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Numerical simulations of global approach for
photon scanning tunneling microscopy: coupling of
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An accurate global model is proposed for a two-dimensional probe–sample system of photon scanning tunnel-
ing microscopy in near-field optics. A coupling of a finite-element method in the inhomogeneous sample and a
boundary integral method on the artificial boundary of the truncated domain is developed. Numerical experi-
ments are included to demonstrate the effectiveness of the proposed method and to show the features of wave
propagation in photon scanning tunneling microscopy. © 2008 Optical Society of America
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. INTRODUCTION
cattering problems are basic in many scientific areas
uch as radar and sonar, geophysical exploration, and
edical imaging [1]. However, there is a resolution limit

o the sharpness of details that can be observed by con-
entional far-field optical microscopy, one half the wave-
ength, referred to as the diffraction limit [2,3]. Near-field
ptics provides an effective approach to breaking the dif-
raction limit and obtaining images with subwavelength
esolution, which has been experimentally observed [4,5].
ecause of this fascinating feature, it has developed dra-
atically in recent years and been applied in diverse as-

ects, including near-field optical microscopy, nondestruc-
ive imaging of small-scale biological samples, and
anotechnology [6].
In order to theoretically understand the physical
echanism of this capability, it is desirable to accurately

olve the underlying scattering problem for near-field op-
ics. The objective of this paper is to investigate the math-
matical modeling of the scattering problem for one of the
mportant experimental modes in near-field optics, pho-
on scanning tunneling microscopy (PSTM) [7–9]. In this
ode, as seen in Fig. 1, a sample is illuminated by an eva-
escent wave generated at the face of a prism from the
otal internal reflection [10], and the wave field above the
rism is scanned by passing a tapered fiber probe over the
ample in the near-field zone with a constant height con-
guration. To resolve the small-scale features present in
ear-field optics applications, precise modeling and an
ccurate solution for the electromagnetic fields are
equired.

A number of models based on global [11–15] and local
16–18] approaches have been developed in order to de-
cribe the probe–sample system for the PSTM configura-
ion. Regarding local approaches, the wave field above a
1084-7529/08/081929-8/$15.00 © 2
rism can be modeled without taking into account the
robe. Such approaches are valid only if the probe influ-
nce can be considered as a small perturbation to the
ave field excited by sample. The global approaches, in-

luding both probe and sample, are necessary when the
robe–sample interaction is strong. There have been
any numerical methods based on global approaches,

uch as the Green’s functions method [19,20], the mul-
iple multipole method [21], the finite-element or finite-
ifference method [22], and the boundary integral method
23]. These models reflect the nature of the electromag-
etic confinement around the tip probe, and associated
umerical methods can thus efficiently treat the electro-
agnetic field scattering at the probe apex. However,

hey are difficult to use to compute all the fields coupled
o the propagating mode in the fiber probe. Recently, a
lobal model with an R-matrix algorithm incorporated
nto the Fourier modal method has been developed
24,25], where a periodic structure of the probe–sample
ystem is assumed.

In this paper, we propose an accurate global model and
evelop a coupling of the finite-element and boundary in-
egral methods for numerical simulations of the interac-
ion between subwavelength sample and probe. We make
o assumptions about the physical system and consider
xtremely general material properties for the sample and
robe, whose refractive indices need only to be bounded
unctions. Variational formulations for coupling a finite-
lement method in the inhomogeneous sample with a
oundary integral method on the artificial boundary of
he truncated domain are studied. Numerical experi-
ents are included to demonstrate the effectiveness of

he proposed method and to show the features of wave
ropagation in PSTM. Since the proposed model and
ethod have no limitations on the optical or geometrical
008 Optical Society of America
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arameters of the probe and sample, it can be used for
ealistic simulations of various near-field microscope
onfigurations.

. MODEL PROBLEM
onsider an inhomogeneous sample deposited on a homo-
eneous substrate. The sample is illuminated from below
transmission geometry) by a time-harmonic plane wave,
s shown in Fig. 1. Throughout, by assuming nonmag-
etic materials and transverse electric polarization, we
tudy a two-dimensional system with three different
ones. The first zone corresponds to the substrate and is
ssumed to be semi-infinite and homogenous with a con-
tant refractive index n1. The second zone is the modu-
ated zone, which includes the sample and the probe with
efractive indices n3 and n4, respectively. The third one is
homogenous air zone with a constant refractive index

2. The model probe consists of a rectangular part with
ength a1 and width w, followed by a semi-disc-shaped
aper with radius a2=w /2. The displacement distance d is
he x1 direction distance between the center axis of the
robe and the center axis of the sample. The sign d is
ositive when the probe is on the right-hand side of the
ample and negative otherwise.

