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The discrete wavelet transform may be used as a signal-processing tool for visualization and
analysis of nonstationary, time-sampled waveforms. The highly desirable property of shift
invariance can be obtained at the cost of a moderate increase in computational complexity, and
accepting a least-squares invefpseudoinversan place of a true inverse. A new algorithm for the
pseudoinverse of the shift-invariant transform that is easier to implement in array-oriented scripting
languages than existing algorithms is presented together with self-contained proofs. Representing
only one of the many and varied potential applications, a recorded speech waveform illustrates the
benefits of shift invariance with pseudoinvertibility. Visualization shows the glottal modulation of
vowel formants and frication noise, revealing secondary glottal pulses and other waveform
irregularities. Additionally, performing sound waveform editing operati@ms, cutting and pasting
section$ on the shift-invariant wavelet representation automatically produces quiet, click-free
section boundaries in the resulting sound. The capabilities of this wavelet-domain editing technique
are demonstrated by changing the rate of a recorded spoken word. Individual pitch periods are
repeated to obtain a half-speed result, and alternate individual pitch periods are removed to obtain
a double-speed result. The original pitch and formant frequencies are preserved. In informal
listening tests, the results are clear and understandable20@ Acoustical Society of America.
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I. INTRODUCTION (subsampling for lower-frequency components. The selec-
tion of samples to be skipped in the subsampling process is
In experimental acoustics, it is common to encountelinextricably linked to the time elapsed since the sampling
nonstationary sound waveforms, i.e., those in which the frebegan. Fortunately, by modifying the DWT to retain all pos-
quency content and amplitude change as a function of timesible samplegperforming no subsamplingit is possible to
The conventional approach for analyzing such sounds is tebtain explicit shift invariancé® The resulting shift-
calculate a spectrogram, or short-time Fourier transforminvariant discrete wavelet transfor(8IDWT) is highly re-
(STFT). For a time-sampled waveforz(t), the STFT pro- dundant, but since many of the redundant elements are du-
vides information about the waveform’s energy content as @licates, the increase in computational complexity is not
function of both time and frequency, i.eFgre(2) severe. The full SIDWT may be used as a starting point from
=E(t,f). While the STFT has proven its worth in numerouswhich to draw a more efficient representation for lossy
practical applications, it is ill suited to certain types of compressiod. The SIDWT may also be used in fulalbeit
sounds, and it lacks some desirable mathematical charactexith the duplicate elements grouped and summexdwhich
istics. Sounds with frequency content ranging over more thaform it has been shown to be an isometry, with applications
one or two orders of magnitude are often problematic forin data visualizatiol. Others have described algorithms
STFT analysis, because a window long enough to captureshich are mathematically equivalent to the SIDWT, but
low-frequency contentat least one perigdwill be insensi-  which were developed for applications in exploratory statis-
tive to high-frequency sounds of short time duration. tics, using different nomenclature, i.e., the stationary wavelet
The discrete wavelet transforfDWT) has a severe transforni and the maximal overlap discrete wavelet
limitation when used for acoustic waveform analysis: its lacktransform’ The stationary wavelet transform has also been
of shift invariance. Let two time-sampled waveforrad) used successfully for waveform denoising.
and z'(t) be time-shifted copies of one another, such that  The use of the SIDWTand its equivalenjsto identify
z(t)=2'(t+ty) for all t. Calculating the DWT of each, features in a waveform; whether signatures of interesting
Fowt(2) =E(t,n), andFpw1(z')=E’(t,n). Since the DWT phenomena, experimental artifacts, or noise, leads naturally
is not shift invariant,E(t,n)#E’(t+ty,n). Therefore, the to the following question. What would the time-sampled
DWT analysis of a sampled sound depends on when thevaveform look like (or sound likg if the features were
sampling starts, not just when the sound occurs, which i$ouder, softer, appeared at a different time, or were removed
highly undesirable for the study of physical systems. Thealtogether? Performing the desired modifications on the
DWT is critically sampled, i.e., utilizes lower sampling rates SIDWT output is straightforward; the challenge is reversing
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the SIDWT to return to a time-sampled waveform. Becauseéhe myriad of mechanical sounds produced by motor ve-
of its inherent redundancy, the SIDWT does not have a trudicles, e.g., a momentary rattle excited tgnd partially
inverse in the mathematical sense. However, this fact doemasked by a car door slam, and the motor whine, blade
not preclude the existence of an algorithm with usefulscrape, and reversal thud of a windshield wip&he details
inverse-like behavior. The developers of the stationary waveef speech waveforms, especially the formant resonances
let transform also developed such an inverse-like procedurenodulated by glottal pulses, are also an excellent match to
They showed that averaging together all of the possible shiftthe capabilities of the SIDWT/ISIDWT. The general ap-
induced variations of the IDWT yields intuitively satisfying proach and terminology derives from ad hoclist of recent
results® Likewise, a mathematically equivalent procedurepublications that deal with various details of speech wave-
was used to invert the maximal overlap discrete waveleforms: pitch period estimatiotf,** formant modulatior?
transform, also with intuitively satisfying resuftsThe sta- ~ friction noise modulatiort® voicing onset/ glottal
tionary wavelet transform combined with this inverse-like characteristics? and waveform irregularities’

averaging procedure has also been shown to yield good re-

sults in waveform denoisingThe wavelet denoising paper

states, without proof or discussion, the important mathematiy, +He SHIET-INVARIANT DISCRETE WAVELET

cal result that the inverse-like procedure is actually thetRANSFORM AND ITS PSEUDOINVERSE
pseudoinverse of the stationary wavelet transform. A recent

