), (3.9) and omitting the second-order smallness in δq and in
δψ(j) = ψ(j,i) − ψ̃(j,i), we obtain

�δψ(j) + k2
0(1 + qη̃)δψ

(j) = −k2
0δq

(
φ

(j,i)

0 + ψ̃(j,i)
)
, (3.10)

∂δψ(j)

∂n
− ik0δψ

(j) = 0. (3.11)
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Figure 4. Example 1: evolution of the reconstruction q1. Left column from top to bottom: Born
approximation; reconstruction at η = 10.2; reconstruction at η = 8.4; right column from top to
bottom: reconstruction at η = 6.6; reconstruction at η = 4.8; reconstruction at η = 3.0.

For the scatterer qη and the incident wave φ
(j,i)

0 , we define the map Sj

(
qη, φ

(j,i)

0

)
by

Sj

(
qη, φ

(j,i)

0

) = ψ(j,i),

where ψ(j,i) is the scattering data corresponding to the incident wave φ
(j,i)

0 . Let γ be the trace
operator to the boundary ∂D. Define the scattering map

Mj

(
qη, φ

(j,i)

0

) = γ Sj

(
qη, φ

(j,i)

0

)
.

For simplicity, denote Mj

(
qη, φ

(j,i)

0

)
by Mj(qη). By the definition of the trace operator, we

have

Mj(qη) = ψ(j,i)|∂D.

Let DMj(qη̃) be the Fréchet derivative of Mj(qη) and denote the residual operator by

Rj(qη̃) = ψ(j,i)|∂D − ψ̃(j,i)|∂D.
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Figure 5. Example 1: relative error of the reconstruction q1 at different wavenumbers k0.(◦)
reconstruction at k0 = 10.0; (∗) reconstruction at k0 = 8.0; (�) reconstruction at k0 = 6.0; (+)
reconstruction at k0 = 4.0.
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Figure 6. Example 1: relative error of the reconstruction q1 at different step sizes δη. (◦)

reconstruction at δη = 0.6; (∗) reconstruction at δη = 1.2; (�) reconstruction at δη = 2.0.

It follows from theorem 2.1 that

DMj(qη̃)δq = Rj(qη̃). (3.12)

Similarly, in order to reduce the computation cost and instability, we consider the Landweber
iteration of (3.12), which has the form

δq = βDM∗
j (qη̃)Rj (qη̃), for all |j | � i, (3.13)
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Figure 7. Example 2: surface and contour views of the true scatterer q2.

where β is a relaxation parameter and DM∗
j (qη̃) is the adjoint operator of DMj(qη̃).

In order to compute the correction δq, we need some efficient way to compute
DM∗

j (qη̃)Rj (qη̃), which is given by the following theorem.

Theorem 3.1. Given residual Rj(qη̃), there exits a function φ(j,i) such that the adjoint Fréchet
derivative DM∗

j (qη̃) satisfies

[DM∗
j (qη̃)Rj (qη̃)](x) = k2

0

(
φ

(j,i)

0 (x) + ψ̃(j,i)(x)
)
φ(j,i)(x), (3.14)

where φ
(j,i)

0 is the incident wave and ψ̃(j,i) is the solution of (3.6), (3.7) with the incident

wave φ
(j,i)

0 .

Proof. Let ψ̃(j,i) be the solution of (3.6), (3.7) with the incident wave φ
(j,i)

0 . Consider the
following problem:

�δψ(j) + k2
0(1 + qη̃)δψ

(j) = −k2
0δq

(
φ

(j,i)

0 + ψ̃(j,i)
)
, (3.15)

∂δψ(j)

∂n
− ik0δψ

(j) = 0, (3.16)

and the adjoint problem
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�φ(j,i) + k2
0(1 + qη̃)φ

(j,i) = 0, (3.17)

∂φ(j,i)

∂n
+ ik0φ

(j,i) = Rj(qη̃). (3.18)

Since the existence and uniqueness of the weak solution for the adjoint problem may be
established by following the same proof of lemma 2.2, we omit the proof here.

Multiplying equation (3.15) with the complex conjugate of φ(j,i) and integrating over D
on both sides, we obtain∫

D

φ(j,i)�δψ(j) dx + k2
0

∫
D

(1 + qη̃)δψ
(j)φ(j,i) dx = −k2

0

∫
D

δq
(
φ

(j,i)

0 + ψ̃(j,i)
)
φ(j,i) dx.

