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Abstract

A novel continuation method is presented for solving the inverse medium scattering problem of the Helmholtz equa-
tion, which is to reconstruct the shape of the inhomogeneous medium from boundary measurements of the scattered field.
The boundary data is assumed to be available at multiple frequencies. Initial guesses are chosen from a direct imaging algo-
rithm, multiple signal classification (MUSIC), along with a level set representation at a certain wavenumber, where the
Born approximation may not be valid. Each update via recursive linearization on the wavenumbers is obtained by solving
one forward and one adjoint problem of the Helmholtz equation.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Consider the Helmholtz equation in two dimensions
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DutðxÞ þ k2ð1þ qðxÞÞutðxÞ ¼ 0; x 2 R2; ð1:1Þ

where ut is the total electric field, k is the wavenumber, and q(x) > �1 is the scatterer with a compact support.
Assume that the scatterer is illuminated by plane waves
uiðxÞ ¼ eikx�d;
where d is the propagation direction. Evidently, such incident waves satisfy the homogeneous equation
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Dui þ k2ui ¼ 0: ð1:2Þ

The total field ut consists of the incident field ui and the scattered field us:
ut ¼ ui þ us:
It follows immediately from Eqs. (1.1) and (1.2) that the scattered field satisfies
Dus þ k2ð1þ qÞus ¼ �k2qui: ð1:3Þ

In addition, the scattered field is required to satisfy the following Sommerfeld radiation condition
lim
r!1

ffiffi
r
p ou s

or
� ikus

� �
¼ 0; r ¼ jxj;
uniformly along all directions x/jxj.
Given the incident field ui, the direct scattering problem is to determine the scattered field us for the known

scatterer q(x), which has been well studied [12]. The present paper focuses on the inverse scattering problem.
For simplicity, suppose that the scatterer takes a constant value inside the inhomogeneities of the region. The
inverse medium scattering problem is to determine the inhomogeneities from the measurements of the scat-
tered field us, for the given incident field ui. More specifically, for a given constant q0, the inverse problem
is to reconstruct a compact domain X such that
qðxÞ ¼
q0 for x 2 X;

0 for x 2 R2 n X:

�

Let D, containing the compact support of the scatterer q(x), be a bounded domain in R2 with boundary oD.
The scattered field is measured at xj 2 oD, j = 1, . . .,m.

The inverse medium scattering problems arise naturally in diverse applications such as radar, sonar, geo-
physical exploration, medical imaging, and nondestructive testing [12]. There are two major difficulties asso-
ciated with these inverse problems: the ill-posedness and the presence of many local minima. To overcome the
difficulties, stable and efficient regularized recursive linearization methods are developed in [5,7,10,11] for solv-
ing the two-dimensional Helmholtz equation and the three-dimensional Maxwell’s equations [3,4] in the case
of full aperture data. We refer the reader to [2,6] for limited aperture data cases. Roughly speaking, these
methods start from the weak scattering, where the Born approximation may be used to produce initial guesses.
Updates are obtained by a continuation approach on the wavenumbers or on the spatial frequencies. For
related results on the inverse scattering problem, the reader is referred to [13,19,16,18,21–23] and reference
therein. Although the methods yield stable and accurate computational results, they nonetheless rely on the
weak scattering assumption for initial guesses. Unfortunately, as indicated in computational experiments, if
the weak scattering assumption is violated, for example when the starting frequency is not sufficiently low,
the Born approximation might lead to an initial guess with which the continuation approach would converge
slowly or even diverge. To resolve this difficulty, we propose in this work a continuation approach starting
from an initial guess via the MUSIC algorithm and a level set representation at a fixed wavenumber, where
the Born approximation may not be valid. The method requires multiple frequency scattering data, and the
recursive linearization is a continuation procedure on the wavenumbers.

The paper is organized as follows. An initial guess is derived from the MUSIC algorithm and a level set
representation in Section 2. In Section 3, a regularized recursive linearization method is proposed. Numerical
examples are presented in Section 4. The paper is concluded with some general remarks in Section 5.

