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Abstract

Thermochronometer data offers a powerful tool for quantifying a wide range
of geologic processes, such as the deformation and erosion of mountain ranges,
paleotopography, hydrocarbon maturation, and forest fire frequency. With
increasing interest to quantify a wider range of complicated geologic pro-
cesses, more sophisticate techniques are in need. This paper is concerned
with an inverse problem method for interpreting the thermonochronometer
data quantitatively. Two novel models are proposed to simulate the thermal
convection inside the mountain and the surface process, respectively. One is
the heat transport process model which describes the change of temperature
of rocks; while the other is surface process model which explains the change
of surface of the mountain. New computational algorithms are developed for
solving the inverse problem of the coupled system of these two models. The
computational modeling should provide a systematic tool for restoring the
historic geological process effectively.
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1. Introduction

Recent years, there has been growing interest in developing suitable numer-
ical methods for studying geology phenomena. A great deal of studies have
been conducted, for example [13], [9]. Since the emerging of apatite (U-
Th)/He thermochronometry as an important tool for quantifying the cool-
ing history of rocks as they pass through the upper 1-3 km of the crust,
the low closure temperature of this technique has attracted geomophologist
and tectonocists with its application in interdisciplinary studies in the earth
science, such as the landform evolution, structural geology, geomophology,
geochemistry, petrology, and geodynamics [2], [17], [6]. Roughly speaking,
thermochronometer data may be interpreted by measuring an age (or other
related observables such as fission track lengths or noble gas release) from
minerals extracted from rocks at or near the earth’s surface. A thermonome-
ter cooling age represents the time since a rock cooled below some effective
closure temperature. These ages are influenced by either some events (e.g.,
fault motion, distribution of erosion in a catchment) or geologic processes
(e.g., erosion, faulting, topographic change). In the latter case, which is
closely related to our work in this paper, efforts are made to interpret the
thermochronometer data to quantify the deformation, erosion, and topo-
graphic history of active mountain ranges. More specifically, we present in
this paper a novel coupling of topographic evolution and 3D thermal and hy-
drologic models with inverse problem theory to restore the geologic processes
in history. For thermal convection, the physical process is governed by

ρc

(
∂T

∂t
+ v · ∇T

)
= ∇ · (k1∇T ) + ρH. (1)

Explanation of the parameters will be given later in detail. This equation
is a classic heat equation defined on the three dimensional region with mov-
ing boundary, considering heat transportation, diffusion and radiogenic ef-
fect. We also impose suitable boundary conditions based on the underlying
physics. For surface process, we have another classic heat type equation,
considering transportation by velocity field, diffusivity of nature, and fluvial
process in place,

∂S

∂t
= ∇ · (k2∇S) + u · ∇S + u3 + a

√
Qd · ∇S. (2)

An interesting open problem is include the glacier melting process in the
model, which would lead to highly nonlinear problem. Here v = (vx, vy, vz)
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is the velocity, u = (vx, vy) and u3 = vz. For the inverse problem, the velocity
v and surface S(t, x, y) are the unknowns, which need to be reconstructed.
The solution of the surface model serves as the moving boundary of the heat
process. In our algorithm, we restore the velocity field by solving the inverse
heat process model, and apply it as known to the surface model to obtain
the initial surface by solving another inverse problem. This is carried out
in an iterative fashion. To deal with the inverse problem entangled with a
moving boundary, we freeze the boundary for a relatively short time period,
by assuming that the mountain range does not change significantly in one
thousand years.