Specifically, let an incoming plane wave ui=exp�i�x1
i�x2� be incident on the straight line �x2=0� from

−
2 = �x :x2�0�, where �=n1�0 sin �, �=n1�0 cos �,
� �−� /2 ,� /2� is the angle of incidence, and �0 is the
ree-space wavenumber. The total field u satisfies the
elmholtz equation

�u + �2n2u = 0 in R2, �1�

here n�x� is the index of refraction, which varies within
he domain of the sample and the probe but otherwise has
value of unity, and the wavenumber is

ig. 1. Geometry of the model: Photon scanning tunneling mi-
roscopy. The probe length is a1+a2, where a1 is the length of a
ectangular part, a2 is the radius of a semi-disc-shaped taper,
nd w is the probe width. The probe-substrate distance is a3;
1 ,n2 ,n3, and n4 are the refractive indices of the respective
edia.
��x� = ��0 for x2 � 0

n1�0 for x2 � 0� .

enote the reference field uref as the solution of the homo-
eneous equation

�uref + �2uref = 0 in R2. �2�

t can be shown from Eq. (2) together with continuity
onditions that

uref = �ut for x2 � 0

ui + ur for x2 � 0� ,

here ut and ur are the transmitted and reflected waves,
espectively. More precisely, we have

ut = t exp�i�x1 + i	x2�, ur = r exp�i�x1 − i�x2�, �3�

here t=2� / ��+	�, r= ��−	� / ��+	�, and

	��� =���0
2 − �2 for �0 � ���

i��2 − �0
2 for �0 � ���� . �4�

t is easily seen from Eqs. (3) and (4) that when the inci-
ent angle is greater than the critical angle, i.e., when
0� ���, the function 	��� is purely imaginary. The trans-
itted wave becomes an evanescent wave, which propa-

ates on the substrate surface in the x1 direction but
xponentially decays in the x2 direction.

The total field consists of the reference field uref and the
cattered field us:

u = uref + us. �5�

n addition, the scattered field is required to satisfy the
ollowing radiation condition:

lim

→�

	
�



 �us

�
− i�us
2

ds = 0, �6�

here �
 is the circle of radius 
 and  is the unit outward
ormal to �
.
We shall use the following notations: For a bounded

egion � in R2 with boundary �, Hs��� and Hs��� will
enote the usual Sobolev spaces with norm � · �s and � · �s,
espectively.

. COUPLING OF FINITE-ELEMENT
ND BOUNDARY INTEGRAL METHODS

o apply a numerical method, the open physical domain
eeds to be truncated into a bounded computational do-
ain. Therefore, a suitable boundary condition has to be

mposed on the boundary of the bounded domain so that
o artificial wave reflection occurs. Here we present a
oundary integral method for the truncated domain com-
ined with a finite-element method in the inhomogeneous
ample. The coupling of finite-element and boundary in-
egral methods has proved to be one of the most popular
nd efficient methods for problems posed on an un-
ounded domain [26–29]. Since we are concerned mainly
ith the wave field above the substrate, we may let
�R+

2, containing the sample, be a Lipschitz continuous
ounded domain with boundary �, and let �e=R2\�̄ be
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he exterior of �, as seen in Fig. 1. In the following, we
erive variational formulations for the coupling proce-
ure.
Let � be the normal derivative of the total field on the

oundary �. The model problem formulated in the open
omain in Section 2 can be reduced to one in a bounded
omain:

�u + �2n2u = 0 in �, �7�

�u

�
= � on �. �8�

e shall first give a variational formulation of Eqs. (7)
nd (8).
Let (·,·) denote the duality between H1��� and H−1���,

he dual space of H1���, with

��,�� =	
�

��̄dx,

nd �·,· denote the duality between H1/2��� and H−1/2���,
he dual space of H1/2���, with