2. Initial guess

In this section, we discuss how to generate an initial guess for the proposed recursive linearization method.
The MUSIC algorithm for extended scatterers proposed in [20] is used to generate an image for the shape of
the scatterer. The MUSIC algorithm for point scatterers may be found in [15]. See also [1] for an up-to-date
discussion on various types of mathematical imaging methods. The image may be further converted into a
level set representation for the scatterer through image processing.
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2.1. The MUSIC algorithm for extended scatterers

Consider plane incident waves illuminating from m evenly spaced angles with a certain wavenumber. The
scattered fields are recorded on oX with the same m evenly spaced angles. The data collected forms an m-by-m
matrix, denoted by P, which is known as the response matrix. For simplicity of discussion, here we have the
incident plane wave directions coincide with the recorded scattered field directions. However, the MUSIC
algorithm and our continuation method to be discussed later can both handle the general case where the num-
ber of incident plane wave directions is different from the number of recorded scattered field directions and the
directions do not coincide.

Let P = URVH be the singular value decomposition of the response matrix. Define the illumination vector
gðxÞ ¼ ½eikx�d1 ; . . . ; eikx�dm �T;

where dj are the propagation directions of incident waves and x is any point in the space. The MUSIC imaging
function may be introduced:
IðxÞ ¼ 1

kgðxÞk2
2 �

Ps
‘¼1jgðxÞ

H
u‘j2

; ð2:1Þ
where u‘ is the ‘th column of the matrix U and the number of singular vectors s that spans the signal space is
determined by the resolution analysis based thresholding algorithm in [20].

The imaging function (2.1) provides an image for the boundary of the scatterer, that is, the imaging func-
tion has relatively large values on the boundary of the scatterer compared with its values inside or outside the
scatterer. Unfortunately, for any given grid point, the imaging function itself does not offer any clear indica-
tion whether the grid point is inside or outside the scatterer. To provide an initial guess q for the scatterer, it is
crucial to distinguish whether a grid point is inside or outside the scatterer, i.e., the support of q. This can be
accomplished by converting the imaging function to a level set representation of the scatterer via image
processing.

2.2. Image processing and the level set function

In this section, we describe an image processing to convert the image for the boundary of the scatterer into
a level set representation, which leads to an initial guess.

There are many edge detector algorithms in the literature [8,9,17]. Here, we employ a relatively simple
approach. Starting with a large domain enclosing the scatterer, we minimize the cost functional
CðoXÞ ¼
Z

oX
f ðxÞds; ð2:2Þ
where f(x) = 1 if the imaging function I(x) is larger than some threshold and f(x) = 100 otherwise. In other
words, on the boundary of the scatterer, f is small. It makes the curve shrink to the boundary of the scatterer
by minimizing the functional (2.2). In fact, the function f acts as the weight for the curvature-based force in the
curve evolution.

Let /(x) be a level set function that characterizes the curve oX, i.e., /(x) = 0 on oX, /(x) > 0 outside X; /
(x) < 0 inside X. The cost functional can be formulated as [28]
CðoXÞ ¼ W ð/Þ ¼
Z

R2

f ðxÞdð/Þjr/jdx; ð2:3Þ
where d is the Dirac delta function. Taking the derivative with respect to the evolution time t, we have
dW
dt
¼
Z

R2

d0ð/Þjr/j/t þ dð/Þ r/
jr/j � rð/tÞ

� �
f ðxÞdx: ð2:4Þ
The level set formulation for shape evolution with the normal velocity v(x) is [24]
/t ¼ �vðxÞjr/j: ð2:5Þ
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By substituting (2.5) into (2.4) and using d 0(/)$/ = $(d(/)), we obtain
dW
dt
¼ �

Z
R2

vðxÞrðdð/ÞÞ � r/þ dð/Þ r/
jr/j � rðvðxÞjr/jÞ

� �
f ðxÞdx: ð2:6Þ
Although the evolution velocity is only defined on the moving curve initially, it can be extended by a con-
stant normal extension away from the curve. Since $/ is in the normal direction, we have $v Æ $/ = 0. There-
fore, Eq. (2.6) can be rewritten as
dW
dt
¼ �

Z
R2

rðdð/ÞÞ � r/þ dð/Þ r/
jr/j � rðjr/jÞ

� �
vðxÞf ðxÞdx: ð2:7Þ
It follows from the divergence theorem on the first term of the right-hand side of (2.7) that
dW
dt
¼
Z