A fundamental and yet often unquantified problem associated with the-
mochronometer data is that interpretations of geologic processes influencing
their thermal history are not unique. The non-uniqueness of interpretations
stems from two typical sources: multiple thermal histories (e.g., slow pro-
tracted vs. rapid cooling) can produce the same thermochronometer age
[16]; trade-offs between different physical preocesses (e.g., heat flow into the
base of the crust and erosion rate) can produce similar thermal histories
thereby adding uncertainty to interpretations [8]. Fortunately, in many cases,
these uncertainties can be reduced by appropriate sampling and analysis of
thermchronometer systems on the same sample. To quantify the geological
process, we need to solve the equations (1) and (2) in a backward way. How-
ever the inverse problems of both the thermal convection and surface process
are severely ill-posed, that is, small changes in the present temperature and
surface may lead to large deviation of predicted velocity field and moun-
tain surface in the past. The problem gets more serious in a large span of
time simulation. There is sizable literature on the numerical solution of the
backward heat equations (1) and (2), for example [4], [7]. Also, as well doc-
umented, the inverse problem to determine the coefficients of the lowest or
leading terms for parabolic type equations is conditionally well-posed prob-
lem. Recent related results about the uniqueness and stability of recovery of
certain coefficients of parabolic partial differential equations may be found in
[3], [10], and [5]. We refer to [15] and [18] for numerical reconstructions where
the Tikhonov regularization is used and [11] for the quasi-solution method.

Our goal of this work is to solve numerically the inverse problem of the
coupled system with the finite element method, assuming that one measure-
ment of the temperature is available at every point and the knowledge of
the current surface profile. Our numerical results indicate that when the
direction of the velocity field is known, (in practice, a priori guess of the
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direction of velocity field can be obtained by sampling) the reconstruction of
the velocity field can be accurate. However, the reconstruction of the initial
surface is accurate when the simulation time is short and less so for a long
time simulation due to its ill-posedness. We also run the simulation for the
coupled system, which incurs huge computational cost.

The rest of the paper is outlined as follows. We introduce the formulation
of the problems in Section 2 and the algorithm for solving inverse problem
in Section 3. In Section 4, our initial numerical results for the coefficient
inverse heat transport problem and the inverse surface process problem are
presented. We also demonstrate the numerical results for the coupled system.

2. Formulation

From the conservation of energy and Fourier’s law for heat conduction that,
at any point of the system x = (x, y, z) ∈ R3, the rate of change of temper-
ature is proportional to the divergence of the heat flux:

ρc
dT

dt
= ∇ · (k∇T ),

where ρ is the density of the material, in this case the rocks, c is the capacity
of the system, k is the conductivity of the material and T = T (t,x) is the
temperature at x = (x, y, z) at time t.
If we consider the fact that rocks are transported at a velocity v = (vx, vy, vz)
and there exists a temperature gradient in the material along that direction,
we have

dT

dt
=

∂T

∂t
+
∂T

∂x

∂x

∂t
+
∂T

∂y

∂y

∂t
+
∂T

∂z

∂z

∂t

=
∂T

∂t
+
∂T

∂x
vx +

∂T

∂y
vy +

∂T

∂z
vz

=
∂T

∂t
+ v · ∇T

and

ρc(
∂T

∂t
+ v · ∇T ) = ∇ · (k∇T ) (3)

On the earth, most rocks contain a finite concentration of radioactive iso-
topes, such as U, Th, and K. The decay of these radioactive atoms gives rise
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to an increased kinetic energy. By adding the contribution of the source to
(3), we have

ρc(
∂T

∂t
+ v · ∇T ) = ∇ · (k∇T ) + ρH,

where H is the rate of radiogenic heat production per unit mass. Let

D = {(x, y)|0 ≤ x ≤ a, 0 ≤ y ≤ b}, Ω = {(x, y, z)|(x, y) ∈ D, 0 ≤ z ≤ S},

where S = S(t, x, y) is the surface of the mountain at time t. We consider
the heat transport process model, which satisfies the following equation with
proper boundary conditions

ρc

(
∂T

∂t
+ v · ∇T

)
= ∇ · (k1∇T ) + ρH,

T (t, x, y, S(t, x, y)) = Ta, (x, y) ∈ D, tp ≤ t ≤ tc,

T (t, x, y, 0) = Tm, (x, y) ∈ D, tp ≤ t ≤ tc,

∂T

∂n
|(x,y)∈∂D = 0, (x, y) ∈ ∂D, tp ≤ t ≤ tc,

T (tp, x, y, z) = Tp(x, y, z), (x, y, z) ∈ Ω, tp ≤ t ≤ tc.