Integration by parts yields∫
∂D

(
φ(j,i)

∂δψ(j)

∂n
− δψ(j) ∂φ(j,i)

∂n

)
ds = −k2

0

∫
D

δq
(
φ

(j,i)

0 + ψ̃(j,i)
)
φ(j,i) dx.

Using the boundary condition (3.16), we deduce∫
∂D

δψ(j)

(
∂φ(j,i)

∂n
− ik0φ(j,i)

)
ds = k2

0

∫
D

δq
(
φ

(j,i)

0 + ψ̃(j,i)
)
φ(j,i) dx.

It follows from (3.12) and the boundary condition (3.18) that∫
∂D

[DMj(qη̃)δq]Rj(qη̃) ds = k2
0

∫
D

δq
(
φ

(j,i)

0 + ψ̃(j,i)
)
φ(j,i) dx.

We know from the adjoint operator DM∗
j (qη̃) that∫

D

δqDM∗
j (qη̃)Rj (qη̃) dx = k2

0

∫
D

δq
(
φ

(j,i)

0 + ψ̃(j,i)
)
φ(j,i) dx.

Since it holds for any δq, we have

DM∗
j (qη̃)Rj (qη̃) = k2

0

(
φ

(j,i)

0 + ψ̃(j,i)
)
φ(j,i).

Taking the complex conjugate of the above equation yields the result. �

Using this theorem, we can rewrite (3.13) as

δq = k2
0β

(
φ

(j,i)

0 + ψ̃(j,i)
)
φ(j,i). (3.19)

So for each incident wave with a transverse part ηj , we have to solve one forward
problem (3.6), (3.7) along with one adjoint problem (3.17), (3.18). Since the adjoint problem
has a similar variational form as the forward problem. Essentially, we need to compute
two forward problems at each sweep. Once δq is determined, qη̃ is updated by qη̃ + δq.
After completing sweeps with |ηj | � η, we get the reconstructed scatterer qη at the spatial
frequency η.

Remark 3.1. For given ηi , iterations for |ηj | � ηi could be repeated to improve the accuracy
of the approximation for qηi

. However, in practice, this refinement is usually unnecessary
because of the slow convergence of the Landweber iteration at the same stage [11], i.e.,
without using essentially different data. Numerical results show that the iterative process
described as the reconstruction loop in table 1 is sufficient to obtain reasonable accuracy.

The recursive linearization for inverse medium scattering at fixed frequency is summarized
in table 1.
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Figure 8. Example 2: surface and contour views of the reconstructed scatterer q2.

4. Numerical experiments

In this section, we discuss the numerical solution of the forward scattering problem and the
computational issues of the recursive linearization algorithm.

The scattering data are obtained by numerical solution of the forward scattering problem.
As for the forward solver, we adopt the finite element method (FEM), which leads to a sparse
matrix. The sparse large-scale linear system can be most efficiently solved if the zero elements
of coefficient matrix are not stored. We used the commonly used compressed row storage
(CRS) format which makes no assumptions about the sparsity structure of the matrix and
does not store any unnecessary elements. In fact, from the variational formula of our direct
problem (2.1), the coefficient matrix is complex symmetric. Hence, only the lower triangular
portion of the matrix needs be stored. Regarding the linear solver, either BiConjugate gradient
(BiCG) or quasi-minimal residual (QMR) algorithms with diagonal preconditioning may be
used to solve the sparse, symmetric and complex system of the equations. For our examples,
it appears that the QMR is more efficient.

In the following, to illustrate the performance of the algorithm, three numerical examples
are presented for reconstructing the scatterer of the Helmholtz equation in two dimensions.
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Figure 9. Example 2: evolution of slice for the reconstruction q2. Solid line: true scatterer;
dotted line: reconstruction. Top row from left to right: reconstruction at η = 14.45; reconstruction
at η = 13.60; reconstruction at η = 12.75; middle row from left to right: reconstruction at
η = 10.20; reconstruction at η = 8.50; reconstruction at η = 6.80; bottom row from left to right:
reconstruction at η = 5.10; reconstruction at η = 2.55; reconstruction at η = 0.0.

For stability analysis, some relative random noise is added to the date, i.e., the electric field
takes the form

ψ |∂D := (1 + σ rand)ψ |∂D.