publication coauthored by one of the present authors de2 TN€ory
scribes two examples of sound visualization and modifica-  Consider a sequence df physical measurements
tion using the SIDWT and its pseudoinvei$8IDWT). The  =(z;,z,,...,z\), €.0., air pressure measured repeatedly at
discussion and the two examples are narrowly focused on thevenly spaced time intervals. L8tdenote the set of all such
field of automotive sound quality engineering, and no math-signals. SinceEnzﬁ< +, the vectorz may be regarded as
ematical material is included. the coordinates of a single point in a finite energy,
The goals of this paper are threefold. The first is to de-N-dimensional vector spacezel?(Zy). Implicit in z
scribe a newly developed simple and fast convolution algo<12(7Zy) is the assumption that is a single period of an
rithm for the ISIDWT, based on the SIDWT algoritihThe infinitely long sequence with a periodicity ®f. If this as-
SIDWT, the stationary wavelet transform, and the maximalsumption is not physically realistic, care must be taken to
overlap discrete wavelet transform employ significantly dif-insure that the conclusions drawn from the analysis are inde-
ferent algorithms, so a discussion of computational issues igendent ofN.
included. The second goal is to present a simple, self- Letuel?(Zy) andv el?(Zy) represent two digital fil-
contained proof that the ISIDWT is the pseudoinverse of theers. Denoting the discrete Fourier transformudby 0, we
SIDWT. The statement of this result has been published; weequire the system matrix
believe the details of the proof should be made available as

well. The third goal is to illustrate the potential applications an) o(n)
of these new analytical methods in the field of acoustics. ~ A(N)= 5l alne N ol na ARE @
Section Il covers both the theoreticdl A) and the compu- 2 2

tational (11 B) aspects of the SIDWT and its pseudomverse.,[0 be unitary for each=0,...N— 1 (Ref. 20, p. 178 There-

In Sec. lll, examples of low-level speech waveform Processz o\ is the low-pass filter sequence andthe high-pass

'ng |_Ilus_trate the capab|I|t|es_ of the SIDWT/ l.SIDWT fof VI filter sequence generating the discrete wavelet transform.
sualization, feature separation, and analysis/synthesis. One LetT be the complex conjugate reflection ofdefined
especially promising way to combine thes_e capabilities_is t(by Ti(n)=u*(N—n) for all n. The finite impulse response
edit (cut and paste sectionef sound recordings in the shift- filtering of z by u is written as acircular convolutionzx u.

invariant wavelet domain. While many audible features ar . S . . .
: o . : L ost practical applications of these techniques, including the
easier to recognize in that domain, the primary benefit is the )
. . examples presented here, involve ohhelement sequences
wavelet pseudoinverse transform automatically prevents thé . N—12(7 .
. . of real numbers, i.exe R"CI%(Zy). The mathematical re-
occurrence of the audible clicks and pops that are usuall .
) . . . . ults, however, are valid for complex-valued vectors. Assum-
produced at section boundaries by time-domain editing. Il-

lustrative examples of waveforms with strong time Iocaliza-mg.that m divides N, a sequence reordering operafy,
. . . . defined by

tion and a wide frequency range can be found in many dif-
ferent technical fields of study. For the development ofRn(2)=(Z1,Zm+1,---ZN—(m=1)1Z2:Zm+2+-+ - ZN—(m—2) 1+ +»
digital audio effects in music, it is useful to be able to dis-
tinguish transienttime-localized sounds, such as the pluck ZmZoms - 2N). 2

of a guitar string, from the steady ringing toffeequency- in effect, writes the elements afinto anm by N/m matrix
localized that follows® Research in wavelet-domain modi- by columns and reads the elements out by rows. For
fication of musical sounds began in the early days of wavele¢xample, if  z=(1,2,3,4,5,6,7,8), then Ry,(2)
theory, e.g., musical applications of complex wavetémsnd  =(1,3,5,7,2,4,6,8). The inverse oR,, iS Rym, I.€.,
continues today, e.g., the use of a “lapped” wavelet transRy;m(Rn(2)) =z

form to stitch together segments of musical wavefotins. From anN-element input vector, givep such that 2
The examples most familiar to the authors are drawn frondivides N, the p-stage shift-invariant discrete wavelet trans-
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form T produces af+1) by N matrix®> T may therefore be
regarded as a linear map taking each poinsito a point in
a (p+1)N-dimensional vector spad¥, i.e.,

T3|2(ZN)—>|2(Z(p+1)N)-
T of zis given by
T(2) = (Rya(X1), Rnia(X2) - - Ruzar(Xp) , Ruyoe(Yp) ) "

)

where
Ra(z*v) d ! Ro(z*T) ©)
X1=—Ry(z*T) an =—R,(z*T),
1= 52 Y1 2
and forj=2,...p
= Ra( v) d = Ra( u. (6
Xj=— i_1*D) an = i_1*7).
j Vi 2 Yj 1 yj V2 2 yj 1
1 i
The set of points mapped Ayfrom S occupies a subspace in Ryya T ws | Ry
w dengted by rangeér). . . ' v : | R
Being a linear map from aN-dimensional space of sig- |ows
nals to a space of larger dimension, the SIDWT does not oo
have an inverse. Of all the points W, only those which are SIDWT ISIDWT

in range(T) are directly associated with a point B The
pseudoinverse works around this limitation by providing ev-
ery pointw e W with an indirect association to some point FIG. 1. A block diagram of the SIDWT and ISIDWT for two scale levels,

Analysis phase T Synthesis phase S

ze S. Everyw has a unique neare§h the standard Euclid-
ean norm neighborw’ e range{l’) (possibly itself, and the
pseudoinverse associates eaghwith the z that satisfies

ie.,p=2.