(4)

Here density of material ρ, capacity c, conductivity k1, rate of radiogenic
heat production per unit mass H could be obtained by experiments. The
boundary value Ta is the temperature of air and Tm is the temperature at
the bottom, usually the temperature of molten rock. These two parameters
are known and initial temperature distribution Tp(x, y, z) is also known. The
vertical side boundaries are assumed to be conductively isolated, ∂T

∂n
= 0. For

the inverse problem, the velocity v and surface S(t, x, y) are unknown, which
need be reconstructed. The measurement data is T (t,x j(t)), j = 1, · · · ,m,
the history temperature data at points x j(t). But actually even we know
x j(tc)), the current location of measurement points, we still do not know the
history location of the measurement points x j(t)), tp ≤ t < tc. To overcome
this difficulty, it is assumed that the location is only changed by the velocity
at this point

x j(t) = x j(tc)−
∫ tc

t

vdt.

Another model is the Surface Process Model, where three mechanisms are
involved: the hillslope process, the advection and uplift, and the fluvial pro-
cess.
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First, diffusion is used to represent a variety of surficial hillslope processes
over long time scales, including regolith creep and mass wasting by bedrock-
involved landslides, which describes the time dependent change on the surface
of the earth,

∂S

∂t
= ∇ · (k∇S). (5)

Here S = S(t,x),x = (x1, x2) ∈ R2 is the height function of x at time t,
and k is the diffusivity constant. If combined with an uplift by the velocity
u3 and a horizontal transport by the velocity u = (u1, u2), the equation (5)
describing the change of surface can be changed to

∂S

∂t
= ∇ · (k∇S) + u · ∇S + u3.

Now we take the fluvial process into consideration. Define Q as the discharge
L3/t, ` as the direction of the river. Sediment is not considered in this model
because bedrock channels have a sediment load less than the capacity and
thus it is reasonable to believe there is no sediment storage. The bedrock
incise at a rate of ∂S

∂t
, also taken to be proportional to stream power

∂S

∂t
=
kf
w
Q
∂S

∂`
,

where w is the channel width and kf is a proportionality constant. The
channel width is assumed to be proportional to the square root of discharge

w = a
√
Q.

Finally
∂S

∂t
= ∇ · (k∇S) + u · ∇S + u3 +

kf
a

√
Q
∂S

∂`
.

By combining all of the factors considered above, we have the following equa-
tions for the surface process model

∂S

∂t
= ∇ · (k2∇S) + u · ∇S + u3 + a

√
Qd · ∇S,

∂S

∂n
|∂D = 0,

S(tp, x, y) = Sp(x, y), (x, y) ∈ D, tp ≤ t ≤ tc.

(6)
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Here the diffusivity constant of hillslope k2, proportional constant a, river
channel discharge Q and direction d are known from historic data or by
experiments. The functions u and u3 are the velocity v on the surface. Our
objective is to reconstruct Sp(x, y) from Sc(x, y).

The model problem is a coupled system because u and u3 of the Sur-
face Process Model come from the velocity v of the Heat Transport Process
Model, while the top boundary of the domain for the Heat Transport Process
Model comes from the solution of Surface Process Model. In the following,
we abbreviate the Heat Transport Process Model and Surface Process Model
by HTPM and SPM, respectively.

3. Algorithm

For simplicity, we assume that the velocity v is a piecewise constant function
with respect to t

v(t, x, y, z) = v(ti, x, y, z), ti ≤ t < ti+1,

where tp = t0 < t1 < · · · < tN = tc is a partition of [tp, tc].
We also assume that

S(t, x, y, z) = S(ti, x, y, z), ti ≤ t < ti+1,

such that we can solve the forward problem of the heat transport process
model in a fixed domain when ti ≤ t < ti+1.

The iteration is as follows:
First, we give the initial guess of the velocity v (k)(ti, x, y, z), i = 0, 1, · · · , N−
1 and the initial guess of the surface at time tp: S

(k)
p (x, y), (x, y) ∈ D,

where S
(k)
p (x, y) is also the surface between time [t0, t1], also denoted as

S
(k)
0 (x, y), (x, y) ∈ D. Here k is the count of the iterations, where k = 0

at the beginning.
Next, we update v from T (t,x j(t)), j = 1, · · · ,m, assuming that S0(x, y) is
fixed.
Then update S(tp, x, y) from the current surface S(tc, x, y), assuming that
v is known.
Repeat the previous steps until certain stopping criterion is met.

