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Abstract
This paper is concerned with the inverse medium scattering problem
with a stochastic source, the reconstruction of the refractive index of an
inhomogeneous medium from the boundary measurements of the scattered
field. As an inverse problem, there are two major difficulties in addition to
being highly nonlinear: the ill-posedness and the presence of many local
minima. To overcome these difficulties, a stable and efficient recursive
linearization method has been recently developed for solving the inverse
medium scattering problem with a deterministic source. Compared to
classical inverse problems, stochastic inverse problems, referred to as inverse
problems involving uncertainties, have substantially more difficulties due to
randomness and uncertainties. Based on the Wiener chaos expansion, the
stochastic problem is converted into a set of decoupled deterministic problems.
The strategy developed is a new hybrid method combining the WCE with the
recursive linearization method for solving the inverse medium problem with
a stochastic source. Numerical experiments are reported to demonstrate the
effectiveness of the proposed approach.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Motivated by significant scientific and industrial applications, the field of inverse problems
has undergone a tremendous growth in the last several decades. There are a variety of inverse
problems, including identification of partial differential equation coefficients, reconstruction of

0266-5611/10/074014+23$30.00 © 2010 IOP Publishing Ltd Printed in the UK & the USA 1

http://dx.doi.org/10.1088/0266-5611/26/7/074014
mailto:bao@math.msu.edu
mailto:chow@math.gatech.edu
mailto:lipeijun@math.purdue.edu
mailto:hmzhou@math.gatech.edu
http://stacks.iop.org/IP/26/074014


Inverse Problems 26 (2010) 074014 G Bao et al

initial data, estimation of source functions and detection of interfaces or boundary conditions.
Scattering problems are concerned with the effect an inhomogeneous medium has on an
incident wave [29]. In particular, if the total field is viewed as the sum of an incident field
and a scattered field, the direct scattering problem is to determine the scattered field from a
knowledge of the incident field and the medium; the inverse scattering problem is to determine
the nature of the inhomogeneity from knowledge of the scattered field [30]. Inverse scattering
problems are basic in many scientific areas such as radar and sonar, geophysical exploration,
medical imaging and near-field optics imaging [31].

This paper is concerned with the inverse medium scattering problem, i.e. the reconstruction
of the refractive index of an inhomogeneous medium from scattering data. In addition to being
highly nonlinear, there are two major difficulties associated with the inverse problem: the ill-
posedness and the presence of many local minima. A number of algorithms have been proposed
for numerical solutions of this inverse problem, e.g. [1, 19, 33, 35–37, 43, 44, 49, 50] and
references cited therein. Classical iterative optimization methods offer fast local convergence
but often fail to compute the global minimizers because of multiple local minima. Another
main difficulty is the ill-posedness, i.e. infinitesimal noise in the measured data may give rise
to a large error in the computed solution. It is well known that the ill-posedness of the inverse
scattering problem decreases as the frequency increases. However, at high frequencies, the
nonlinear equation becomes extremely oscillatory and possesses many more local minima. A
challenge for solving the inverse problem is to develop solution methods that take advantage of
the regularity of the problem for high frequencies without being undermined by local minima.

To overcome the difficulties, stable and efficient recursive linearization methods (RLM)
have been developed for solving the two-dimensional Helmholtz equation and the three-
dimensional Maxwell’s equations in the case of full aperture data [6, 8, 20] and in limited
aperture data cases [5, 9, 10, 12]. In the case of fixed frequencies, a related continuation
approach has been developed on the spatial frequencies [7, 11, 21]. A recursive linearization
approach has also been developed for solving inverse obstacle problems by Coifman et al [26].
More recently, direct imaging techniques have been explored to replace the weak scattering
for generating the initial guess [4]. We refer readers to [13] for the mathematical analysis of
the general recursive linearization algorithm for solving inverse medium problems with multi-
frequency measurements. Roughly speaking, these methods use the Born approximation
at the lowest frequency to obtain initial guesses which are the low-frequency modes of the
medium. Updates are made by using the data at higher frequencies sequentially until a
sufficiently high frequency where the dominant modes of the medium are essentially recovered.
The underlying physics which permits the successive recovery is the so-called Heisenberg
uncertainty principle: it is increasingly difficult to determine features of the scatterer as its
size becomes decreasingly smaller than half of a wavelength. One may consult Colton et al
[28] and Natterer [42] for a recent account of general inverse scattering problems.

Stochastic inverse problems refer to the inverse problems that involve uncertainties, which
are widely introduced to the mathematical models for three major reasons: (1) randomness
directly appears in the studied systems; (2) incomplete knowledge of the systems must be
modeled by uncertainties; (3) stochastic techniques are introduced to couple the interference
between different scales more effectively, especially when the scale span is large. The
first two reasons are commonly encountered and they can happen simultaneously for many
different problems. It is only recently that the third one has started being recognized as an
effective tool for handling long-range multiscale problems. It is our intention to study inverse
scattering with randomness and uncertainties entering the problem because of all the reasons
mentioned. Compared to deterministic inverse problems, stochastic inverse problems have
substantially more difficulties on top of the existing hurdles, mainly due to randomness and
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uncertainties. For instance, unlike the deterministic nature of solutions for classical inverse
problems, the solution for a stochastic inverse problem is random functions. Therefore, it
is less meaningful to find a solution for a particular realization of the randomness. The
popular Monte Carlo simulations to compute the statistics often demand several orders more
computational resources over the corresponding classical inverse problems. For these reasons,
new models and methodologies are highly desired in related applications.

In this work, we study the inverse medium problem with a spatially stochastic source,
where the medium itself is deterministic but the source function is modeled as a stochastic
function. The random source problem for wave propagation has been considered as a basic
tool for the solution of reflection tomography, diffusion-based optical tomography and more
recently fluorescence microscopy [52], which allows systematic imaging studies of protein
localization in living cells and of the structure and function of living tissues. The fluorescence
in the specimen (such as green fluorescent protein) gives rise to emitted light which is focused
to the detector by the same objective that is used for the excitation. Mathematically, it will
be more appropriate to describe the source as a stochastic function due to its small scale
and random nature. We refer to [3, 32] for related inverse random source problems, and
[25, 39, 40, 46] for wave propagation in random media.