��,� =	
�

��̄ds,

here the overbar is the complex conjugate. The problem
f Eqs. (7) and (8) has an equivalent variational form:
ind u�H1��� such that

a�u,v� − ��,v = 0 for all v � H1���, �9�

here the bilinear form is defined by

a�u,v� = ��u,�v� − ��2n2u,v�.

quation (9) is underdetermined since both u and � are
nknowns. We next present a boundary integral equation
nd its variational formulation, which provides a relation
etween the field u and its normal derivative �.
Consider the scattered field in the exterior domain �e,

�us + �2us = 0 in �e. �10�

ased on Eq. (10) and the radiation condition (6), it fol-
ows from Green’s theorem and jump relations for surface
otentials that the scattered field satisfies the integral
quation

1

2
us�x� =	

�

�G�x,y�

��y�
us�y�ds�y�

−	
�

G�x,y�
�us�y�

��y�
ds�y� x � �, �11�

here G�x ,y�=�1�x ,y�+�1�x ,y� is the fundamental so-
ution for the Helmholtz equation in a two-layered back-
round medium, given in Appendix A. The function �1 is
he fundamental solution of the Helmholtz equation in a
omogeneous background with wavenumber �0, and �1 is
smooth function accounting for reflection due to the

ayered background.
Regarding the reference field in �, we have again from

reen’s theorem and jump relations that
1

2
uref�x� = −	

�

�G�x,y�

��y�
uref�y�ds�y�

+	
�

G�x,y�
�uref�y�

��y�
ds�y�, x � �. �12�

ombining Eqs. (11) and (12) leads to an integral equa-
ion for the total field

u�x� = 2	
�

�G�x,y�

��y�
u�y�ds�y� − 2	

�

G�x,y�
�u�y�

��y�
ds�y�

+ 2uref�x�, x � �. �13�

We introduce a single-layer potential operator

�S���x� ª 2	
�

G�x,y���y�ds�y� �14�

nd a double-layer potential operator

�D���x� ª 2	
�

�G�x,y�

��y�
��y�ds�y�. �15�

sing these operators, Eq. (13) can be written as

u − Du + S� = 2uref on �. �16�

ultiplying Eq. (16) by the complex conjugate of � and
ntegrating over �, it follows that

�u,� − �Du,� + �S�,� = �2uref,�, � � H−1/2���.

ence if u is the solution of Eqs. (7) and (8), then the pair
f functions �u ,�� gives a solution of the variational
roblem: Find �u ,���H1����H−1/2��� such that

a�u,v� − ��,v = 0 for all v � H1���, �17�

u,� − �Du,� + �S�,� = �2uref,� for all � � H−1/2���.

�18�

Next we present the discrete problem for the coupled
ariational approximation, on which the numerical
ethod is based.
Let x�t� be a parametrization of the boundary �, where

� t�1. Given any parameter h� �0,1�, let 0= t0� t1
¯ � tN=1 be a partition of [0,1] with ti+1− ti=hi�h for

=0, . . . ,N−1. We denote by �h the polygonal domain that
pproximates � with vertices �x�ti� , i=1, . . . ,N� on the
oundary �. Let T̃h be a regular triangulation of �̄h by
riangles T̃ with diameter hT̃ no greater than h. We thus
btain from T̃h a triangulation Th of �̄, replacing each
riangle T̃� T̃h with one side along a curved part of � with
he corresponding curved triangle T, which leads to
=�T�Th

T.
Define a conforming finite-element subspace of H1���,

Xh = �u � H1���:�u�T is linear, T � Th�.

et Yh be the space of 1-periodic piecewise constant func-
ions on the partition: 0= t0� t1� ¯ � tN=1. It is known
hat Y is a subspace of H−1/2��� [30]. We are now in a
h
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osition to write the discrete problem: Find �uh ,�h�
Xh�Yh such that

a�uh,v� − ��h,v = 0 for all v � Xh, �19�

�uh,� − �Duh,� + �S�h,� = �2uref,� for all � � Yh.