Next the details for updating the velocity field and surface are discussed.
To update S and V , we adopt the gradient method by minimizing the cost
functional in the L2 norm. To obtain the gradient of the cost functional, two
backward heat type equations are solved.
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3.1. Update v when S0(x, y) is fixed

Step 1: With the current v (k)(ti, x, y, z), i = 0, 1, · · · , N − 1, we can obtain
u(ti, x, y) and u3(ti, x, y) for i = 0, 1, · · · , N − 1. With the guess of initial

surface S
(k)
0 (x, y), we solve the surface process model as a forward problem

for
Si(x, y) = S(ti, x, y), (x, y) ∈ D, i = 0, 1, · · · , N.

Step 2: Solve the heat transport process model for t0 ≤ t ≤ t1 with the
velocity v (k)(t0, x, y, z). The initial temperature T0 = Tp is given. The tem-
perature at t1 is denoted as T1 which is used as the initial value of the forward
problem for t1 ≤ t ≤ t2.
Step 3: Update v (k)(t0, x, y, z) from the measurement data T (t,x j(t)), t0 ≤
t ≤ t1. The detailed algorithm for updating v (k)(t0, x, y, z) is provided below.
Step 4: Repeat Step 2 and Step 3 for ti ≤ t ≤ ti+1, i = 1, 2, · · · , N − 1.
Thus, we finish one cycle of iteration for updating v .

To update v (k)(ti, x, y, z), we adopt a variational approach for the heat
transport process model for ti ≤ t ≤ ti+1. Let ṽ = v + δv , T be the solution
of the heat transport process model with the velocity v and T̃ be the solution
with the velocity ṽ . Let δT = T̃ − T . It is clear that the initial values are
the same: T̃i = Ti. Hence δT satisfies the following equations

ρc

(
∂(δT )

∂t
+ v · ∇(δT )

)
= ∇ · (k1∇(δT ))− δv · ∇T,

δT (t, x, y, S(t, x, y)) = 0, (x, y) ∈ D,
δT (t, x, y, 0) = 0, (x, y) ∈ D,
∂(δT )

∂n
|(x,y)∈∂D = 0, (x, y) ∈ ∂D,

δT (ti, x, y, z) = 0, (x, y, z) ∈ Ω,

(7)

where Ω = D × Si(x, y).
Define the cost functional

J(v) =
1

2

m∑
j=1

∫ ti+1

ti

(T (t,x j)− Z(t,x j))
2 + αi

∫
Ω

|v |2 = J1 + J2. (8)

Since it is assumed that there is no movement in time [ti, ti+1], x j now is
independent of time t for every j. To minimize the cost functional (8) by a
gradient method, let

ζj(t) = ζ(t,x j) = T (t,x j)− Z(t,x j).
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Thus

J1(ṽ)− J1(v) =
1

2

m∑
j=1

∫ ti+1

ti

δT (t,x j)(T̃ (t,x j) + T (t,x j)− 2Z(t,x j)).

Therefore

J
′

1(v)δv =

∫ ti+1

ti

m∑
j=1

T
′
(t,x j)δvζj(t) (9)

or

J
′

1(v) =
m∑
j=1

T
′
(t,x j)ζj(t),

where T
′

is the Frechet derivative with respect to v . Consider the adjoint
problem

ρc

(
∂W

∂t
+∇ · (vW )

)
= −∇ · (k1∇W )−

m∑
j=1

ζj(t)δ(x − x j),

W (t, x, y, S(t, x, y)) = 0, (x, y) ∈ D,
W (t, x, y, 0) = 0, (x, y) ∈ D,
n · (ρcvW + k1∇W )|(x,y)∈∂D = 0, (x, y) ∈ ∂D,
W (ti+1, x, y, z) = 0, (x, y, z) ∈ Ω.

(10)

We have∫ ti+1

ti

∫
Ω

{
W

[
ρc

(
∂(δT )

∂t
+ v · ∇(δT )

)
−∇ · (k1∇(δT ))

]}
+

{
δT

[
ρc

(
∂W

∂t
+∇ · (vW )

)
+∇ · (k1∇W )

]}
= −

∫ ti+1

ti

∫
Ω

[
Wδv · ∇T +

m∑
j=1

δTζj(t)δ(x − x j)

]
.