Here, rand gives uniformly distributed random numbers in [−1, 1] and σ is a noise level
parameter taken to be 0.02 in our numerical experiments. The relaxation parameter β is taken
to be 0.01. Define the relative error by

e2 =
(∑

i,j |qij − q̄ij |2
) 1

2(∑
i,j |qij |2

) 1
2

,

where q̄ is the reconstructed scatter and q is the true scatterer.

Example 1. Let

q(x1, x2) = 0.3(1 − x1)
2 exp

(−x2
1 − (x2 + 1)2

) −
(x1

5
− x3

1 − x5
2

)
exp

(−(
x2

1 + x2
2

))
− 1

30
exp

(−(x1 + 1)2 − x2
2

)
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Figure 10. Example 3: surface and image views of the true scatterer q3.

reconstruct a scatterer defined by

q1(x1, x2) = q(3x1, 3(x2 − 1)) (4.1)

inside the domain D = [−1, 1] × [0, 2]. See figure 2 for the surface plot of the scatterer
function. Figure 3 is the final reconstruction using the wavenumber k0 = 10.0 and the step
size of the spatial frequency δη = 0.6. Figure 4 shows the evolution of reconstructions at
different spatial frequencies. Figure 5 presents the effect of the wavenumber k0 on the result
of reconstruction, which illustrates clearly that the inversion using a larger wavenumber k0 is
better than that using a smaller one. This result may be explained by Heisenberg’s uncertainty
principle [6, 7]. Figure 6 shows the relative error by using different step sizes of the spatial
frequency, which suggests that we may use a large step size in order to save computation cost
since the final reconstruction is not really sensitive to the step size.
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Figure 11. Example 3: surface and image views of the reconstructed scatterer q3.

Example 2. Reconstruct a scatterer defined in D by

q2(x1, x2) =




q1(x1/0.8, x2/0.8), for x2
1 + (x2 − 1)2 � 0.7472,

−0.3, for 0.7472 < x2
1 + (x2 − 1)2 � 0.8532,

0, for x2
1 + (x2 − 1)2 > 0.8532.

See figure 7 for the surface and contour plots of the function. It is easily seen that this scatterer
is difficult to reconstruct because of the discontinuity across two circles. The example could
be regarded as a model problem for ultrasound tomography of a human head, where the skull is
represented by the thin layer of denser material in the narrow annulus region. Figure 8 shows
the surface and contour plots of the reconstructed scatterer using the wavenumber k0 = 15.0
and the step size δη = 0.85. Figure 9 gives the evolution of reconstruction horizontally
across the diameter. An examination of the plots shows that the error of the reconstructions
occurs largely around the discontinuities, while the smooth part is recovered more accurately.
As expected, the Gibbs phenomenon appears in the reconstructed scatterer near the
discontinuity.
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Example 3. Reconstruct a scatterer defined in D by

q3(x1, x2) =




cos(2.5πr1), for r1 � 0.2,

cos(2.5πr2), for r2 � 0.2,

0, otherwise,

where r1 =
√

(x1 + 0.25)2 + (x2 − 1.0)2 and r2 =
√

(x1 − 0.25)2 + (x2 − 1.0)2. The compact
support of this scatterer is two isolated discs with the same radius of 0.2 and the centres at
(−0.25, 1.0) and (0.25, 1.0). See figure 10 for the surface plot and image of the function.
Figure 11 is the final reconstruction using the wavenumber k0 = 3π and the step size of
the spatial frequency δη = 0.6. This example is used to examine the resolution of the
reconstructed image. In this numerical experiment, the wavelength of the incident plane
waves is 2π/k0 = 0.6̇. The distance of the centres for the compact support is 0.5, which is less
than one wavelength. From the well-separated bumps, the resolution of the image is clearly
in the scale of subwavelength. The subwavelength resolution is expected since evanescent
waves are used for illumination.

5. Concluding remarks

We have presented a new continuation method with respect to the spatial frequency of a
one-parameter family of plane waves. The recursive linearization algorithm is robust and
efficient for solving the inverse medium scattering at fixed frequency. Finally, we point out
some future directions along the line of this work. The first is concerned with the convergence
analysis. Although our numerical experiments demonstrate the convergence and stability of the
inversion algorithm, no rigorous mathematical result is available at present. Another direction
is to investigate inverse medium problems for Maxwell’s equations at fixed frequency. We are
currently attempting to extend the approach in this paper to the more complicated 3D model
problems and will report the progress elsewhere.
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