dresses the case af¢ range(l’), which will apply to virtu-

T(z2)=w’. This procedure is mathematically equivalent toally all wchosen arbitrarily, i.e., not obtained y=T(2). In
finding the least-squares solution to an overdetermined syshis case,x=T(S(w)) erange{) is the unique point in

tem of linear equations. We now define the ISIDWT

S:|2(Z(p+1)N)—>|2(ZN), (7)

a map taking each point itV to a point inS. Given w
= (W1, Wy,... Wps1) €12(Zps1yn), We computeS(w) by
the algorithm

1
ﬂpzﬁ (Rn2(Rap(Wp))* v + Ryja( Rop(Wp 1 1)) ¥ U) — (8)

9)

1
npflzﬁ (Rnj2(Rap-1(Wp 1)) * v+ Ry 17p)* U)

1
S(w) = 7}125 (Rn2(Ro(Wq))* v+ Rya( 72)*u).  (10)

The relationship betweem and S (as defined aboyes es-
tablished by the following theorem.

Theorem 1. Ss the least-squares invergpseudoin-
verseg of T, i.e.,

(i) ST:id||2(ZN)1 and
(i) TSis the orthogonal projection dfz(Z(pH)N) onto
range(T).

According to statementi), for werange({l), Sis the
inverse of T, and thereforeS(T(z)) =z. Statementii) ad-
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range(T) closest tow, minimizing = ,(x,—w,)?. A proof of
Theorem 1 is given in the Appendix.

B. Computation

The block diagram in Fig. 1 illustrates the processing
steps in the SIDWTanalysis phas&) and its pseudoinverse
ISIDWT (synthesis phas®) for the two-stage case, i.ep,
=2. The analysis begins in the upper-left corner with the
input waveformz. The four-block clusters inside the dotted-
line boxes on the left side of the diagram depict the recursive
analysis steps defined in Eq®) and (6). A p-stage trans-
form employsp of these clusters, yielding+1 many series
X1,X2,..-Xp,Yp, €ach of lengtiN. The final rearrangement
step defined in Eq4) reaches the vector spaké depicted
by the central dashed-line box. Completion of the SIDWT is
indicated by the vertical arrow leading 1qz) at the top of
the diagram. The synthesis begins at the top withvhich in
most cases will be a modification d%z). The first step in
the ISIDWT is to undo the final rearrangement step in the
SIDWT. After this, the recursive procedure in the dotted-line
boxes in the right side of the diagram, as defined in Egjs.
and(9), is carried out. The ISIDWT is complete at the top of
the diagram wher&(w) = 74, as in Eq.(10).

Let us look at the computational complexity of the
pseudoinvers&. Givenzel?(7Zy), the computational com-
plexity for the transformT(z) is O(N log, N) according to
Ref. 5. We will now show that this result holds for the
ISIDWT Sas well.

Enders et al.: Shift-invariant discrete wavelet transform
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Theorem 2 Let N be a power of 2 angpeN, with 1 e . ' : ' : '
p=<Ilog, N fixed. Then, the total number of complex multipli-
cations required to comput§(w) for WE|2(Z(D+1)N) is
#y<2pN+3pNlog,N.

Proof: In lieu of a detailed proof, we note thaand the
analysis algorithm are essentially the same by symmetry.

From Theorem 2 we obtain the result that the computa-
tion of Sis anO(N log, N) operation ifp is considered to be -1 , , ,
a fixed number. If we take the Daubechies D4ndv and T
perform the convolutions directly instead of using the FFT, 140 H= ]
then the computational complexity is juS(N), sinceu and 450 Han PO FO i
v have only 4 nonzero entries. This is the minimal order we 7
can expect when working with signals of lengdhSinceSis ]

a linear map, the error in the output is bounded by the norm*°° Hz 7 %008 o B
of S (a constanttimes the error in the input, which means | LT
that the algorithm is numerically stable. 80 Hz B

The ISIDWT, the stationary wavelet transform, and the 0.0 ' 0'1 ' 0'2 ' 0'3 ' 0'4 ' ok
maximal overlap discrete wavelet transform are mathemati- ' ' Time (S)' ' )
cally equivalent in the sense that they yield the same result.

However, they utilize significantly different algorithms, so FIG. 2. A sound recording of a male speaker pronouncing the Japanese
they are not computationally equivalent in all respects. Alword “ka_ze" with rising inton_ation, gnd the voiced fundamental frequency
three may be calculated witid(N log, N) computational F0 obtained from glottal period estimates.

complexity if p is considered fixed:’ If implemented in a

low-level programming language that allows efficient Index'after the glottal pulse, at which point the glottis is essentially