In solving classical deterministic inverse problems, it is a common feature in the existing
strategies that the associated direct problems must be solved multiple times. Therefore, it
is important to develop models and efficient methods for the stochastic direct problems. To
tackle the problem, we employ the Wiener chaos expansion (WCE)-based approach, which
is a classical orthonormal expansion theory for random functions that was first introduced by
Cameron and Martin [18]. The WCE theory is based on the fact that Hermite polynomials
are orthonormal polynomials of Gaussian random variables. If the random variables have
different distribution other than Gaussian, the theory is still true except that one has to
replace Hermite polynomials by different series of polynomials that are orthonormal with
respect to the distributions. In that case, the theory is called generalized polynomial chaos
expansion, see [51] for more references on WCE and related subjects. Recently, a novel and
efficient WCE-based technique has been developed for modeling and simulation of spatially
incoherent sources in photonic crystals by Badieirostami et al [2]. The basic idea is that the
incoherent source can be modeled by a stochastic process, which leads to a partial differential
equation with a stochastic source. According to WCE theory, the random source term has
an expansion under some orthonormal basis functions. By substituting the expression into
the stochastic equation, a set of deterministic differential equations can be obtained with
new deterministic source terms. The stochastic problem can thus be converted into a set of
decoupled deterministic problems. To solve the inverse medium scattering problem with a
stochastic source, we develop a hybrid method of combining the novel WCE-based model with
the RLM. This combination forms a new iterative procedure and provides useful techniques
to handle the randomness and uncertainties arising from the stochastic inverse problem. The
work represents our initial attempt towards more complex model problems.

Though the stochastic equation can be converted into a set of deterministic equations,
they are imposed in an open domain. To apply numerical methods, the open domain needs
to be truncated into a bounded domain. A suitable boundary condition has to be imposed on
the boundary of the bounded domain so that no artificial wave reflection occurs. We use the
uniaxial perfectly matched layer (PML) technique to truncate the open domain. The PML
technique, which was first proposed by Berenger [15, 16], is an important and popular mesh
termination technique in computational wave propagation due to its effectiveness, simplicity
and flexibility, e.g. [47, 48]. Under the assumption that the exterior solution is composed of
outgoing waves only, the basic idea of the PML technique is to surround the computational
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Figure 1. Geometry of the scattering problem with a transparent boundary.

domain by a layer of finite thickness with specially designed model medium that would either
slow down or attenuate all the waves that propagate from inside the computational domain.
It has been proved that the PML solution can converge exponentially to the solution of the
original scattering problem as the thickness of the PML layer or the medium parameters tend
to infinite, see e.g. [14, 17, 23, 24, 27, 41].

The outline of the paper is as follows. In section 2, a stochastic forward problem is
introduced; based on WCE theory, the stochastic model is converted into a set of deterministic
model problems; energy estimates of the wave fields are obtained; a PML formulation is
presented to reduce the model problem into a bounded domain. Section 3 is devoted to
the introduction of the RLM for the inverse medium problem. To regularize the RLM,
regularization functionals are provided from the optimization point of view. An algorithm
of the hybrid method of combining WCE with RLM is described. In section 4, we discuss
numerical implementation of the hybrid method and present three numerical examples to
demonstrate the effectiveness of the proposed approach. The paper is concluded with general
remarks and directions for future research in section 5.

2. Direct scattering problem

In this section, we introduce the two-dimensional Helmholtz equation with a stochastic source
as a model problem. Based on the WCE theory, we convert the stochastic problem into a set
of deterministic problems. After reducing the problem imposed in the open domain into one
in a bounded domain using the Dirichet-to-Neumann (DtN) operator, we discuss a variational
formulation of the direct problem and present some energy estimates for the wave fields.
To apply numerical methods, the uniaxial PML technique is introduced to truncate the open
domain into a bounded rectangular domain.

2.1. A model problem

Deducing from the system of time-harmonic Maxwell’s equations, we consider the two-
dimensional Helmholtz equation

�u + ω2(1 + q)u = iωf in R
2, (2.1)

where ω is the angular frequency, q > −1 is the scatterer which is assumed to have a compact
support contained in a rectangular domain � with four side boundaries �j , j = 1, . . . , 4,
as seen in figure 1, and the current density f is the source of excitation and is modeled as

4



Inverse Problems 26 (2010) 074014 G Bao et al

two one-dimensional arrays of spatially incoherent point sources along the line segments �1

and �2.
For modeling the spatially incoherent source, any two point source on the line segments

�1 or �2 should radiate independently of each other. This definition by itself can be used
as the brute-force technique for numerical modeling of the spatially incoherent source. In
such modeling, zero correlation is enforced between the contributions from every two input
point sources on the line segments �1 and �2 by separately analyzing the structure with each
point source and adding the individual contributions at the output incoherently. While this
technique perfectly describes the incoherent source, it is very time consuming practically since
it requires one simulation of the entire structure for each input point source.

To reduce the simulation time, we adopt the WCE-based technique, which is proposed
by Badieirostami et al [2]. To model the spatially incoherent source, white noise is used, i.e.
the derivative of the Brownian motion, to model the current density f . More precisely, we
represent the spatially incoherent source along two segment lines at �1 and �2 as

f (x, y) = dW(x, y), (2.2)

where dW(x, y) is the derivative of the Brownian motion representing the independent spatial
randomness along x and y. According to WCE theorem, by choosing any orthonormal basis
function {φi(x), ψj (y)}, i, j = 1, 2, . . . , in the rectangular domain �, we can introduce a set
of independent standard Gaussian random variables {ξij } such that

dW(x, y) =
∑
i,j

ξijφi(x)ψj (y)

with

ξij =
∫

�

φi(x)ψj (y) dW(x, y).

