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Abstract. Consider the scattering of a time-harmonic electromagnetic plane wave by an
arbitrarily shaped and filled cavity embedded in a perfect electrically conducting infinite
ground plane. A method of symmetric coupling of finite element and boundary integral
equations is presented for the solutions of electromagnetic scattering in both transverse
electric and magnetic polarization cases. Given the incident field, the direct problem is
to determine the field distribution from the known shape of the cavity; while the inverse
problem is to determine the shape of the cavity from the measurement of the field on
an artificial boundary enclosing the cavity. In this paper, both the direct and inverse
scattering problems are discussed based on a symmetric coupling method. Variational
formulations for the direct scattering problem are presented, existence and uniqueness
of weak solutions are studied, and the domain derivatives of the field with respect to
the cavity shape are derived. Uniqueness and local stability results are established in
terms of the inverse problem.
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1. Introduction

The radar cross section (RCS) is a measure of the detectability of a target by radar sys-
tem. Deliberate control in the form of enhancement or reduction of the RCS of a target is of
no less importance than many radar applications. The cavity RCS caused by jet engine inlet
ducts or cavity-backed antennas can dominate the total RCS. A thorough understanding of
the electromagnetic scattering characteristic of a target, particularly a cavity, is necessary
for successful implementation of any desired control of its RCS, and is of high interest to
the scientific and engineering community.
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Time-harmonic analysis of cavity-backed apertures with penetrable material filling the
cavity interior has been examined by numerous researchers in the engineering community,
such as Jin [18], Jin and Volakis [19], Liu and Jin [21], Wood and Wood [30], and ref-
erences cited therein. Mathematical treatment of the direct scattering problems involving
cavities can be found in Ammari et al [2,3], Bao and Sun [7], Van and Wood [28], where
a non-local transparent boundary condition, based on the Fourier transform, is proposed
on the open aperture of the cavity. It is a common assumption that the cavity opening co-
incides with the aperture on an infinite ground plane, and hence simplifying the modeling
of the exterior (to the cavity) domain. This limits the application of these methods since
many cavity openings are not planar. Recently, Wood [29] has developed a technique that
is capable of characterizing the scattering by over-filled cavities in the frequency domain,
where an artificial boundary condition, based on Fourier series, is introduced on a semicir-
cle enclosing the cavity. The solution domain is the cavity plus the interior region enclosed
by the semicircle, which may be large and thus computationally demanding if the aperture
of the cavity is wide. This paper aims to develop an efficient alternative for dealing with
both regular and over-filled cavities with arbitrary shape, and analyze the associated direct
and inverse electromagnetic scattering problems.

Specifically, we consider a time-harmonic electromagnetic plane wave incident on an
open cavity embedded in an infinite ground plane. The ground plane and the wall of the
cavity are perfect electric conductors, and the open cavity is filled with a nonmagnetic ma-
terial which may be inhomogeneous. The infinite upper half-space above the ground plane
and the cavity is composed of a homogeneous medium characterized by its permittivity ǫ0

and permeability µ0. Two fundamental polarizations, transverse electric (TE) and trans-
verse magnetic (TM), are considered for the direct and inverse electromagnetic scattering
from the cavity.

Given a time-harmonic plane incident wave and the shape of the cavity, the direct
scattering problem is to predict the field distribution away from the cavity. We present a
method of symmetric coupling of finite element and boundary integral equations. Compu-
tationally, the symmetric coupling leads to a complex symmetric coefficient matrix which
can be efficiently stored and solved, especially for three-dimensional problems. In this
method, the unbounded region is first divided into an interior region and an exterior re-
gion through an artificial boundary. The field in the interior region is formulated using the
finite element method, and the field in the exterior region is formulated via the boundary
integral method. The interior and exterior fields are subsequently coupled by the con-
tinuity conditions at the boundary separating the two regions. Therefore, the boundary
integral equation essentially provides a transparent boundary condition on the boundary
of the truncated domain to avoid artificial wave reflection. The position of the artificial
boundary is rather flexible and can chosen to greatly reduce the computational effort: it
will just be the aperture on the ground plane for a regular cavity; it can be put as close as
possible to the opening of the overfilled cavity. In the general two-dimensional setting, we
study the well-posedness of the direct scattering problem based on variational approaches
and show the differentiability of the field with respect to the cavity shape.