ng Of. individual matrix elements, the performance of theclosed. The amplitude decreases rapidly as energy is lost due
three is gxpgctgq to be essgntlally. equwalent.' However, thf:é air flow between the lips. When the glottis reopens in
IS.IDWT IS _5|g_n|f|cantly easier to |mplement In an array= reparation for the next glottal pulse, the resulting air flow
(_)ne_nted scripting language, because it can be constructed uses the formant amplitude to decrease even more quickly.
linking toge_ther "’?feW of the standard funcfuons that are COMrpig strong amplitude modulation of the formants leads to a
monly provided in such I_angua_ges. In this way, aCFeptabl%videly used quasistatic approximation. In this simplified pic-
pgrforman;e can be obtained without Fhe n(_aed to write, co fure, the frequency content of each formant pulse is assumed
pile, and link an external module written in a lower-level to be static, and thérelatively slow motion of the vocal-
language. tract anatomy(tongue, jaw, and lipsis inferred by compar-
ing the frequency content of consecutive formant pulses. The
lll. APPLICATION TO SPEECH WAVEFORM ANALYSIS first six formant pulses in kaze may be seen in Fig. 3. The
To illustrate the application of the SIDWT/ISIDWT to first formant pulse, which signifies the beginning of the
acoustic waveforms, a detailed analysis of a sound recordingowel sound “a,” occurs at-0.105 ms. In the sound wave-
of a spoken word is presented below. A recording of a maldorm plot, each formant peak begins at a sharp downward
speaker pronouncing the Japanese word “kaze” with a risingtep (a glottal puls¢ and oscillates with decreasing ampli-
intonation from an on-line speech database maintained faude, disappearing before the next glottal pulse. On the spec-
phonetic alphabet reseaféhis shown in Fig. 2. Voiced trogram, labeled “STFT,” each downward step appears as a
speech is produced by periodic glottal closure events, whickertical gray bar; the short time duration of each step maps to
momentarily interrupt the air flow through the larynx. The broad frequency content. The sampling rate was 44100
frequency at which these events occur, denote@ @yis the  samples/s, and a 352-point Hanning window, shifted in 63-
fundamental frequency of voiced speech. The rising intonapoint steps, and zero-padded to 1024-point length, was used
tion in this example is reflected in Fig. 2, &0~90Hz in the preparation of spectrograms in this and the next two
during the “a” increases t&-0~120 Hz during the “e.” The  figures. The gray scale on each spectrogram was adjusted for
procedure for glottal period estimation is discussed in detaienhanced contraét.Each formant pulse appears as a pair of
below. dark horizontal bands-600 Hz apart, beginning at a vertical
During spoken vowels, the sharp air-pressure transientsar, and ending before the next vertical bar. This formant
known as glottal pulses excite pressure oscillations in thérequency content df 1~500 Hz and=2~1100 Hz is typi-
volume acoustic resonances of the vocal tract. The frequenaal for a male Japanese speaker’s “&”
content of these resonances, which fall in the range between The scalogram in Fig. 3 labeled “DWT” is obtained
~500 Hz to~8 kHz, depending on the size of the vocal tractfrom the conventional, shift-variant, discrete wavelet trans-
and the position of the tongue, jaw, and lips, is the primaryform. The 8-tap symlet was used for all examples presented
factor distinguishing one vowel from another. The significanthere, but the results do not depend critically on the choice of
frequency peaks in the pressure oscillations are known asavelet. The shape of the wavelde.g., symlet vs
formants, and are denoté&d. ,F2,F3,F4, in order of increas- Daubechiesmakes little difference here. Shorter wavelet fil-
ing frequency. The formant amplitude is highest immediatelyters (e.g., 4-tap vs 8-tapwill have increased energy in the
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they are dramatically different. The shift invariance reveals
the true reproducibility of the formant pulses, and for each
formant pulse shows the amplitude decrease and the gap pre-
ceding the next glottal pulse. The voiced region highlights
two important differences between the STFT presentation
and the SIDWT presentation. First, the STFT has finer fre-
quency resolution than the SIDWT. The two main formants,
F1 andF2, are resolved clearly on the STFT, but are not
resolved on the SIDWT due to the single-octave bandwidth
of the scalogram levels. The second difference is that the
STFT has the same time resolution at all frequencies, so
transients appear as vertical features. In contrast, the time
resolution of the SIDWT scales inversely with the center
frequency of each band. For each step upward to a higher-
frequency scalogram band, the time resolution is twice as
fine. For this reason, a transient feature tends to have a py-
ramidal appearance on the SIDWT, with a narrow top on a
base that broadens at each next lower level. The practical
consequence of these two differences is that the SIDWT is
not a substitute or a replacement for the STFT, but rather a
complement, and the two techniques can be used effectively
together.

Figure 4 shows a similar presentation of the “z” from
kaze. This sound is produced by a narrow restriction in the
mouth. The frictional(turbulen} loss due to the air flowing
through the restriction prevents the build-up of formants. The
absence of formants does not imply silence, however, be-
cause the turbulence produces audible noise called frication.
The loudness of the frication varies with the flow of air
through the restriction, which in turn is modulated by peri-
odic glottal closures. The modulated frication appears as
bursts of noise(glottis open separated by momentary si-
lences(glottis closed.’® It is interesting to contrast this tim-
ing to that observed with formants, which are loudest when
the glottis is closed, and quiet when the glottis is open.

To complete the presentation of kaze, the final vowel
“e” is shown in Fig. 5. The time-domain clarity of the for-
mant peaks in the shift-invariant scalogra8IDWT), com-

FIG. 3. The “ka” from the Japanese word “kaze,” its spectrogré®TFT),
its conventional scalogram(DWT), and its shift-invariant scalogram

(SIDWT).

pared to the shift-variant scalogra@WT), is even more
evident here than in Fig. 3. The formant pulses are closer

upper sidebands, but provide faster calculations and sharptggether than in Fig. 3, and they also exhibit a second high-
time resolution. The essential preprocessing step for visuafrequency pulse in each glottal period. Secondary glottal
ization is to transform the oscillatory coefficients within eachpulses such as these are often observed in male speech wave-

scale level ofw e range(T) to a quadratic envelopeFor the
coefficients at thenth scale levelw,,, the quadratic enve-
lope Wr’n:W,Zn+ H(wp)?, whereH is the Hilbert transform,

forms, and they can be problematic for glottal period estima-
tion algorithms. Interestingly, the phenomenon is usually
vowel-dependent, and only traces of secondary pulses can be

i.e., an/2 phase shift. Following this operation, all of the seen on the “a” in Fig. 3.