�20�

. NUMERICAL EXPERIMENTS
e report several examples to demonstrate the effective-

ess of the proposed method and to show the features of
ave propagation in PSTM. In all of the experiments, we
sed a He–Ne laser of wavelength �=632.8 nm as the
ource and chose an angle of incident �=60°. Refractive
ndices are taken as n1=n3=n4=1.458 and n2=1. Figure 2
hows the geometry of the computational domain with
idth 0.8� �506.2 nm� and length 2.4� �1518.6 nm� and
n example of the triangulation. Here we adopt a simple
nd effective mesh generator implemented in Matlab by
ersson and Strang [31]. To approximate the integrals re-

ated to the potential operators S and D in Eq. (20), we
se the Galerkin method based on a subtraction of the

ogarithmic singularity, an exact computation of the sin-
ular part, and a simple midpoint quadrature rule for the
emaining terms. For the regular boundary integrals in
qs. (19) and (20), we use the midpoint rule. The integrals
ver triangles of Th are approximated with standard
uadrature rules. In order to compute the improper inte-
ral for the function �1, we break it into two parts: One
as a singular kernel integrated over a finite interval,
nd another has an infinite upper limit but with an expo-
entially decayed kernel. The Gauss–Chebyshev quadra-
ure is used to deal with the first part, while the compos-
te trapezoidal rule is employed to approximate the
econd part. We employ the commonly used outward-
ooking approach [32] for the linear system from the
iscretization of Eqs. (19) and (20).

. Example 1: Two-Layered Background Medium
ithout a Sample or a Probe
o test the accuracy and convergence of the proposed
ethod, as a first step we calculate the intensity of the

otal field formed only by the two-layered background me-
ium, whose exact solution is given in Eq. (3). Figure 3
lots a log–log scale of the H1��� error �u−uh�1 versus the
umber of nodes N, which shows that the associated error

ollows �u−uh�1=O�N−1/2� or �u−uh�1=O�h�. The surface
lot of the intensity for the total field and its image view
re shown in Figs. 4(a) and 4(b), respectively. As we can
ee, the total field above the surface of the substrate is an
vanescent wave, whose intensity exponentially decays as
function of depth in the x2 direction.

. Example 2: Subwavelength Sample without a Probe
o compare differences of the intensity distributions with
r without a probe and thus to understand the influence
f a probe, we calculate the near-field pattern formed by
he presence of a disc-shaped dielectric sample with ra-
ius 100 nm deposited on an infinitely thick substrate
ithout a probe. From the given refractive index of the
ubstrate n1=1.458 and incident angle �=60°, it is obvi-
us that the sample is illuminated in the total internal re-
ection configuration. Under the same configuration as
xample 1, an evanescent wave is generated on the sub-
trate surface. Due to the presence of a sample on the
ubstrate surface, the interaction between the evanescent
eld and the sample produces a propagating wave, which

s the photon tunneling effect. See Figs. 5(a) and 5(b) for
he surface plot of the intensity for the total field and its
mage view, respectively.

. Example 3: Subwavelength Sample with a Probe
aving analyzed the near-field pattern associated with

he subwavelength sample on the substrate surface, we
ow consider the probe–sample system in order to ana-

yze the influence of the probe on the intensity of the total
eld. The probe is positioned at a distance of a3=250 nm

rom the substrate surface, which means that the probe–
ample distance is 50 nm. The probe width is w=200 nm,

ig. 2. (Color online) Geometry of the computational domain
nd a mesh.

ig. 3. (Color online) Example 1: The log–log scale of the error
�u−u � versus the number of nodes.
h 1
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Fig. 4. (Color online) Intensity of the total field in Example 1: (a) The surface plot; (b) the image view.
Fig. 5. (Color online) Intensity of the total field in Example 2: (a) The surface plot; (b) the image view.
Fig. 6. (Color online) Intensity of the total field in Example 3: (a) The surface plot; (b) the image view.
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nd the length of the rectangular part is taken as
1=500 nm. Thus the radius of the taper is a2=100 nm,
nd the total length of the probe is a1+a2=600 nm. The
urface plot of the intensity for the total field and its im-
ge view are given in Figs. 6(a) and 6(b), respectively,
hen the probe is on top of the sample, i.e., the displace-
ent distance d=0. In contrast to the intensity distribu-

ion related to the sample in the absence of the probe,
ere a propagating wave is guided through the probe. To

nvestigate the dependence of the intensity on the dis-
lacement distance, Figs. 7(a) and 7(b) plot the intensity
or displacement distance d=−100 nm and d=100 nm, re-
pectively. It can be noticed that a propagating wave is
etected and guided through the place where the probe is
ccupied.