R2

dð/Þ r � ðvðxÞf ðxÞr/Þ � r/
jr/j � rðjr/jÞvðxÞf ðxÞ

� �
dx: ð2:8Þ
Simple calculations from the product rule yield
dW
dt
¼
Z

R2

dð/Þjr/jvðxÞr � f ðxÞ r/
jr/j

� �
dx; ð2:9Þ
which can be written as a curve integral
dW
dt
¼
Z

oX
vðxÞr � f ðxÞ r/

jr/j

� �
ds: ð2:10Þ
Let vðxÞ ¼ �r � f ðxÞ r/
jr/j

� �
. By substituting it into (2.5), we arrive at the gradient flow for the level set

function
/t ¼ jr/jr � f ðxÞ r/
jr/j

� �
: ð2:11Þ
By using such a normal velocity, we always have dW/dt < 0, i.e., the cost functional decreases monotonically
in the shape evolution. In practice, a local level set method [25] with reinitialization using a time marching
scheme [26] is employed for solving (2.11).

Starting with a box containing all scatterers, the evolution will stop at the convex envelope of the shapes for
scatterers in the MUSIC imaging result. The level set function representing the shape of the envelope may be
selected as an initial guess.
3. Recursive linearization

Once an initial guess is obtained as described in the previous section, we perform recursive linearization to
improve the reconstruction for the scatterers: suppose now that the scatterer q~k has been recovered at some
wavenumber ~k, and that the wavenumber k is slightly larger that ~k. We wish to determine qk, or equivalently,
to determine the perturbation
dq ¼ qk � q~k:
For the reconstructed scatterer q~k, we solve at the wavenumber k the forward scattering problem
D~us
i þ k2ð1þ q~kÞ~us

i ¼ �k2q~kui
i; ð3:1Þ
where ui
i is the incident wave with the incident angle di, i = 1, . . .,m. For the scatterer qk, we have
Dus
i þ k2ð1þ qkÞus

i ¼ �k2qkui
i: ð3:2Þ
Subtracting (3.1) from (3.2) and omitting the second order smallness in dq and in dus
i ¼ us

i � ~us
i , we obtain
Ddus
i þ k2ð1þ q~kÞdus

i ¼ �k2dqðui
i þ ~us

iÞ: ð3:3Þ
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Given a solution us
i of (3.2), we define the measurements
Mus
iðxÞ ¼ ½us

i ðx1Þ; . . . ; u s
i ðxmÞ�T: ð3:4Þ
The measurement operator M maps the scattered fields to a vector of complex numbers in Cm, which consists
of point measurements of the scattered field at xj, j = 1, . . .,m.

For the scatterer qk and the incident field ui
i, we define the forward scattering operator
Sðqk; u
i
iÞ ¼ Mus

i : ð3:5Þ

It is easily seen that the forward scattering operator Sðqk; u

i
i Þ is linear with respect to ui

i but nonlinear with
respect to qk. For simplicity, we denote Sðqk; u

i
iÞ by Si(qk). Let S0iðq~kÞ be the Fréchet derivative of Si(qk) and

denote the residual operator
Riðq~kÞ ¼ Mðdus
iÞ: ð3:6Þ
It follows from the linearization of the nonlinear equation (3.5) that
S0iðq~kÞdq ¼ Riðq~kÞ: ð3:7Þ

Applying the Landweber iteration [14] to the linearized equation (3.7) yields
dq ¼ bS0iðq~kÞ
�Riðq~kÞ; ð3:8Þ
where b is a positive relaxation parameter and S0iðq~kÞ
� is the adjoint operator of S0iðq~kÞ.

Let Riðq~kÞ ¼ ½fi1; . . . ; fim�T 2 Cm. Consider the adjoint problem
Dwi þ k2ð1þ q~kÞwi ¼ �k2
Xm

j¼1

fijdðx� xjÞ: ð3:9Þ
In order to compute the correction dq, we need an efficient way to compute S0iðq~kÞ
�Riðq~kÞ, which is given by the

following theorem. See [6] for a complete proof.

Theorem 3.1. Given residual Riðq~kÞ, there exists a solution wi of (3.9) such that
½S0iðq~kÞ
�Riðq~kÞ�ðxÞ ¼ ðui

iðxÞ þ eus
i ðxÞÞwiðxÞ; ð3:10Þ
where the overline denotes the complex conjugate, ui
i is the incident wave, and ~us

i is the solution of (3.1).