scalograms presented here were downsampled to fit the An expanded view of two of the formant pulses from
available space, and the gray scales were adjusted for efig. 3 is shown in Fig. 6, as a time history and as a shift-
hanced contragt The formant pulses appear as dark, verti-invariant scalogram. The glottal pulses are indicated by
cal features extending from the 500-Hz to the 8-kHz bands:GP.” A periodic signature with a period of~1.7 ms is
Their appearance is more varied than on the spectrogramapparent on the 2-kHz scale as alternating bands of light and
due to the shift variance of the DWT. Nevertheless, the DWTdark, and is barely visible on the 1-kHz band. The scalogram
has been shown to be a reliable method for identifying glot-as prepared for display is a quadratic function of the wavelet
tal pulses forFO estimation:>!4 The scalogram in Fig. 3 coefficients, and this signature is the difference frequency
labeled “SIDWT” is obtained from the shift-invariant dis- between the two formant peaks, 1.7 (F2—F1). The
crete wavelet transform. In the region corresponding to thelifference frequency shows up most clearly on the 2-kHz
“k” sound, the SIDWT and DWT scalograms have a similar band because there is significant frequency overlap between
appearance. In the region corresponding to the voiced “a,’adjacent bands, and the strong fundamef@abnd its strong
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FIG. 4. The “z” from the Japanese word “kaze,” its spectrogra8irFT), FIG. 5. The “e” from the Japanese word “kaze,” its spectrogré®TFT),
its conventional scalogram(DWT), and its shift-invariant scalogram its conventional scalogram(DWT), and its shift-invariant scalogram

(SIDWT). (SIDWT).
second harmonic overwhelm th&2—F1 difference in the An important category of speech-processing techniques
500-Hz and 1-kHz bands. known as PSOLA(pitch-synchronized overLap and add

A similar view of three of the formant pulses from the based on working with the individual glottal pulsé4 typi-
vowel sound “e” is shown in Fig. 7, as a time history and ascal application of PSOLA might begin with isolating each
a shift-invariant scalogram. Patterns that appear to be diffeglottal pulse by multiplying the speech waveform by a
ence frequencies can be seen, but since the formant contemiunded windowe.g., Hanningcentered over each pulse in
of “e” is more complex than the two strong peaks respon-turn. A typical length for the window would be twice the
S|ble for the signature in Fig. 6, the scalogram signature oflottal period. The window length represents a compromise:
the vowel “e” is more complex as well. This expanded view longer windows allow the neighboring pulses to intrude, and
provides a more detailed picture of the secondary glottathorter windowgor windows with more steeply sloped time-
pulse labeled “2” in each glottal period, showing that the domain cutoff$ increase spectral leakage. After the indi-
fundamental periodicity, as well as the gap preceding theidual glottal pulses have been processed in the desired man-
glottal closure, are still evident. THEO estimate in Fig. 2 ner, they must be recombined to make a single waveform. A
was obtained by finding all occurrences of this formant gapvariety of approaches has been used to recombine the indi-
peak signature. For a list of timés: (t,t,,...,ty) at which  vidual segment&? including a technique which utilizes in-
the M occurrences of the signatures were obser#att,  formation obtained from wavelet transform analySisn
is given by FO,=1/(t,.1—t,), whereN=1,2,....M—1). general, PSOLA produces high-quality results, although
The timest were obtained by finding local maxima in the sometimes annoying artifacts are presént. The artifacts
sum of the quadratic envelopes of the 1- and 2-kHz bands.are not completely understood, and may be related to the
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FIG. 6. The Japanese vowel “a,” and its shift-invariant scalogram. The
glottal pulses are indicated by “GP. FIG. 8. A single formant pulse signature of the Japanese vowel “a” sur-
rounded by a dashed-line box on the shift-invariant scalogram.

details of how the modified pulses are recombined. 0 Cto<t<t

The analysis/synthesis capability of the SIDWT/ -0 a
ISIDWT may be employed to segment and recombine a  W(t,n)=1y X(t,n) : tast<t, (11)
speech waveform in a manner that is conceptually similar to 0 Dtp<t=t..

PS.OLA’ although the mathema.t ical details are of courser, complete the procedure, the extracted single formant
quite different. Figures 8 and 9 illustrate the procedure forpulsez’ is obtained frone’ = S(x). Figure 9 shows’, with
extracting a single formant pulse from the speech Waveforr‘nthe original waveforne in gray for comparison. Th1e scalo-
In Fig. 8 a dashed-line box delineates the region of the Scalogramx’ —T(z') is also shown in Fig. 9, along with the origi-
gram corresponding to the single formant pulse 10 be X5 gashed-line box. The only significant difference between
tracted, i.e., the time m_terval 0._1%3a<t<_tb_= 0.1436. The  \\ andx’ is the smoothing of the boundariestgtandty, .

edges of the_ box are aligned with local minima of the sum of 4, carry the feature extraction procedure described
the quadratic envelopes of the 2- and 1-kHz bands. Thepoye to completion, the nonzero elements of a scalogram
scalogram elements inside this box are preserved, and thge segmented intdM pieces &, .X},...X,) such that
remainder of the scalogram is set to zero. Given the speecgnxrqzx_ Then, by the linearity of, =,z,=z. The regions
waveformz(t) over the intervalto<t<t., and the scalo- of the scalogram where features with strong time localization
gramx(t,n)=T(2), a function of both time and scale, this are absent are segmented at arbitrary time boundaries, with
modification producesv(t,n) such that

Sound Waveform

Sound Waveform
o
|
T

8 kHz =
4 kHz
2 kHz
1 kHz
500 Hz
240 Hz
120 Hz

T 0.13 0.14 0.15

0.32 0.33 0.34 0.35 Time (g)
Time (s)

