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Numerical solution of inverse scattering for
near-field optics
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A novel regularized recursive linearization method is developed for a two-dimensional inverse medium scat-
tering problem that arises in near-field optics, which reconstructs the scatterer of an inhomogeneous me-
dium located on a substrate from data accessible through photon scanning tunneling microscopy experi-
ments. Based on multiple frequency scattering data, the method starts from the Born approximation
corresponding to weak scattering at a low frequency, and each update is obtained by continuation on the
wavenumber from solutions of one forward problem and one adjoint problem of the Helmholtz equation.
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Scattering problems are basic in many scientific ar-
eas such as radar and sonar, geophysical exploration,
and medical imaging [1,2]. However, there is a well-
known resolution limit to the sharpness of details
that can be observed by conventional far-field optical
microscopy, roughly one half of the wavelength, re-
ferred to as the diffraction limit [3]. Near-field optics
is an effective approach to break the diffraction limit
and obtain images with subwavelength resolution,
which has diverse applications, including near-field
optical microscopy, nondestructive imaging of small-
scale biological samples, and nanotechnology [4]. It
has been observed experimentally that near-field op-
tics has superresolving capability. To theoretically
understand this capability, it is necessary to solve the
inverse scattering problem. This work is concerned
with the mathematical modeling and numerical solu-
tion for the inverse scattering of an important experi-
mental modality in near-field optics, photon scanning
tunneling microscopy (PSTM). In this modality, as
seen in Fig. 1, a sample is illuminated from below by
a plane incident wave, and the scattered wave is de-
tected by passing a tapered fiber probe over the
sample in the near-field zone [5].

Consider a model of PSTM with a sample located
on a homogeneous substrate, as shown in Fig. 1. The
substrate is assumed to be relatively thick so that
only one face needs to be considered, thus defining an
interface between two half-spaces. The index of re-
fraction in the lower half-space (substrate) has a con-
stant value n0, and the index of refraction in the up-
per half-space varies within the domain of the
sample but otherwise has the value of unity. The
sample is illuminated from below (transmission ge-
ometry) by a time-harmonic plane wave, with wave-
number k. Throughout, by assuming nonmagnetic
materials and transverse electric polarization, the
model Maxwell equations reduce to the two-
dimensional Helmholtz equation:

�u + n2k2�1 + q�u = 0, �1�

where u is the total field, q is the sample permittivity,

and
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n�x� = �1 for x2 � 0,

n0 for x2 � 0.

Denote the reference field uref as the solution of the
homogeneous equation:

�uref + n2k2uref = 0, �2�

which may be analytically solved [6].
The total field consists of the reference field uref

and the scattered field us:

u = uref + us. �3�

It follows from Eqs. (1)–(3) that the scattered field
satisfies

�us + n2k2�1 + q�us = − k2quref. �4�

In addition, the scattered field is required to satisfy a
radiation condition at the infinity [7].

The inverse scattering problem is to reconstruct the
sample permittivity q from the measurements of the
scattered field us, for the given reference field uref.
The scattered field is measured in the constant
height configuration by an idealized point detector at
xj , j=1, . . . ,m. In addition to nonlinearity and ill-

Fig. 1. (Color online) Photon scanning tunneling

microscopy.
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posedness, two difficulties arise from the inhomoge-
neous background medium and the use of limited ap-
erture data. The inverse problem with limited
aperture is challenging, since without full aperture
measurements, the ill-posedness and nonlinearity of
the inverse problem become more severe. Initial re-
sults in this direction have been reported in the case
of three-dimensional inhomogeneous media [8]. The
basic idea is to develop an analytical solution tech-
nique for solving the linearized inverse scattering
problem in the regime of the weak scattering ap-
proximation. Numerical solution of the full nonlinear
inverse problem is at present completely open.

The present work is to develop a novel regularized
recursive linearization method for solving the fully
nonlinear inverse problem. This method requires
multiple frequency scattering data, and the recursive
linearization is obtained by continuation along the
wavenumber k. It first solves a linear equation via
the Born approximation at the lowest wavenumber.
Updates are subsequently obtained by using a se-
quence of increasing wavenumbers. At each iteration,
one forward problem and one adjoint problem of the
Helmholtz equation are solved. We refer the reader to
[9] for a complete description of the algorithm and re-
lated analysis. See also [10,11] for related stable and
efficient recursive linearization methods for solving
the two-dimensional Helmholtz equation and the
three-dimensional Maxwell equations in the case of
full aperture data. A homotopy continuation method
with limited aperture data but in a homogeneous
background medium may be found in [12].

The fundamental solution of the Helmholtz equa-
tion in a two-layered background medium in R2 sat-
isfies

�G�x,y� + n2�x�k2G�x,y� = − ��x − y�, �5�

where � is the Dirac delta function. The solution can
be obtained from the Fourier transform together with
continuity conditions [6,13].