Using the above result, Eq. (3.8) can be written as
dq ¼ bðui
i þ ~us

i Þwi: ð3:11Þ

Thus, for each incident wave, we solve one forward problem (3.1) and one adjoint problem (3.9). Once dq is
determined, qk is updated by q~k þ dq. After completing the mth sweep, i.e., all incident directions, we get the
reconstructed scatterer qk at the wavenumber k.

4. Numerical experiments

Three numerical examples are presented to illustrate the performance of the proposed method. Here, the
scattering data is generated by numerical solution of the forward scattering problem, which is implemented
by using the finite element method with a perfectly matched layer technique [27].

The scattered fields are measured on the boundary x 2 oD, where D = [�5, 5] · [�5, 5], and the incident
angle hi = i2p/20, i = 1, . . ., 20. The constant q0 inside and the relaxation parameter b are taken to be 1 and
0.01/k2, respectively. To test the stability, some relative random noise is added to the data, i.e., the scattered
field takes the form
usjoD :¼ ð1þ r randÞusjoD;
where rand gives uniformly distributed random numbers in [�1, 1] and r is a noise level parameter taken to be
0.05 in our numerical experiments.

The initial guesses are obtained via the MUSIC algorithm and a level set representation at the wavenumber
k = 1. This is chosen to be a low frequency such that the MUSIC algorithm gives a robust estimate. The
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largest wavenumber used in the recursive linearization algorithm is k = 6. The step size for wavenumbers is
0.5, i.e., the number of iteration along wavenumbers is 10. The computational cost is affordable.

Example 1. Reconstruction of a five-leave shape scatterer as shown in Fig. 1a. Fig. 1b exhibits the initial
guess as a level set function obtained via image processing for the MUSIC imaging function while Fig. 1c
shows the final reconstruction.

Example 2. Reconstruction of a five-leave shape scatterer with a disc of radius 1 removed, Fig. 2a. Fig. 2b
shows the initial guess as a level set function while Fig. 2c presents the final reconstruction.

Example 3. Reconstruction of three isolated kite shape scatterers as shown in Fig. 3a. Fig. 3b shows the
initial guess as a level set function while Fig. 3c exhibits the final reconstruction.

From these examples, it is evident that the MUSIC algorithm, though a fast direct algorithm, does not pro-
vide detailed shape information from the initial frequency data. In particular, it cannot capture the holes for
multiply connected scatterers. However, it does provide reasonable initial guesses that lead to excellent final
reconstructions through recursive linearization.

One might be tempted to use higher frequency for the initial guesses so that the MUSIC imaging function
gives more details. However, the higher frequency we use as the initial frequency, the less robust the recon-
struction is.
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Fig. 1. Example 1: (a) the true scatterer; (b) the initial guess; and (c) the final reconstruction.
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Fig. 2. Example 2: (a) the true scatterer; (b) the initial guess; and (c) the final reconstruction.
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Fig. 3. Example 3: (a) the true scatterer; (b) the initial guess; and (c) the final reconstruction.
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5. Concluding remarks

We have presented a continuation method with respect to the wavenumbers. Starting from an initial guess
via the MUSIC algorithm and a level set representation, each update is obtained by solving essentially two
forward scattering problems. The proposed method is accurate, efficient, and robust: compared with the direct
imaging methods such as the MUSIC algorithm and the linear sampling method, the proposed method is
capable of imaging multiply connected medium; Compared with the iterative imaging methods, the proposed
method starts with an initial guess with a frequency where Born approximation may not be valid, therefore
lower frequency iterations would not be needed in the computation; Numerical experiments show the robust-
ness of the method with respect to noisy data.

Furthermore, the method has the potential to solve the general inverse medium problem. For simplicity, we
assumed that the inhomogeneity q takes a given constant value in its support. In fact, as long as a reasonable
guess for the function q is given, the method is capable of reconstructing q that is not a constant. Unfortu-
nately the MUSIC imaging algorithm is unable to provide a guess for the function value of q: it barely pro-
vides a guess for the support of q.

A related ongoing project is to investigate the inverse obstacle scattering problem, which reconstructs the
interface of the scatterer (obstacle) in both two and three dimensions.
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