Since ∫ ti+1

ti

∫
Ω

Wρc
∂(δT )

∂t
+ δTρc

∂W

∂t
=

∫
Ω

ρc(WδT )|ti+1

ti = 0,
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∫ ti+1

ti

∫
Ω

(Wρcv · ∇(δT ) + δTρc∇ · (vW )) =

∫ ti+1

ti

ρc

∫
∂Ω

WδTv · n

=

∫ ti+1

ti

δT (n · ρcvW )|(x,y)∈∂D

and ∫ ti+1

ti

∫
Ω

(−W∇ · (k1∇(δT )) + δT∇ · (k1∇W ))

=

∫ ti+1

ti

∫
∂Ω

(−Wk1∇(δT ) · n + δTk1∇W · n)

=

∫ ti+1

ti

δT (n · k1∇W )|(x,y)∈∂D,

it follows that

−
∫ ti+1

ti

∫
Ω

δv · ∇TW =

∫ ti+1

ti

∫
Ω

m∑
j=1

δT (t,x )ζj(t)δ(x − x j), (11)

=

∫ ti+1

ti

m∑
j=1

δT (t,x j)ζj(t). (12)

By comparing (12) with (9), we have

J
′

1(v) = −∇TW.

Therefore, to obtain the gradient, we need to solve the adjoint problem (10),
which is a backward heat equation.

3.2. Update S0(x, y) when v is given

We update S0(x, y) from the current surface SN(x, y) = S(tc, x, y) while
assuming that velocity v is given. Let S̃0(x, y) = S0(x, y) + δS0(x, y), where
S is the solution of the surface process model with the initial value S0(x, y)
and S̃ is the solution with the initial value S̃0. Let δS = S̃ − S. Then δS
satisfies the following equations

∂(δS)

∂t
= ∇ · (k2∇(δS)) + u · ∇(δS) + a

√
Qd · ∇(δS),

∂(δS)

∂n
|∂D = 0,

δS(t0, x, y) = δS0(x, y), (x, y) ∈ D, tp ≤ t ≤ tc.

(13)
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Suppose that Sc(x, y) is the measured surface at current time tc and S(tN , x, y)
is the numerically reconstructed surface with the initial value S0(x, y).

Define the cost functional

I(S0) =
1

2

∫
D

(S(tN , x, y)− Sc(x, y))2 + β

∫
D

|S0|2 = I1 + I2. (14)

We apply the gradient method to minimize the cost functional defined in
(14). Thus

I1(S̃0)− I1(S0) =
1

2

∫
D

δS(tN , x, y)(S̃(tN , x, y) + S(tN , x, y)− 2Sc(x, y)).(15)

Therefore

I
′

1(S0)δS0 =

∫
D

S
′
(tN , x, y)δS0(S(tN , x, y)− Sc(x, y)),

where S
′

is the Frechet derivative with respect to the initial surface. To
evaluate the gradient I

′
1(S0) of the functional I(S0), we introduce the adjoint

problem 
∂V

∂t
= −∇ · (k2∇V ) +∇ · (uV ) +∇ · (a

√
QdV ),

∂V

∂n
|∂D = 0,

V (tc, x, y) = S(tc, x, y)− Sc(x, y), (x, y) ∈ D.

(16)

Combining (13) with (16), we have∫ tc

tp

∫
D

V

[
∂(δS)

∂t
−∇ · (k2∇(δS))− u · ∇(δS)− a

√
Qd · ∇(δS)

]
+ δS

[
∂V

∂t
+∇ · (k2∇V )−∇ · (uV )−∇ · (a

√
QdV )

]
= 0.