Using this fundamental solution, we obtain from
Eq. (4) that the scattered field satisfies the
Lippmann–Schwinger integral equation:

us�x� = k2�
D

G�x,y�q�y��uref�y� + us�y��dy. �6�

When the wavenumber k is small, the scattered field
is weak [14]. By dropping the scattered field on the
right-hand side of Eq. (6) under the weak scattering,
we obtain the linearized integral equation

us�x� = k2�
D

G�x,y�q�y�uref�y�dy, �7�

which is the Born approximation. In practice, the lin-
ear integral equation (7) is implemented by using the
method of least squares with the Tikhonov regular-
ization [15], which leads to a starting point for our re-
cursive linearization method.

When the wavenumber k is small, the Born ap-
proximation allows a reconstruction of those low Fou-
rier modes for the function q�x�. We now describe a

procedure that recursively determines a sequence of
approximations qk at k=kl for l=1,2, . . . with increas-
ing wavenumber. Suppose now that an approxima-
tion of the scatterer, qk̃, has been recovered at some
wavenumber k̃ and that the wavenumber k is slightly
larger that k̃. We wish to determine qk, or equiva-
lently, to determine the perturbation

�q = qk − qk̃.

For the reconstructed scatterer qk̃, we solve at the
wavenumber k the forward-scattering problem

�ũi
s + n2k2�1 + qk̃�ũi

s = − k2qk̃ui
ref, �8�

where ui
ref is the reference field corresponding to the

ith incident wave, i=1, . . . ,p.
For the scatterer qk, we have

�ui
s + n2k2�1 + qk�ui

s = − k2qkui
ref. �9�

Subtracting Eq. (8) from (9) and omitting the second-
order smallness in �q and in �ui

s=ui
s− ũi

s, we obtain

��ui
s + n2k2�1 + qk̃��ui

s = − k2�q�ui
ref + ũi

s�. �10�

Given a solution ui
s of Eq. (9), we define the mea-

surements

Mui
s�x� = �ui

s�x1�, . . . ,ui
s�xm��T. �11�

The measurement operator M is well defined, which
maps the scattered field to a vector of complex num-
bers in Cm.

For the scatterer qk and the reference field ui
ref, de-

fine the forward-scattering operator

Si�qk� = Mui
s. �12�

Let Si��qk̃� be the Fréchet derivative of Si�qk� and de-
note the residual operator

Ri�qk̃� = M��ui
s�. �13�

It follows from the linearization of the nonlinear
equation (12) that

Si��qk̃��q = Ri�qk̃�. �14�

Applying the Landweber iteration [15] to the linear-
ized equation (14) yields

�q = �Si��qk̃�*Ri�qk̃�, �15�

where � is a positive relaxation parameter and
Si��qk̃�* is the adjoint operator of Si��qk̃�.

To compute the correction �q, it is crucial to com-
pute Si��qk̃�*Ri�qk̃�. The following adjoint state
method is developed to serve this purpose [9]. Given
residue Ri�qk̃�= ��i1 , . . . ,�im�T�Cm, there is a function
�i satisfying the adjoint equation

��i + n2k2�1 + qk̃��i = − k2�
j=1

m

�ij��x − xj� �16�
with a radiation condition, such that
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Si��qk̃�*Ri�qk̃� = �ui
ref + ũi

s��i, �17�

where the overline denotes the complex conjugate.
Consequently, we can rewrite Eq. (15) as

�q = ��ui
ref + ũi

s��i. �18�

Thus, for each incident wave, we solve one forward
problem (8) and one adjoint problem (16). Once �q is
determined, qk is updated by qk̃+�q. After completing
the pth sweep, we get the reconstructed scatterer qk
at the wavenumber k.

To illustrate the performance of our algorithm, we
present a numerical example. The scattering data
are obtained by numerical solution of the forward-
scattering problem, which is implemented by using
the finite element method with a perfectly matched
layer technique [16].

The index of refraction n0=2 in the lower half-
space and the relaxation parameter � is taken to be
0.1/k2. The scattered fields are measured on xj
= �x1j ,1.0� ,x1j=−0.5+ j /32, j=0, . . . ,32, and the inci-
dent angle �i=−2	 /5+ i4	 /50, i=0, . . . ,8. Evidently,
the incident waves consist of the evanescent plane
waves and the propagating plane waves. For stability
analysis, some relative random noise is added to the
data, i.e., the scattered field takes the form

ui
s�xj� ª �1 + 
 rand�ui

s�xj�,j = 0, . . . ,32,i = 0, . . . ,8.

Here, rand gives uniformly distributed random num-
bers in �−1,1�, and 
 is a noise level parameter taken
to be 0.05 in our numerical experiments. Example 1
(Fig. 2) is to reconstruct a single scatterer and two
isolated scatterers inside the domain D= �−0.5,0.5�
� �0.0,1.0�, respectively. Figures 1(a) and 2(a) show
the true scatterers. Figures 1(b) and 2(b) present the
reconstructed scatterer at the wavenumber k=21
with step size �k=0.5.

In summary, we have presented a regularized re-
cursive linearization method for reconstructing the

Fig. 2. (Color online) Example 1: (a)
sample permittivity in the modality of PSTM. The
proposed method is stable and efficient for solving
the inverse medium scattering in the inhomogeneous
background medium with limited aperture data.
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