FIG. 9. A single formant pulse of the Japanese vowel “a” extracted by the
FIG. 7. The Japanese vowel “e,” and its shift-invariant scalogram. ThelSIDWT, with the original waveform in gray for comparison. The shift-
glottal pulses are indicated by “GP,” with secondary pulses indicated byinvariant scalogram of the reconstructed pulse is shown surrounded by a
“2." dashed-line box marking the extracted area.
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FIG. 10. A pitch-synchronous spectrogram-like display of the Japanese FIG. 11. The spectrogram of the Japanese word “kaze.”

word “kaze.”

waveform segment differs from the initial value in the next

the cpn_stramt that the arbitrary segn_"nentanon lengind., waveform segment. The signature of such a boundary on the
are similar to those used elsewhere in the scalogram. If thg

. : ) o . 'Scalogram is a peak in the high-frequency scales, reflecting
segmentation boundaries are aligned with instants of relativg, high-frequency content of the step. It is usually necessary

quiet, the operation may be considered a type of synchronoyg (aner or otherwise reshape the waveforms at each bound-
wmdowmg, €., wmdpwmg synchronized W',th the amplitude ary to smooth these steps. However, excessive tapering or
modulation inherent in .the waveform. .In this example, mOStreshaping can create other audible artifacts, e.g., a gap in the
of the.waveform exhlplts strong e}mplltude modulatlon, andhigh-frequency components. In some cases human interven-
the Wlt?.th of er?chb ngov.wb_t% 'S 'a:jg? relative tﬁ th? tion is required to find the optimal balance. Performing the
Sr:nO(_)t m(gj; at t_ € ouln ages 0 ser\é_e in Fig. 9. T ere Orei:utting and joining operations am creates steps in the scalo-
the time-domain overlap between adjacent segments IS Negam yalyes at boundaries that resemble the steps created on

ligible, and a raw edited sound waveform. However, since they are steps
M in w, not steps inz, they are not associated with audible
> F(Z()~F(Z'(1)), (12)  clicks and pops. The pseudoinverse smoothes the waveform
=t at the boundary in a way that the scalogram signature of the
even for some nonlinedt(z) that are sufficiently local, e.g., boundary orx’ is a rounded step, as close as possible in the
guadratic envelope, or spectral density for frequendies least-squares sense to the original sharp step. The pseudoin-
>1/(t,—t,). verse cannot create a click or a pop at the boundary, because
To show how the frequency content of the extractedthat would require a peak on the scalograimA peak at the
pulses evolves over time, a spectrogram-like display is prestep location implies scalogram values with magnitude
sented in Fig. 10. The formant pulses obtained from thegreater than those on either side of the step, which would
ISIDWT were zero padded to 1536-point length, and thenever be the solution that minimiz&s,(x,,—x,)2. It should
energy spectral density of each pulse was calculated via thee noted that absence of editing artifacts is no guarantee of
FFT with no further windowing. For comparison, a conven-realism, since abrupt starts or transitions between sounds of
tional spectrogram of the original kaze waveform is shown indifferent character may sound false or even unpleasant. Even
Fig. 11. This and subsequent spectrograms were prepared, the reliable and automatic prevention of editing artifacts
with a 512-point Hanning window shifted in 134-point steps,in sound waveforms is a substantial convenience.
and each windowed segment was zero padded to 1536-point A common application of PSOLA is changing the rate of
length before calculating the FFT. a spoken word without changing the pitch or the frequency
This waveform segmentation procedure is a unique andontent of the formants, i.e., to simulate the same speaker
powerful capability of the SIDWT/ISIDWT. In addition to pronouncing the same word, but speaking more rapidly or
the analysis methods shown above, it has broad utility fomore slowly. To illustrate the sound waveform editing capa-
copying, cutting, and pasting sections of sound waveformshilities of the SIDWT/ISIDWT, the rate of the example
Working with the scalogranx=T(z) rather than the sound waveform kaze has been halved and doubled. The first step
waveformz has two advantages. First, for all but the simplestin the procedure is to synchronize the analysis with the glot-
waveforms, it is usually easier to find and delineate featuretal pulses whenever possible. The spectrogram-like display
of interest inx. Second, cutting segments fronand joining  shown in Fig. 10 was created by identifyil time instants
them to makev doesn't result in audible clicks and pops. In t;. Thet; in the voiced regions were located at moments of
conventional waveform editing, such clicks and pops argelative quiet in the 1- and 2-kHz bands, and thén the
caused by steps at boundaries where the final value in onevoiced regions were merely spaced at regular intervals.
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8 kHz slightly by a mild low-frequency artifact, but the realism of
the double-rate example was excellent.

& kHz - A L IV. CONCLUSIONS

i g | Procedures for calculating and inverting the SIDWT are

! described above via equatioiiSec. IIA) and as a block

4 kHz L diagram(Sec. Il B). A self-contained proof that the ISIDWT

I (L is the pseudoinverse of the SIDWT is given in the Appendix.
I The new SIDWT/ISIDWT algorithm described here is math-

5 kHz - i , i | ematically equivalent to the stationary wavelet transform and
“,Wm" the maximal overlap discrete wavelet transform, and is easier
u ”H alill . . . . . .
to implement efficiently in an array-oriented mathematical
A i i i Y scripting language. The recorded speech example discussed
z T T T L L — H H H _
s o 0.d e 0E 1. in Sec. Il demonstrates that the SIDWT is useful for visual

ization and analysis of complicated, nonstationary, acoustic
waveforms. The SIDWT provides a clear picture of the
FIG. 12. The spectrogram of the Japanese word “kaze” rate-changed tgounds excited and modulated by the opening and closing of
half-speed. the glottis in speech. The SIDWT is complementary to the
STFT for visualization, as they provide optimal views of
different aspects of the waveform. The SIDWT and ISIDWT
together provide the capability to segment and reconstruct
the sound from each individual glottal period for further vi-
sualization and analysis. Examples of half-rate and double-
rate speech modification demonstrate the potential for the
SIDWT/ISIDWT to prove useful for applications that cur-
rently use one of the PSOLA family of techniques.