. Example 4: Subwavelength Sample with a Longer
robe
his example is to investigate the effect of the length of a
robe on the intensity distribution. The probe width is
aintained equal to w=200 nm, and the sample radius is

ig. 7. (Color online) Intensity of the total field with displace-
ent in Example 3: (a) d=−100 nm; (b) d=100 nm.

Fig. 8. (Color online) Intensity of the total field
ept to a=100 nm as before. The probe–interface and the
robe–sample distances are taken to a3=250 nm and
0 nm, respectively. The rectangular part of the probe
1=1000 nm, and thus the total length of the probe is a1
a2=1100 nm. The surface plot of the intensity for the to-

al field and its image view are given in Figs. 8(a) and
(b), respectively, when the probe is on top of the sample,
.e., the displacement distance d=0. In contrast to the
ropagation wave through the probe with Example 3,
ere the detected propagation wave is guided through the
hole probe with a larger length. The total field intensity
ependence on the displacement distance is also shown in
igs. 9(a) and 9(b) for d=−100 nm and d=100 nm, respec-
ively. Once again, it can be noticed that a propagating
ave is detected and guided through the place where the
robe is occupied.

. CONCLUSION
e have proposed an accurate global model of the probe–

ample system for a PSTM configuration in near-field op-
ics. Using the coupling of finite-element and boundary
ntegral methods, we have presented the variational for-

ulations of the underlying scattering problem for the
wo-dimensional Helmholtz equation with a two-layered
ackground medium. Numerical experiments are in-
luded to demonstrate the effectiveness of the proposed
ethod and to show the features of wave propagation in
STM. The proposed model and method have no limita-

ions on the physical system and can be used for realistic
imulations of various near-field microscope configura-
ions. It is currently being extended to study the influence
f the taper shape, the presence of an apex with different
izes, and the metal-coated probe on the intensity distri-
ution. To resolve these smaller-scale phenomena, a more
ophisticated adaptive strategy needs to be employed for
he method of coupling a finite element and a boundary
ntegral.

mple 4: (a) The surface plot; (b) the image view.
in Exa
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PPENDIX A: TWO-LAYERED
UNDAMENTAL SOLUTION
or the observation point x= �x1 ,x2� and source point
= �y1 ,y2�, the fundamental solution of the Helmholtz
quation in a two-layered background medium in R2

atisfies

�G�x,y� + �2�x�G�x,y� = − ��x − y�, �A1�

ith continuity conditions

G��x,y��x2=0+ = G��x,y��x2=0−, �A2�


 �G�x,y�

�x2



x2=0+

= 
 �G�x,y�

�x2



x2=0−

, �A3�

here the wavenumber

��x� = ��1 for x2 � 0

�2 for x2 � 0� .

efine

�i =� ��i
2 − �2 for ��i� � ���

i��2 − �i
2 for ��i� � ���� .

t follows from the Fourier transform that the fundamen-
al solution is given by [33]

• x2�0, y2�0

G�x,y� = �1�x,y� + �1�x,y�,

• x2�0, y2�0

G�x,y� = �2�x,y� + �2�x,y�,

• x2�0, y2�0

G�x,y� = �3�x,y�,

• x2�0, y2�0

G�x,y� = �4�x,y�,

here

ig. 9. (Color online) Intensity of the total field with displace-
ent in Example 4: (a) d=−100 nm; (b) d=100 nm.
�1�x,y� =
i

4�
	

−�

� 1

�1

�1 − �2

�1 + �2
ei�1�x2+y2�ei��x1−y1�d�, �A4�

�2�x,y� =
i

4�
	

−�

� 1

�2

�2 − �1

�1 + �2
e−i�2�x2+y2�ei��x1−y1�d�,

�A5�

�3�x,y� =
i

2�
	

−�

� ei��1x2−�2y2�

�1 + �2
ei��x1−y1�d�, �A6�

�4�x,y� =
i

2�
	

−�

� ei��1y2−�2x2�

�1 + �2
ei��x1−y1�d�, �A7�

nd �i is the fundamental solution of the Helmholtz
quation in a homogeneous background medium in R2

ith wavenumber �i, i.e.,

�i�x,y� =
i

4
H0

�1���i�x − y��, i = 1,2.

ere H0
�1� is the Hankel function of the first kind with

rder zero.
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