Since∫ tc

tp

∫
D

δS
∂V

∂t
+V

∂(δS)

∂t
=

∫
D

(V δS)|tctp =

∫
D

((S(tc)−Sc)δS(tc)−V (tp)δS0),

∫ tc

tp

∫
D

δS∇· (k2∇V )−V∇· (k2∇(δS)) =

∫ tc

tp

∫
∂D

δSk2
∂V

∂n
−V k2

∂(δS)

∂n
= 0,
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∫ tc

tp

∫
D

δS∇ · (uV ) + V u · ∇(δS) =

∫ tc

tp

∫
∂D

δSV u · n = 0

and∫ tc

tp

∫
D

δS∇ · (a
√
QdV ) + V a

√
Qd · ∇(δS) =

∫ tc

tp

∫
∂D

δSa
√
Qd · n = 0,

we obtain ∫
D

(S(tc)− Sc)δS(tc) =

∫
D

V (tp)δS0. (17)

By comparing (17) with (15), we derivethe gradient of the cost functional as
I
′
1(S0) = V (tp, x, y). Therefore, the gradient of the cost functional (14) can

be evaluated through solving the adjoint problem (16).

3.3. A modification of the inverse problem for HTPM

It is evident that additional information on the data to be recovered certainly
enhances the accuracy of the numerical reconstruction. For example, a priori
knowledge (through sampling) of the direction or distribution of the velocity
field can lead to the simplification

v = v · d ,

where v is unknown but d is known. The governing equation (4) is replaced
by a slightly modified version

ρc

(
∂T

∂t
+ vd · ∇T

)
= ∇ · (k∇T ) + ρH, (x, y, z) ∈ Ω, 0 ≤ t ≤ t∗,

T (t, x, y, S(t, x, y)) = Ta, (x, y) ∈ D, 0 ≤ t ≤ t∗,

T (t, x, y, 0) = Tc, (x, y) ∈ D, 0 ≤ t ≤ t∗,

∂T

∂n
|(x,y)∈∂D = 0, (x, y) ∈ ∂D, 0 ≤ t ≤ t∗,

T (0, x, y, z) = T0(x, y, z), (x, y, z) ∈ Ω, 0 ≤ t ≤ t∗.

(18)

For the inverse problem, the observation data is one measurement of the
temperature T at time t∗, which is denoted as Z(x, y, z). Similarly, we define
the cost functional

J(v) =
1

2

∫
Ω

(T (t∗;x )− Z)2 + α

∫
Ω

|v |2 = J1 + J2.
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Let
ζ = T (t∗;x )− Z,

then

J1(ṽ)− J1(v) =
1

2

∫
Ω

δT (t∗)(T̃ (t∗) + T (t∗)− 2Z).

Hence

J
′

1(v)δv =

∫
Ω

T
′
(t∗)δvζ

or
J
′

1(v) = T
′
(t∗)ζ.

Consider the adjoint problem

ρc

(
∂W

∂t
+∇ · (vW )

)
= −∇ · (k∇W ),

W (t, x, y, S(t, x, y)) = 0, (x, y) ∈ D,
W (t, x, y, 0) = 0, (x, y) ∈ D,
n · (ρcvW + k∇W )|(x,y)∈∂D = 0, (x, y) ∈ ∂D,
W (t∗, x, y, z) = ζ, (x, y, z) ∈ Ω.

(19)

We have∫ t∗

0

∫
Ω

{
W

[
ρc

(
∂(δT )

∂t
+ v · ∇(δT )

)
−∇ · (k∇(δT ))

]}
+

{
δT

[
ρc

(
∂W

∂t
+∇ · (vW )

)
+∇ · (k∇W )

]}
= −

∫ t∗

0

∫
Ω

(Wδv · ∇T ) .

Since∫ t∗

0

∫
Ω

(
Wρc

∂(δT )

∂t
+ δTρc

∂W

∂t

)
=

∫
Ω

ρc(WδT )|t∗0 =

∫
Ω

ρcζδT (t∗),

∫ t∗

0

∫
Ω

(Wρcv · ∇(δT ) + δTρc∇ · (vW ) =

∫ t∗

0

ρc

∫
∂Ω

WδTv · n

=

∫ t∗

0

δT (n · ρcvW )|(x,y)∈∂D
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and ∫ t∗

0

∫
Ω

− W∇ · (k∇(δT )) + δT∇ · (k∇W )

=

∫ t∗

0

∫
∂Ω

(−Wk∇(δT ) · n + δTk∇W · n)

=

∫ t∗

0

δT (n · k∇W )|(x,y)∈∂D,

we obtain

−
∫ t∗

0

∫
Ω

δv · ∇TW =

∫
Ω

ρcδT (t∗)ζ.