In practice, we choose a set of sinusoidal basis functions for φi(x) and ψj(y) given by Hou
et al [38]:

ψ1(y) = 1√|�1|
, ψj (y) =

√
2

|�1| cos

[
(j − 1)π

y

|�1|
]

, j = 2, . . . ,

φ1(x) = 1√|�2|
, φi(x) =

√
2

|�2| cos

[
(i − 1)π

x

|�2|
]

, i = 2, . . . ,

where |�1| and |�2| are the lengths of the line segments �1 and �2, respectively.
The WCE method separates the deterministic effects from randomness. Therefore, the

original stochastic Helmholtz equation is reduced into an associated set of deterministic
equations for the expansion coefficients. Using the formulation described above, we deduce
the following set of deterministic equations for the expansion coefficients (dropping the
subscript for clarity):

�u + ω2(1 + q)u = iωϕ, (2.3)

where

ϕ(x, y) = φ(x)ψ(y).

In addition, the standard Sommerfeld radiation condition is imposed to ensure the uniqueness
of the solution. Therefore, we need to simulate the structure for each basis function φ and ψ

to find the corresponding u defined in equation (2.3).
The source function is modeled as the derivative of the Brownian motion, i.e. white noise,

which is a spatial Gaussian random field. The data will be assumed to be a spatial Gaussian
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random field since the medium is assumed to be a deterministic function. Based on WCE,
it is possible to decompose the random data into a sequence of deterministic components
corresponding to the chosen orthonormal basis functions, which projects the data into the
spaces spanned by each individual function in the set of orthornormal basis under the sense
of taking expectation. According to the strong law of large numbers, the data with a large
amount of realizations will be required to obtain a good approximation to the expectation
value when doing the data decomposition. We admit that this step is absolutely nontrivial and
involve much effort. It is an ongoing project to decompose the boundary measurements of the
random wave field u according to the chosen orthonormal basis functions and we will report
the progress somewhere else.

Remark 2.1. The inverse medium problem is to reconstruct the scatterer function q from the
boundary measurement of the random wavefield u corresponding to the stochastic source f .
According to WCE theory, we may assume that the boundary measurement of the deterministic
wavefield component of u is known for each orthonormal basis function ϕ. Therefore, the
boundary data will be taken as the wavefield u corresponding to the orthonormal basis function
ϕ in the description of the reconstruction method.

Remark 2.2. The choice of the basis function will not change the structure of the algorithm,
but it may have an impact on the efficiency and convergence rate of the reconstructions. We did
not pursue the comparisons between different bases, which is actually an interesting problem
to study in the future. Once the orthonormal basis functions are chosen, we should use them
for both the direct and inverse problems as the data will be decomposed based on the chosen
basis as well.

2.2. Analysis of the direct scattering

Using the DtN operator, we reduce equation (2.3) from the open domain into a bounded disk,
study its variational formulation and present some energy estimates. The energy estimates
provide the theoretical basis to generate initial guesses for the iterative RLM.

Let the support of the scatterer � be contained in the interior of the disk BR = {x ∈ R
2 :

|x| < R} with boundary ∂BR = {x ∈ R
2 : |x| = R}, as seen in figure 1. In the domain R

2 \ B̄,
the solution of (2.3) can be written under the polar coordinates as follows:

u(ρ, θ) =
∑
n∈Z

H(1)
n (ωρ)

H
(1)
n (ωR)

ûn einθ , (2.4)

where

ûn = 1

2π

∫ 2π

0
u(R, θ) e−inθ dθ,

and H(1)
n is the Hankel function of the first kind with order n. For any function u defined on

the circle ∂BR having the Fourier expansion:

u =
∑
n∈Z

ûn einθ with ûn = 1

2π

∫ 2π

0
u e−inθ dθ,

we define

‖u‖2
H 1/2(∂BR) = 2π

∑
n∈Z

(1 + n2)1/2|ûn|2,

‖u‖2
H−1/2(∂BR) = 2π

∑
n∈Z

(1 + n2)−1/2|ûn|2.

6



Inverse Problems 26 (2010) 074014 G Bao et al

Let T : H 1/2(∂BR) → H−1/2(∂BR) be the DtN operator defined as follows: for any
u ∈ H 1/2(∂BR),

T u = ω

R

∑
n∈Z

H(1)′
n (ωR)

H
(1)
n (ωR)

ûn einθ . (2.5)

Using the DtN operator, the solution in (2.4) satisfies the following transparent boundary
condition:

∂nu = T u on ∂BR, (2.6)

where n is the unit outward normal to ∂BR .
To state the boundary value problem, we introduce the bilinear form a : H 1(BR) ×

H 1(BR) → C

a(u, v) = (∇u,∇v) − ω2 ((1 + q)u, v) − 〈T u, v〉, (2.7)

and the linear functional on H 1(BR)

b(v) = −iω(ϕ, v). (2.8)

Here we have used the standard inner products

(u, v) =
∫

BR

u · v̄ and 〈u, v〉 =
∫

∂BR

u · v̄,

where the bar denotes the complex conjugate. The direct problem (2.3) is equivalent to the
following weak formulation. Find u ∈ H 1(BR) such that

a(u, v) = b(v) for all u ∈ H 1(BR). (2.9)

Before presenting the main results for the variational problem, we state a useful lemma
for the regularity of the DtN operator. Readers are referred to [45] for detailed discussions
and proofs.

Lemma 2.1. There exists a constant C such that for any u ∈ H 1/2(∂BR) the following
inequality holds:

‖T u‖H−1/2(∂BR) � C‖u‖H 1/2(∂BR).

Furthermore,

−Re〈T u, u〉 � C‖u‖2
L2(∂BR) and Im〈T u, u〉 � 0.

Next we prove the well-posedness of the variational problem (2.9) and obtain an energy
estimate for the wave field with a uniform bound with respect to the frequency in the case of
small frequencies.

Theorem 2.1. If the frequency ω is sufficiently small, the variational problem (2.9) admits a
unique weak solution in H 1(BR). Further, there is a positive constant C such that

‖u‖H 1(BR) � Cω‖ϕ‖L2(BR). (2.10)

Proof. Decompose the bilinear form a into a = a1 − ω2a2, where

a1(u, v) = (∇u,∇v) − 〈T u, v〉 and a2(u, v) = ((1 + q)u, v) .

We conclude that a1 is coercive from lemma 2.1:

|a1(u, u)| � C‖u‖2
H 1(B).
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Next we prove the compactness of a2. Define an operator A : L2(B) → H 1(B) by

a1(Au, v) = a2(u, v) for all v ∈ H 1(B),

which gives

(∇Au,∇v) − 〈T Au, v〉 = ((1 + q)u, v) .