Time (s)

TheM time instantd; were used as delimiters to segment the
scalogranmx into a set ofM — 1 piecesy;. The segmenty;

correspond to individual glottal pulses, similarly sized sec
tions of unvoiced speech, or silence. The notatjpromits

scale levels for simplicity, but all scale levels are implicitly
included. If all segmenty; are concatenated in the proper
order, /1,Y>,....¥Ym—1) =X, the original scalogram is recov-

ered. The speech rate was halved by simply duplicating eacshtra'-rl;zz k\)’isz?;izigogrf:g%?”ti;iss r?(;etrrl]enSIS'ch Te?ere gogl-et
yi in the proper sequencey{,y1,¥2.Y2:---Ym—1,Ym—1) ined by the propert underlying di wav

—w. The half-rate waveformz’ was then obtained by transform. In particular, the single-octave bandwidth result-
S(w)=z'. A conventional spectrogram of the half-rate ing from dyadic wavelet scaling means that the tonal content

waveform is shown in Fig. 12. The speech rate was double8f sound waveforms cannot be observed in detail. In certain
by concatenating the even-numbered Segment§ituations, some tonal information can be extracted by analy-

(Y2,Y4.Ye,...)=X, With S(W)=z' as before. The even- SIS of sum and difference frequencies. The relative lack of

numbered segments were chosen because they included fgduency-domain information provided by the SIDWT is

“k” sound: the doubled results from the odd-numbered Seg_not really a loss, however; it is a trade-off, which enables the

ments sounded like “aze.” A conventional spectrogram of SIDWT to provide more detailed time-domain information.

the double-rate waveform is shown in Fig. 13. Informal lis- For the same reason, segmentation and reconstruction opera-

tening tests found that both examples were clear and undef'ons provide more detailed control in the time domain than

standable. The realism of the half-rate examples was marref the frequency domain. The most productive way to use the
SIDWT/ISIDWT will likely prove to be in concert with the

STFT and other frequency-domain methods, e.g., the pitch-
% kHz synchronous spectrogram-like display presented in Sec. lll.
The SIDWT and ISIDWT are based on purely mathematical
principles, and have no inherent connection to psychoacous-
6 kHz L tics, e.g., two sound waveforms that are “close” in the sense
of human perception of sounds are not guaranteed to be close
in the sense of the standard Euclidean norm in redundant
wavelet coefficient space. The applicability of the SIDWT/

4 kHz - . - -

ISIDWT to acoustics can only be judged empirically. The

experience to date, while subjective, and limited in scope to

o the field of automotive sound quality and the two rate-
2 kita e i changing examples presented here, has been consistently en-
. m I couraging. Possible speech-related applications include as-

e m.r pects of automated speech recognition and simplified

0 kHz S L B S B intonation/formant visualization. Editing sound recordings

0.00 005 O-Ti_o (0-15 0.20  0.25 (cutting and pasting sectionsvith the SIDWT/ISIDWT is
ime =]

) especially convenient since the audible clicks and pops pro-
FIG. 13. The spectrogram of the Japanese word “kaze” rate-changed tgluced at section bounda:”es by simple time-domain edI.tI.ng
double speed. procedures are automatically prevented. The rate-modified
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speech examples presented here show promise, and the 1
SIDWT/ISIDWT may prove useful for other applications + Ra(Yj-1*7), R2( 7j-1*7)
that currently employ PSOLA-based methods. Given the ‘f

broad scope of research in acoustics, there are many potential 1 1
applications for the SIDWT/ISIDWT in visualization, ma- +<—R2(yj_1*U),—R2( ﬂj—l*U)>- (A4)
nipulation, and analysis of nonstationary sound waveforms. V2 V2

Using the fact thaR, is unitary, and applying Parseval’s
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1 1

ERz(Yj—l*i), ERz(ﬂj—1*3)>
1 ~ ~
§<YJ—1*UJIJ—1*U>

e
=5N 2 (V- D) (), (75— 1#T) ()
APPENDIX: PROOF OF THEOREM 1

Z|'_‘

Our strategy is to prove thdt as defined in Sec. IlAis
an isometry and tha$ is the adjoint ofT. Theorem 1 then
follows from a well-known linear algebra fact. According to -1
the definition ofT in Sec. Il A, we define the mappings =5N 20 |§(n)|2<9j,1(n),?7,-,1(n)>. (A5)

oy

T1:14(Zy) 2 2 (X1,Y1) €1 2(Zon), (A1)
and for each stage=2,...p

2 (91-1()B (), 7 -1(N)B(N))

The same equality holds far instead ofv. Making use
of the known identityo (n) = ¥* (n), we get

T 02(Zin) 2 (Xgs oo Xi—1,Yi - 1)
j iN 1o Xj-10Yj-1 2 2 - N
) [o(n) [+ [G(n)[2=15(n)|?+[a(m)[*=2, (A6)
= (X, X - 1,X)Y)) €15 Z 1 1n) - (A2) . ) . )
. 020 20 since the system matrixA(n) is unitary for all
Additionally, letR:1“(Zp 1 1)n)—=>1"(Zp 1 1)n) be the reorder-  ,_q  N—1. This finishes the proof as follows:
ing given by
Tz, Tizo)=((X1,... Xj—1), (&1, .-, -
ROX X - Xp Yp) = (R a) R0 - Tz Tiz2) = o D{Ereens-0))
RN/ZD(Xp)vRNIZP(yp))- (A3) + — E <y] 1 (n),7 nj- 1(n)>
Note that thep-stage SIDWT ofze 1%(7Z,) is then given by
T(2)=RT, --T,T1(2). Since convolution and reordering are =((Xgs.o- Xj—1), (€1, €2 1))
linear maps, eachi; is linear. ThereforeT is a linear trans-
formation. +£<§/- Mi_1)
We will now show thatT is an isometry, i.e., that NI