Thus

J
′

1(v)δv = − 1

ρc

∫ t∗

0

∫
Ω

δv · ∇TW

or

J
′

1(v) = − 1

ρc
d · ∇TW.

4. Numerical Results

In this section we present several numerical test results to validate our model.
The following experimental data for parameters are used in the governing
equation for our numerical computation purpose:

• Heat transport diffusivity: 32 km2/myr.

• velocity: on the scale of 1.0 km/myr.

• ρ: 2700 kg/m3.

• c: heat capacity 800 J/(kg K).

• H: radiogenic production 0.5 microwatt/m3.

• Ta = 293K, Tm = 1073K.

For the numerical computation, we use the following setup:

• The computational domain: x ∈ [0, 100] km, y ∈ [0, 50] km, z ∈
[0, S(x, y)] km; each time interval is separated into 20 time steps.



The Reconstruction of Mountain Surface 15

• The regularization parameter: α = 10−3, β = 10−6.

• Measurement data: T (tc,xj(tc)), temperature on nodes in subsection
4.1.

• Measurement data: S(tc, xj, yj), lift of surface on nodes in subsection
4.2.

• Measurement data: {T (n4t,xj(n4t))}|Nn=1 and S(tc, xj, yj) on nodes
in subsection 4.3.

To create the mesh for the finite element method, we employ a simple and
effective mesh generator in MATLAB by Persson and Strang [14] for 3D
HTPM. In the spatial domain Ω, we choose the continuous piecewise linear
polynomial. In the temporal domain, we use the backward Euler method.
All of the numerical experiments are performed in a Window XP machine
with an Inter(R) Pentium(R) 4 , 3.20GHz, 3.19 GHz CPU and 2.00GB of
RAM.

4.1. Backward for HTPM

We run the numerical simulation on one time interval tc − 4t ≤ t ≤ tc,
tc = 5× 105, 4t = 1× 105.
Test 1 We begin with the simplest case in which the velocity field is composed
of a two-component piecewise constant. The direction is also assumed to
be known. The data to be restored is the magnitude. We use the heat
transport model within the fixed domain to solve a coefficient inverse problem
for reconstructing the simple velocity field. For simplicity, we assume zero
velocity in the x direction, though our algorithm and computation may be
extended to the three dimensional case. We use one measurement of the
temperature at the end of time period for the observation. Figure 1 is the
profile of the velocity field. Table 1 shows the reconstruction accuracy.

relative error iterations elements
77%→ 0.3% 27 17070

Table 1: Two component piecewise constant velocity field
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Figure 1: Two component piecewise constant velocity field

Test 2 The velocity field is assumed to be composed of four piecewise con-
stants. Once again, the direction is known and the magnitude is what we
need to reconstruct. Figure 2 and Table 2 show the velocity profile and ac-
curacy of restoration, respectively.

Figure 2: Four component piecewise constant velocity field

relative error iterations elements
84%→ 0.5% 42 17070

Table 2: Four component piecewise constant velocity field

Test 3 As expected, the numerically recovered velocity field is consistent
with the exact data for the last two setup. For now, we test our numerical
method for a velocity field which is composed of four parts. For each part,
the direction is unknown either. The result in Table 3 shows that the recon-
struction is less accurate due to the more information to be restored. And it
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gets better when we drop the unresolved boundary layer or when we refine
the mesh, which means more information at our disposal and high numerical
accuracy.

Figure 3: Four component piecewise constant velocity field

relative error drop boundary drop two layers iterations elements
87%→ 37% 87%→ 16% 87%→ 8% 583 17070
87%→ 24% 87%→ 7% 87%→ 3% 807 31687

Table 3: Four component piecewise variable velocity field

4.2. Model IV (Backward for SPM)

We run the numerical simulation on one time interval tc − 4t ≤ t ≤ tc,
tc = 5 × 105, 4t = 1 × 105. The algorithm for the surface process model
is much simpler than for the heat transportation process model because the
surface process model is a linear problem. Nevertheless, it is also a typical
backward parabolic problem. The reconstruction of the initial value is ex-
tremely ill-posed. Although to reconstruct the initial value is not stable, the
reconstruction at any time t, tp < t < tc, is better. The reconstruction is
better if time t is closer to tc. In this subsection, we present a numerical
result at initial time and at half time. The initial surface is

Sp(x, y) = (cos(π × x/100) + cos(π × y/50))× 2 + 20.