Using the Lax–Milgram lemma and lemma 2.1, we obtain

‖Au‖H 1(B) � C‖u‖L2(B). (2.11)

Thus, A is bounded from L2(B) to H 1(B) and H 1(B) is compactly embedded into L2(B).
Hence, A is a compact operator.

Define a function w ∈ L2(B) by requiring w ∈ H 1(B) and satisfying

a1(w, v) = b(v) for all v ∈ H 1(B).

It follows from the Lax–Milgram lemma again that

‖w‖H 1(B) � Cω‖ϕ‖L2(B). (2.12)

Using the operator A, we can see that problem (2.9) is equivalent to find u ∈ L2(B) such that

(I − ω2A)u = w. (2.13)

When the frequency ω is small enough, the operator I −ω2A has a uniformly bounded inverse.
We then have the estimate

‖u‖L2(B) � C‖w‖L2(B), (2.14)

where the constant C is independent of ω. Rearranging (2.13), we have u = w − ω2Au, so
u ∈ H 1(B) and, by the estimate (2.11) for the operator A, we have

‖u‖H 1(B) � ‖w‖H 1(B) + Cω2‖u‖L2(B).

The proof is complete by combining the above estimate and (2.12). �

It is evident that the determination of the scatterer function q from some boundary
measurement of the wave field u from equation (2.3) is a nonlinear problem. We consider an
approximate problem and derive an error estimate between the solution of the approximate
problem and the solution of the original scattering problem. The error estimate is crucial for
the derivation of initial guesses. Dropping the nonlinear term in equation (2.3) yields

�uB + ω2uB = iωϕ, (2.15)

where uB is required to satisfy the Sommerfeld radiation condition.
The approximate problem has an equivalent weak formulation: find uB ∈ H 1(BR) such

that

aB(uB, v) = b(v) for all v ∈ H 1(BR), (2.16)

where the bilinear form aB : H 1(BR) × H 1(BR) → C

aB(u, v) = (∇u,∇v) − ω2 (u, v) − 〈T u, v〉,
and the linear functional are given in equation (2.8).

Theorem 2.2. If the frequency ω is sufficiently small, the variational problem (2.16) admits
a unique weak solution uB in H 1(BR). It holds

‖u − uB‖H 1(BR) � Cω3‖q‖L∞(BR)‖ϕ‖L2(BR), (2.17)

where u is the solution of the variational problem (2.9) and C is a frequency-independent
positive number.

8
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Figure 2. Geometry of the scattering problem with the PML layer.

Proof. Let w = u − uB. Subtracting equation (2.15) from equation (2.3) yields

�w + ω2w = −ω2qu in B,

∂nw = T w on ∂B.

It follows from theorem 2.1 that the above problem has a unique weak solution in H 1(BR)

and the solution has the energy estimate

‖w‖H 1(BR) � Cω2‖q‖L∞(B)‖u‖L2(BR),

where the positive number C is independent of the frequency.
A direct application of the energy estimate for u in equation (2.10) gives

‖w‖H 1(B) � Cω3‖q‖L∞(B)‖ϕ‖L2(B),

which completes the proof. �

The error estimate (2.17) implies that uB is a good approximation to u for a small
frequency ω.

2.3. PML formulation

The converted deterministic problem is imposed in the open domain. In practice, the open
domain needs to be truncated into a bounded domain. Therefore, a suitable boundary
condition has to be imposed on the boundary of the bounded domain so that no artificial wave
reflection occurs. In the previous section, the DtN operator does give a transparent boundary
condition. However, this non-reflecting boundary condition is nonlocal and involves the issue
of truncation of an infinity series. Computationally, we employ a convenient uniaxial PML
technique to truncate the open domain into a bounded rectangular domain, as seen in figure 2.

Next we introduce the absorbing PML and formulate the scattering problem in a bounded
domain. Let D be the rectangle which contains � and let d1 and d2 be the thickness of the
PML layers along x and y, respectively. Denote by ∂D the boundary of the domain D. Let
s1(x) = 1 + iσ1(x) and s2(y) = 1 + iσ2(y) be the model medium property, where σj are the
positive continuous even functions and satisfy σj (x) = 0 in �.

Following the general idea in designing PML absorbing layers, we may deduce the
truncated PML problem: find the PML solution, still denoted as u, to the following system:

∇ · (s∇u) + s1s2ω
2(1 + q)u = iωϕ in D,

u = 0 on ∂D,
(2.18)

9
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where s = diag(s2(y)/s1(x), s1(x)/s2(y)) is a diagonal matrix. The variational problem can
be formulated to find u ∈ H 1

0 (D) = {u ∈ H 1(D) : u = 0 on ∂D} such that

aPML(u, v) = b(v) for all v ∈ H 1
0 (D), (2.19)

where the bilinear form aPML : H 1
0 (D) × H 1

0 (D) → C

aPML(u, v) = (s∇u,∇v) − ω2(s1s2(1 + q)u, v), (2.20)

and the linear functional b is defined in equation (2.8).
Denote the physical domain � by the rectangle [x1, x2] × [y1, y2]. The computational

domain is then D = [x1 − d1, x2 + d1] × [y1 − d2, y2 + d2]. The model medium property is
usually taken as a power function:

σ1(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
σ0

(
x − x2

d1

)p

for x2 < x < x2 + d1

0 for x1 � x � x2

σ0

(
x1 − x

d1

)p

for x1 − d1 < x < x1,

and

σ2(y) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
σ0

(
y − y2

d2

)p

for y2 < y < y2 + d2

0 for y1 � y � y2

σ0

(
y1 − y

d2

)p

for y1 − d2 < y < y1,

where the constant σ0 > 1 and the integer p � 2.
The well-posedness of the PML problem (2.19) and the convergence of its solution to

the solution of the original scattering problem (2.1) are studied in [22]. The error estimate
particularly implies that the PML solution converges exponentially to the original scattering
problem when either the PML medium parameter σ0 or the thicknesses d1 and d2 of the layer
are increased. Therefore, we may choose σ0 and d1, d2 such that the PML model problem
error is negligible compared with the finite-element discretization errors.