(T2, T2)=(24,2,) for all z;,z,1%(Zy). To avoid consid-
ering the case 1 separately, in the following let

:<(Xll"'vxj—1)!(§1!---1§j—l)>

(X1,X0,Y0) =Yo=2 and (1,xo) =0. Yj-1.m-1)

Theorem 3The transformT is an isometry. _

Proof: We show that for each=1,...p the mappingT; =((XgoeeXj-13Yj- 1) (€1 -1, -1))
is an isometry. Since the reordering operdds unitary, we =(2,,2,).00 (A7)
have (Rw; ,Rw,) =(wy,wy) for all wy, woel?(Zpi1n). _ _ N ,

As a composition of isometried, is then an isometry. ~ Given a linear mapping:1(Zy) —1%(%), mkeN, the

Let je{l..p}, z=(Xy,...X_1,yj-1) and z, adjoint operator
:(511---a§j71177j71)' Then LT:lz(Zk)—>|2(Zm), (A8)
<szl!Tj22>

is given by the unique mapping defined by the property
1 1 (Lz,w)=(z,L"w) for all ze|%(Z,), wel?(Z). The matrix

= xl,...,xj,l,FRz(yj,l*E),‘7R2(yj,l*ﬁ) , corresponding td_" is just the conjugate transpose of the
2 2 matrix corresponding td.

1 1 We will show that the ISIDWTS s the adjoint operator
(§1,---,§j—1, —Ry(7j-1*T), — Ryl 77;—1*3)) > of T. To do so, we first prove a lemma.
V2 V2 Lemma Let x,y,v €12(Zy). Then
=<(X1,...,Xj,l),(gl,...,fj,l» <y*5lx>:<y,x*v>_ (A9)
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Proof: Using Parseval's equality and again the identityThe same equation holds farinstead ofv. So, we conclude

7(n)=0*(n), we get
N—-1
n=

1 A
(y¥ D)= 2 J(mo(m* ()

N—-1
= HZO§/(n)6*(n)>”(*(n)=(y,x*v>, (A10)

Zl -

which proves that the adjoint of the convolution withs the
convolution with the conjugate reflectiah O

Following the definition ofS in Sec. Il A, we define
mappings S; as follows: Let w=(w;,W;,....Wj;4)
el%(Z;+1n), wherew; el?(Zy) for all i=1,...j+1. Then,
for all j=1,...p, we define

S 3|2(Z(j+1)N)BWH(Wl,---,ijl,Uj) € |2(ZjN),

(A11)

where

1
77j:_2(RN/2(W1+1)*U+RN/2(WJ')*U)' (A12)

7
Noting thatS=S,;S, --S,R™*, whereR™! is the inverse of
the reordering operator as defined in EA3), we can now
prove the following theorem.

Theorem 4S=TT.

Proof: SinceT=RT,---T,T,, it follows from the defi-
nition of the adjoint that T'=T{T}--TIR'

that

(Tijz,w) =((X1,X2,. ... Xj—1),(Wq,Wp,... Wj_1))

1
1 Yj-1, 5(Rg(wj)*v+Rg(Wj+1)*U)

={ (X1, X2, Xj—1,Yj-1)s| W1, Wo,... . Wj_q,
1
E(R%(Wj)*v"_R%(WjJrl)*u)
=(z,Sjw).0] (A15)

We have shown thaBis given byT™. It is well known
that a 1-1 linear map has a unique pseudoinverse given by
(LTL) LT, Here, T is not only 1-1 but also an isometry,
which is equivalent taT'T=id|>;,. Thus, the pseudoin-
verse ofT is given byT'=S, which proves Theorem 1.

Instead ofu andv in the definition ofS, we can use any
aandb in 12(Z,), satisfying the condition

a(n)o* (n)+b(n)o*(n)=2, (A16)

for all n=0,...N—1 to obtain a mapping which is still an

inverse of T on the image ofl. SinceS is computed using
convolutions in the same way & the number of multipli-

cations required to compufis the same as fd. However,

=TT} TR, where we made use of the fact that the since ther&' =T, S is no longer the pseudoinverse, i.e., we

adjoint of the unitary operatdR is its inverseR™ 1. Hence,
the theorem follows once we show thiliT:Sj for all

j=1,..p.

We need to prove that(T;z,w)=(z,Sw) for
all ZEIZ(ZJ'N) and WElZ(Z(j+1)N). Let V4
=(X1,X2,...Xj—1,Yj—1) andw=(Wq,W;,...,Wj,1). Then

1 ~
(Tizw)= X1,Xz,---,Xj—lyERz(yjfl*U):

1
_RZ(yj—l*u)> (Wg,Wa, . W)

V2
:<(X1,X2,...,Xj,l),(Wl,Wz,...,Wj,l)>
1 ~
+ %Rz(yj'—l*v),wj
1 ~
+ ERz(ijl*U),Wjﬂ (A13)
Note that by the lemma
1 ~ 21
5R2(YJ—1*U),WJ' = yj—l*U,ERg(Wj)
1
= W—LER%(WQ*U
(A14)
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lose the notion of “closeness” in the least-squares sense.
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