Figure 4 shows the exact and reconstructed initial surface. Figure 5 shows
the exact and numerically restored surface at the middle of this time period.
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Table 4 shows the accuracy of restoring surface to the past.

Figure 4: Left: Exact initial surface; Right: Reconstructed initial surface

initial guess relative error computational cost
S(x, y) = 15 23%→ 0.3% 13 seconds

Table 4: Accuracy of the reconstruction

Figure 5: Left: Exact half-time surface; Right: Reconstructed half-time
surface
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4.3. Model V: The coupled system

We run the numerical simulation on one time interval tp = 0 ≤ t ≤ tc,
tc = 5 × 105, 4t = 1 × 105. For the coupled system, the main challenge is
the slow convergence of the iterations, thus large computational cost. We
test our method on the case that velocity field is composed of four parts, for
each part the direction of the velocity is known. In order to test stability of
the algorithm, we also add 5% random noise to the measurement data. We
compare the two figures in Figure 7, the exact initial surface and the numer-
ically reconstructed surface. It shows that the main feature of the surface
is restored correctly and the accuracy shown in the Table 6 is satisfactory.
Figure 6 is the velocity profile.

Figure 6: Four component piecewise constant velocity field

Time interval vy vz
N I II III IV I II III IV
1 1 1.5 -2 -1.3 -1 0 0 1.3
2 0.8 1.5 -2 -1.4 -0.8 0 0 1.4
3 0.8 1.2 -1.7 -1.3 -0.8 0 0 -.3
4 1 1.5 -1.8 -1.5 -1 0 0 1.5
5 1.2 1.5 -2 -1.5 -1.2 0 0 1.5

Table 5: velocity field
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We choose the velocity in the Table 5 as the exact velocity field, in which
each row is corresponding to the velocity for one time interval.

Figure 7: Left: Exact initial surface; Right: Reconstructed initial surface

initial guess relative error computational cost elements
S(x, y) = 15 23%→ 2% 18 hours 17070

Table 6: Reconstruction without random noise to the the measurement data

5. Conclusion

Successful reconstruction of the mountain surface often provides geolo-
gists with a valuable perspective about the limit of the range that ther-
mochronometer data can be interpreted. In this paper, we have presented a
novel inverse problem method along with the new algorithms and numerical
examples. Our method provides a solid and essential mean in understanding
how to reconstruct the mountain surface of the past efficiently and accurately.
We have also presented the mathematical model formulation by taking ac-
count of the main factors affecting temperature distribution in the mountain,
such as heat transferring in the mountain, heat produced by the radiological
element in rocks whose history temperature can be used for observation. As
the initial step, we have tested our models on very simple cases to obtain
promising numerical results. Even with a limited amount of data, our re-
sults have demonstrated the restored surface carries important features of
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the (exact) initial surfaces for the test problems. Our general computational
approach may be extended to a range of other geodynamics.

Our long term objective is to develop a systematic tool for the under-
standing of dynamic geological processes influenced by thermal factors. A
significant inherent challenge is to produce accurate numerical approximation
of the large scale problem in the millions of years time span.

We conclude the paper by some general remarks about future directions
along this line of research. There are many other factors affecting the tem-
perature distribution that are neglected in our governing equations. An in-
teresting future direction is to include also the melting effect which would
lead to a highly nonlinear equation. The corresponding inverse problem for
the nonlinear forward problem is at present completely open. Another inter-
esting open problem is to numerically solve the problem with more realistic
setups so that the measurement data is T (t,x j(t)), j = 1, · · · ,m, the history
temperature data at rocks x j(t) carrying radiogenic elements. Mathemat-
ically, an interesting problem is to study the uniqueness question for the
coefficient inverse problem given the direction of the velocity field. There are
also many challenging issues for developing fast and efficient algorithms for
solving the large scale model problem.
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