3. Inverse scattering problem

In this section, the RLM for the inverse medium scattering problem is presented. The
algorithm, obtained by a continuation method on the frequency, requires multi-frequency
scattering data. At each frequency, the algorithm determines a forward model which produces
the prescribed scattering data. At a low frequency, the scattered field is weak. Consequently,
the nonlinear equation becomes essentially linear, known as the Born approximation. The
algorithm first solves this nearly linear equation at the lowest frequency to obtain low-frequency
modes of the true scatterer. The approximation is then used to linearize the nonlinear equation
at the next higher frequency to produce a better approximation which contains more modes
of the true scatterer. This process is continued until a sufficiently high frequency where the
dominant modes of the scatterer are essentially recovered.

3.1. Born approximation

To initialize the recursive linearization method, a starting point or an initial guess is needed
which is derived from the Born approximation. The starting point will be derived from
different linear integrals, depending on the availability of the data.

10
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Rewrite equation (2.3) as

�u + ω2u = iωϕ − ω2qu.

According to theorem 2.2, we may replace u on the right-hand side by uB for a sufficiently
small frequency to get an approximate equation

�u + ω2u = iωϕ − ω2quB, (3.1)

which is called the Born approximation.
If the wave field u is available on the whole boundary of BR, the plane waves turn out

to be useful to obtain an initial guess. Consider an auxiliary function uinc(x) = eiωx·d, d =
(cos τ, sin τ), τ ∈ [0, 2π ]. This auxiliary function represents propagating plane waves and
satisfies the Helmholtz equation

�uinc + ω2uinc = 0 in R
2.

Multiplying equation (3.1) by uinc and integrating over BR on both sides, we have∫
BR

�uuinc + ω2
∫

BR

uuinc = iω
∫

BR

ϕuinc − ω2
∫

BR

quBuinc.

Integration by parts gives∫
∂BR

(uinc∂nu − u∂nu
inc) = iω

∫
BR

ϕuinc − ω2
∫

BR

quBuinc.

Using the DtN operator (2.5), we obtain a linear integral equation for the scatterer q:∫
BR

quB uinc = i

ω

∫
BR

ϕ uinc +
1

ω2

∫
∂BR

(u∂nu
inc − uincT u), (3.2)

where the right-hand side of equation (3.2) can be treated as the input data since the wave field
u is known all around ∂BR .

Alternatively, the following approach can be employed even if the wave field u is only
available in the limited aperture case. Consider the fundamental solution of the Helmhotlz
equation in two-dimensional space:

G(x, y) = i

4
H

(1)
0 (ω|x − y|).

Using this fundamental solution, we obtain from equation (3.1) that the wave field satisfies
the Lippmann–Schwinger integral equation

u(x) = ω2
∫

B

G(x, y)uB(y)q(y) dy − iω
∫

B

G(x, y)ϕ(y) dy,

which gives a linear integral equation for the scatterer q:∫
BR

G(x, y)uB(y)q(y) dy = 1

ω2
u(x) +

i

ω

∫
BR

G(x, y)ϕ(y) dy. (3.3)

In practice, the linear integral equation (3.2) or (3.3) is implemented by using the method
of least squares with the Tikhonov regularization, which leads to a starting point for our
recursive linearization method.

11
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3.2. Recursive linearization

We now describe the procedure that recursively determines better approximations qω at ω = ωk

for k = 1, 2, . . . with the increasing frequencies. The procedure will be given for the Helmholtz
equation with PML problem, since this is what we numerically implement. Suppose now that
an approximation of the scatterer, qω̃, has been recovered at some wavenumber ω̃, and that
the wavenumber ω is slightly larger that ω̃. We wish to determine qω, or equivalently, to
determine the perturbation

δq = qω − qω̃. (3.4)

For the reconstructed scatterer qω̃, we solve at the frequency ω the direct scattering
problem

∇ · (s∇u) + s1s2ω
2(1 + qω̃)u = iωϕ in D,

u = 0 on ∂D.
(3.5)

For the scatterer qω, we have

∇ · (s∇(u + δu)) + s1s2ω
2(1 + qω)(u + δu) = iωϕ in D,

u + δu = 0 on ∂D.
(3.6)

Subtracting (3.5) from (3.6) and omitting the second-order smallness in δq and in δu, we
obtain

∇ · (s∇δu) + s1s2ω
2(1 + qω̃)δu = −δqs1s2ω

2u in D,

δu = 0 on ∂D.
(3.7)

Given a solution u of (3.5), we define the measurements

Mu(x) = [u(x1), . . . , u(xn)]
�, (3.8)

where xi , i = 1, . . . , n, are the points where the wave field u is measured. The measurement
operator M is well defined and maps the electric field to a vector of complex numbers in C

n,
which consists of point measurements of the scattered field at xi , i = 1, . . . , n.

For the scatterer qω and the source field ϕ, we define the forward scattering operator

S(qω, ϕ) = Mu. (3.9)

It is easily seen that the forward scattering operator S(qω, ϕ) is linear with respect to ϕ but
nonlinear with respect to qω. For simplicity, we denote S(qω, ϕ) by S(qω). Let S ′(qω̃) be the
Fréchet derivative of S(qω) and denote the residual operator

R(qω̃) = M(δu). (3.10)

It follows from the linearization of the nonlinear equation (3.9) that

S ′(qω̃)δq = R(qω̃). (3.11)

Applying the Landweber–Kaczmarz iteration [34] to the linearized equation (3.11) yields

δq = β Re S ′(qω̃)∗R(qω̃), (3.12)

where β is a positive relaxation parameter and S ′(qω̃)∗ is the adjoint operator of S ′(qω̃).

Remark 3.1. The Landweber–Kaczmarz iteration process is taken with respect to the
orthonormal basis functions φi and ψj for i, j = 1, . . . , m. The Landweber–Kaczmarz
method usually displays better convergence property than the simple Landweber iteration.
The relation between the Landweber iteration and Landweber–Kaczmarz is of the same type
as between the Jacobi and Gauss–Seidel iteration for linear systems.

12
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In order to compute the correction δq, we need an efficient way to compute S ′(qω̃)∗R(qω̃).
Let R(qω̃) = [ζ1, . . . , ζn]� ∈ C

n. Consider the adjoint problem

∇ · (s̄∇v) + s̄1s̄2ω
2(1 + qω̃)v = −ω2

n∑
i=1

δ(x − xn)ζi in D,

v = 0 on ∂D.

(3.13)

Multiplying (3.7) with the complex conjugate of v and integrating over D on both sides, we
obtain ∫

D

∇ · (s∇δu)v̄ + ω2
∫

�

s1s2(1 + qω̃)δuv̄ = −ω2
∫

�

δq s1s2uv̄.

Using Green’s formula and the homogeneous Dirichlet boundary conditions in equations (3.7)
and (3.13) yields∫

�

δu[∇ · (s∇v̄) + s1s2ω
2(1 + qω̃)v̄] = −ω2

∫
�

δq s1s2uv̄.

Taking the complex conjugate of equation (3.13) and plugging into the above equation gives

−ω2
n∑

i=1

∫
�

δuδ(x − xi )ζ̄i = −ω2
∫

�

δq s1s2uv̄,

which implies
n∑

i=1

δu(xi )ζ̄i =
∫

�

δq s1s2uv̄. (3.14)

Noting (3.10), (3.11) and the adjoint operator S ′(qω̃)∗, the left-hand side of (3.14) may be
deduced:

n∑
i=1

δu(xi )ζ̄i = 〈M(δu), R(qω̃)〉Cn = 〈S ′(qω̃)δq, R(qω̃)〉Cn (3.15)

= 〈δq, S ′(qω̃)∗R(qω̃)〉L2(�) =
∫

�

δqS ′(qω̃)∗R(qω̃), (3.15)

where 〈·, ·〉Cn and 〈·, ·〉L2(�) are the standard inner products defined in the complex vector
space C

n and the square integrable functional space L2(�).
Combining (3.14) and (3.15) yields∫

�

δq s1s2uv̄ =
∫

�

δqS ′(qω̃)∗R(qω̃),

which holds for any δq. It follows that

S ′(qω̃)∗R(qω̃) = s̄1s̄2uv. (3.16)

Using the above result, equation (3.12) can be written as

δq = β Re s̄1s̄2uv. (3.17)

Thus, for each pair of sources φi and ψj , we solve one direct problem (3.5) and one adjoint
problem (3.13). Once δq is determined, qω is updated by qω̃ + δq. After completing the sweep
for all sources φi, ψj , i, j = 1, . . . , m, we get the reconstructed scatterer function qω at the
frequency ω.

If the scattering data contain noise, the semi-convergence of the gradient-based algorithm
can be observed: the algorithm firstly converges to certain level and then starts to diverge.
This phenomenon illustrates the ill-posedness of the inverse scattering problem. Therefore,

13
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some regularization technique is required to stabilize the iteration. For instance, if the noise
level is known, the discrepancy principle may be used as a stopping rule for detecting the
transient from convergence to divergence. To stabilize the iterative we will examine the RLM
from the optimization point of view in the next section, which also provides an explicit way
to add the regularization term.

3.3. Adjoint state approach

Consider the inverse medium scattering problem as the following minimization process:

min[F(q) + αN(q)],

where F is the objective functional, α is the regularization parameter and the regularization
functional N can be taken as the L2 regularization

N(q) = 1

2

∫
D

|∇q|2

for a smooth scatterer function q and L1 regularization

N(q) = 1

2

∫
D

√
|∇q|2 + γ

for the nonsmooth scatterer function q, where γ is a small smoothing parameter avoiding zero
denominator in the following evaluations.

To minimize the cost functional by a gradient method, it is required to compute the Fréchet
derivatives of the objective functional and the regularization functionals. Noting the compact
support of the scatterer q and using integration by parts, we may obtain the Fréchet derivatives
of the regularization functional

N ′(q) = �q (3.18)

for the smooth scatterer q and

N ′(q) = ∇ ·
(

∇q√
|∇q|2 + γ

)
(3.19)

for the nonsmooth scatterer q.
Next we consider the objective functional F, which can be formulated as

F(q) = 1

2

n∑
i=1

|u(q)(xi ) − u(xi )|2, (3.20)

where u(q) is the solution of the PML problem (2.18) with the scatterer q and u(xi ), i =
1, . . . , n, are data points. Let

u(q)(xi ) − u(xi ) = [ζ1, . . . , ζn]� ∈ C
n.

A simple calculation yields the derivative of the cost functional at q:

F ′(q)δq = Re
n∑

i=1

〈u′(q)δq〉(xi ) ζ̄i , (3.21)

where 〈u′(q)δq〉 is the Fréchet derivative of u at q, satisfying

∇ · (s∇〈u′(q)δq〉) + s1s2ω
2(1 + q)〈u′(q)δq〉 = −ω2δqs1s2u in D,

〈u′(q)δq〉 = 0 on ∂D.
(3.22)

14
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To compute the Fréchet derivative, we introduce the adjoint state system:

∇ · (s̄∇v) + s̄1s̄2ω
2(1 + q)v = −ω2

n∑
i=1

δ(x − xi )ζi in D,

v = 0 on ∂D.

(3.23)

Multiplying equation (3.22) with the complex conjugate of v on both sides and integrating
over D yields ∫

D

∇ · (s∇〈u′(q)δq〉)v̄ + ω2
∫

D

s1s2(1 + q)〈u′(q)δq〉v̄ = −ω2
∫

D

δq s1s2uv̄.

Noting the Dirichlet boundary conditions in (3.22) and (3.23), we deduce from the integration
by parts that ∫

D

〈u′(q)δq〉[∇ · (s∇v̄) + s1s2ω
2(1 + q)v̄] = −ω2

∫
D

δqs1s2uv̄.

Taking complex conjugate of equation (3.23) and plugging into the above equation gives

−ω2
n∑

i=1

∫
D

〈u′(q)δq〉δ(x − xi )ζ̄i = −ω2
∫

D

δq s1s2uv̄,

which implies
n∑

i=1

〈u′(q)δq〉(xi ) ζ̄i =
∫

D

δq s1s2uv̄. (3.24)

Combining equations (3.21) and (3.24), we obtain

F ′(q)δq = Re
∫

D

δq s1s2uv̄,

which gives the Fréchet derivative of the cost functional

F ′(q) = Re s̄1s̄2ūv. (3.25)

Comparing equations (3.17) and (3.25), we derive the same Fréchet derivative from
different points of view: one is described via operator equations and another is based on
the optimization approach. The optimization process gives a natural way to regularize the
ill-posed problem and make the method of the recursive linearization stable.

3.4. Reconstruction implementations

First we comment on the scattering data and the direct solver. The scattering data were obtained
by the numerical solution of the direct scattering problem, which was implemented by using the
finite-element method with the uniaxial PML technique. The sparse large-scale linear system
can be most efficiently solved if the zero elements of the coefficient matrix are not stored. We
use the commonly used compressed row storage format which makes no assumptions about
the sparsity structure of the matrix, and does not store any unnecessary elements. In fact, from
the variational formula of our direct problem, the coefficient matrix is complex symmetric.
Hence, only the lower triangular portion of the matrix needs be stored. Regarding the linear
solver, the quasi-minimal residual algorithm with diagonal preconditioning was employed to
solve the sparse, symmetric and complex system of the equations.

Next, we present an outline of the algorithm in table 1. After inputting the user-specified
parameters, such as the minimum frequency ωmin, the maximum frequency ωmax, the PML
model medium property σ0, power p, thicknesses d1 and d2, the relaxation parameter α, the
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Table 1. Outline of the recursive linearization algorithm.

1 program main
2 input user-specified parameters: ωmin, ωmax, p, m, σ0, d1, d2, α, β, γ

3 generate an initial guess from the Born approximation at ωmax

4 for ω = ωmin : ωmax

5 for i = 1 : m

6 for j = 1 : m

7 solve one direct problem
8 solve one adjoint problem
9 compute the Fréchet derivative of the regularization functional

10 update the scatterer function
11 end for
12 end for
13 end for
14 end main

regularization parameter β and the smoothing parameter γ , the code generates an initial
guess from the Born approximation at the lowest frequency ωmin. Then the code loops over
the frequency from the lowest to the highest. At each frequency, two inner loops are done
for the orthonormal basis functions. At each iteration, we directly compute the Fréchet
derivative of the regularization functional, solve one direct and one adjoint problem to obtain
the Fréchet derivative of the objective functional and update the scatterer function. The overall
computational complexity is the number of direct solvers, which is the number of frequencies
times twice of the number of the orthonormal basis functions, besides a small fraction of the
CPU time used for solving the linear integral equation to generate the initial guess.

4. Numerical results

The code was written in Fortran90 using double precision arithmetic and was compiled using
the ifort compiler. The computations were run on an Intel Pentium 4 processor (3.2 GHz,
1536MB memory). In this section, we present three numerical examples to illustrate the
performance of the method.

Example 1. Let

q(x, y) = 5x2y e−(x2+y2),

reconstruct a scatterer defined by

q1(x, y) = q(3x, 3y)

inside the rectangular physical domain � = [−1, 1] × [−1, 1], see figure 3 for surface
and contour plots of the scatterer function in the domain �. The physical domain � was
partitioned into 7200 equal triangular elements. The computational domain D was obtained
from the physical domain by adding 20 grid points absorbing PML layers at each direction of
x and y, which leads to 20 000 equal triangular elements. Ten equally spaced frequencies were
used in the reconstruction, starting from the lowest frequency ωmin = 0.5π (corresponding to
the wavelength λ = 4.0) and ending at the highest frequency ωmax = 5.0π (corresponding to
the wavelength λ = 0.4). Denote by �ω = (ωmax − ωmin)/9 the stepsize of the frequency;
then the ten equally space frequencies are ωj = ωmin + j�ω, j = 0, . . . , 9. The number
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Figure 3. Surface and contour views of the exact scatterer q1 for example 1.

Table 2. Relative L2(�) error of reconstruction at ten frequencies for example 1.

ω ω0 ω1 ω2 ω3 ω4

e2 9.84 × 10−1 8.06 × 10−1 4.62 × 10−1 1.99 × 10−1 7.30 × 10−2

ω ω5 ω6 ω7 ω8 ω9

e2 3.46 × 10−2 2.54 × 10−2 2.17 × 10−2 2.01 × 10−2 1.92 × 10−2

Table 3. Relative L2(�) error of reconstruction at ten set of basis functions for example 1.

m 1 2 3 4 5

e2 8.29 × 10−1 4.23 × 10−1 1.73 × 10−1 3.85 × 10−2 2.51 × 10−2

m 6 7 8 9 10

e2 2.15 × 10−2 1.99 × 10−2 1.92 × 10−2 1.89 × 10−2 1.87 × 10−2

of orthonormal basis functions were taken as m = 8, which accounts for 64 Landweber–
Kaczmarz iterations at each frequency. The relaxation parameter β is 0.01. The L2

regularization functional was used for this smooth scatterer function and the regularization
parameter α is 10−4. The inversion method reconstructed it accurately. The reconstructed
function will not be plotted against the exact scatterer since the error is so small that it is
invisible in the plot. The procedure costs 1029 s CPU time, see table 2 for the relative L2(�)

error of the reconstruction at ten frequencies. It clearly shows a convergence of the method as
the frequency increases. Table 3 investigates the reconstruction at ten set of basis functions.
It displays a rapid decay of the reconstruction error for the first few set of basis functions
and then tends to maintain at a certain error level with slow decay. It suggests that a few set
of basis functions are sufficient to reach certain accuracy, which reduces the computational
complexity.
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Figure 4. Surface and contour views of reconstructed scatterer q1 for example 1.

Table 4. Relative L2(�) error of reconstruction with noisy data for example 1.

σ 1% 5% 10% 15% 20%

e2 1.98 × 10−2 2.88 × 10−2 4.67 × 10−2 6.63 × 10−2 8.66 × 10−2

To test the stability of the method, we reconstruct the scatterer q1 with noisy data. Some
relative random noise is added to the date, i.e. the scattering data takes

u := (1 + σ rand)u.

Here, rand gives uniformly distributed random numbers in [−1, 1] and σ is a noise level
parameter. Five tests were made here corresponding to the noise level added into the scattering
data to σ = 1%, 5%, 10%, 15%, 20%. The resulting errors in the inversion are listed in
table 4. Figure 4 shows the surface and contour plots of the reconstruction with the scattering
data corresponding to the noisy level σ = 20%. It actually reconstructed the scatterer with a
8.66% relative error. The stability tests show that the method is not sensitive to the data noise.

Example 2. Reconstruct a scatterer defined in the rectangular domain � by

q2(x, y) =
⎧⎨⎩

q(4x, 4y) for ρ < 0.7
−0.5 for 0.7 � ρ � 0.9
0.0 for ρ > 0.9

.

See figure 5 for surface and contour plots of the function. This scatterer is difficult to reconstruct
since the function is discontinuous across two circles ρ = 0.7 and ρ = 0.9. The value of the
function changes sharply to −0.5 in the narrow annulus. A finer mesh and a higher maximum
frequency were used to capture more detailed information for this example. The physical
domain � was partitioned into 12 800 equal triangular elements. The computational domain D
was obtained from the physical domain by adding 20 grid points absorbing PML layers at each
direction of x and y, which leads to 28 800 equal triangular elements. Twelve equally spaced
frequencies were used in the reconstruction, starting from the lowest frequency ωmin = 0.5π

and ending at the highest frequency ωmax = 8.0π (corresponding to the wavelength λ = 0.25).
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Figure 5. Surface and contour views of exact scatterer q2 for example 2.
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Figure 6. Surface and contour views of reconstructed scatterer q2 for example 2.

Denote by �ω = (ωmax − ωmin)/11 the stepsize of the frequency; then the 12 equally space
frequencies are ωj = ωmin +j�ω, j = 0, . . . , 11. The number of orthonormal basis functions
were taken as m = n = 8, which accounts for 64 Landweber–Kaczmarz iterations at each
frequency. The L1 regularization functional was used for this nonsmooth scatterer function
and the smoothing parameter γ is 10−6. Since the mesh is finer, the relaxation parameter β

is taken as a smaller number 0.001 to maintain the stability of the method. The procedure
costs 3107 s CPU time. The relative L2(�) error of the reconstruction at the 12 frequencies
is listed in table 5. Figure 6 shows the surface and contour plots of the reconstructed scatterer
with eight sets of basis functions, whereas figure 7 shows a cross-section reconstruction of the
scatterer at x = −0.3. An examination of the plots shows that the error of the reconstructions
occurs largely around the discontinuities, while the smooth part is recovered more accurately.
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Figure 7. Cross section of reconstructed again exact scatterer q2 at six frequencies for example 2.

Table 5. Relative L2(�) error of reconstruction at 12 frequencies for example 2.

ω ω0 ω1 ω2 ω3 ω4 ω5

e2 9.97 × 10−1 9.67 × 10−1 8.15 × 10−1 6.13 × 10−1 4.19 × 10−1 3.18 × 10−1

ω ω6 ω7 ω8 ω9 ω10 ω11

e2 2.77 × 10−1 2.62 × 10−1 2.55 × 10−1 2.51 × 10−2 2.48 × 10−1 2.44 × 10−1

Table 6. Relative L2(�) error of reconstruction at ten frequencies for example 3.

ω ω0 ω1 ω2 ω3 ω4

e2 9.97 × 10−1 9.49 × 10−1 7.89 × 10−1 5.63 × 10−1 3.73 × 10−1

ω ω5 ω6 ω7 ω8 ω9

e2 2.65 × 10−1 2.12 × 10−1 1.82 × 10−1 1.62 × 10−1 1.43 × 10−1

Example 3. Reconstruct the scatterer q1 with limited aperture data. The wavefield u is only
available on the line segment of �3, i.e. one side boundary of the physical domain �, as seen in
figure 1. This is a quite severe test to a method since the inverse problem becomes even more
ill-posed without full aperture data. We used the same parameters as those in example 1, i.e.
20 000 equal triangular elements, ten equally spaced frequencies varying from ωmin = 0.5π

to ωmax = 5.0π , the number of orthonormal basis functions m = 8, the relaxation parameter
β = 0.01. Table 6 shows the relative L2(�) error of the reconstruction at ten frequencies, see
figure 8 for the surface and contour plots of the reconstructed scatterer.
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Figure 8. Surface and contour views of reconstructed scatterer q1 for example 3.

5. Conclusion

We presented a recursive linearization method for solving the inverse medium scattering
problem with a stochastic source. Based on WCE theory, we converted the two-dimensional
Helmholtz equation with a stochastic source into a set of equations with deterministic sources.
For the deterministic model problem, we analyzed the direct scattering problem using DtN
map and provided some energy estimates for the wave fields. Computationally, we employed
a finite-element method with an uniaxial PML technique to truncate the open domain into a
bounded cell. The recursive linearization method requires multi-frequency scattering data. It
starts with an initial guess from the Born approximation and each update is obtained via a
continuation procedure on the frequency by solving one direct and one adjoint problem of the
Helmholtz equation. We considered two types of example, smooth and non-smooth scatterer
functions, and two types of scattering data, full and limited aperture. The reconstruction error
and stability tests were reported at different frequencies and different sets of basis functions.
The method of combining WCE with recursive linearization is robust and efficient for solving
the inverse medium problem with a stochastic source.

We point out some future directions along the line of this work. An interesting and
challenging problem is to solve the inverse medium problem with a stochastic source using
phaseless data. In practice, the convenient and cheap instrument can only measure the second
moment of the random field values, which is the expectation of the total energy and can be
calculated using the corresponding expansion coefficients. Without the phase information
of the scattering data, our preliminary numerical tests show that a straightforward extension
of the hybrid method gives a large reconstruction error. Another interesting and even more
challenging problem is to solve the inverse random medium problem. In that case, the medium
is no longer deterministic and its uncertainty has to be modeled as well. It is a longer term
research and will require new techniques. We hope to be able to address these issues and
report the progress elsewhere in the future.
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