Given a time-harmonic plane incident wave, the inverse scattering problem is to de-
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Figure 1: Problem geometry. A cavity with the wall S is placed on a perfectly conducting ground Γg .
The medium inside the cavity is inhomogeneous with a variable wavenumber κ and the medium above
the cavity and ground is homogeneous with a constant wavenumber κ0. A Lipschitz continuous curve Γ
encloses the cavity and divides the physical domain into Ω, bounded by S and Γ, and its complementary
Ωc in the upper half-space.

termine the shape of the cavity from the measurement of the total field on the artificial
boundary. Regarding the inverse problem, this paper is concerned with the uniqueness
and the local stability questions: what information can we extract about the shape, i.e.,
the cavity wall, from measurements of the electromagnetic field on the artificial boundary?
We prove the uniqueness of the inverse problem: the cavity shape is uniquely determined
by the boundary measurement of the total field. Based on the domain derivative of the
field, we establish a local stability result, which indicates that if the measurements are
“close" to the true fields, then the resulting cavity is also “close" to the true cavity. The
proof is motivated by the technique in Bao [6] for the diffraction grating problem, where
a main ingredient was to estimate a quotient difference function due to the perturbation
of the grating profile. Noticing the quotient difference function is an approximation to the
domain derivative, we directly investigate the domain derivative and provide the stability
proof for both the TE and TM polarization cases in a similar manner. See [12] for the
uniqueness and local stability of a regular cavity filled with homogeneous medium in TE
case.

The paper is outlined as follows. In Section 2, the Maxwell equations are presented
and reduced into two fundamental modes in two dimensions: TE polarization and TM
polarization. Section 3 is devoted to the TE polarization case. A mathematical model is
described; variational formulations for a symmetric coupling of a finite element method in
the inhomogeneous cavity with a boundary integral method on the artificial boundary is
presented; the well-posedness of the variational problem is studied; the domain derivative
of the field with respect to the cavity shape is derived; uniqueness and local stability results
are obtained. Parallel results for the case of TM polarization are given in Section 4. The
paper is concluded with some general remarks and directions for future research in Section
5.

2. Maxwell’s equations

Throughout, the media are assumed to be non-magnetic, and a constant magnetic
permeability, µ = µ0, is assumed everywhere. Then the electromagnetic wave propagation
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is governed by the time-harmonic Maxwell equations (time dependence e−iωt ):

curlE = iωB, (2.1)

curlH = −iωD+ J, (2.2)

where E is the electric field, H is the magnetic field, B is the magnetic flux density, D is the
electric flux density, J is the electric current density, and ω is the angular frequency. The
constitutive relations, describing the macroscopic properties of the medium, are taken as

B= µH, D= ǫE, and J= σE,

where the constitutive parameters µ, ǫ, and σ denote, respectively, the magnetic per-
meability, the electric permittivity, and the conductivity of the medium. Throughout, we
assume Reǫ ≥ ǫ0 > 0, σ > 0 accounting for a loss medium and excludes the possible ex-
istence of eigen-frequencies, and ǫ ∈ L∞(R3),σ ∈ L∞(R3). Substituting the constitutive
relations into Eqs. (2.1) and (2.2) gives a coupled system for the electric and magnetic
fields

curlE= iωµH, (2.3)

curlH= (−iωǫ +σ)E. (2.4)

In addition, standard jump conditions are satisfied for the fields across an interface.
Let a plane wave (Ei,Hi) be incident on an electromagnetic cavity, as shown in Fig.

1. A cavity with the wall S is placed on a perfectly conducting ground Γg . The medium
inside the cavity is inhomogeneous with a dielectric coefficient ǫ. Above the cavity and the
ground, the medium is assumed to be homogeneous with a constant dielectric permittivity
ǫ0. Choose a Lipschitz continuous curve Γ to enclose the cavity, denote by Ω the region
bounded from S and Γ, and let Ωc = R2

+ \Ω be the complementary set of Ω in the upper
half-space R2

+ = {x ∈ R2 : x2 > 0}. On the surface of the perfectly conducting medium, the
following boundary condition is satisfied for the electric field

n× E= 0 onΓg ∪ S, (2.5)

where n is the unit outward normal to the boundary.
Taking the curl of Eq. (2.3) and eliminating the magnetic field from Eq. (2.4), we

obtain the equation for the electric field

curl curlE− κ2E= 0, (2.6)

where κ2 =ω2µ0ǫ+ iωµ0σ and κ is known as the wavenumber. Similarly, we may derive
the equation for the magnetic field by eliminating the electric field

curlκ−2 curlH−H= 0. (2.7)

For the TE polarization case, the incident wave has the electric field parallel to the
x3-axis, which is also the infinite axis of the aperture. Since both the incident field and
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medium are uniform along the x3-axis, i.e., no variation of any kind with respect to x3, the
scattered electric field, and thus the total electric field, are also parallel to the x3-axis, i.e.,
E = [0,0,u]⊤. It is therefore convenient to formulate the problem in terms of the electric
field since it has only one component. It deduces from Eqs. (2.5) and (2.6) that the total
electric field satisfies

∆u+ κ2u = 0 aboveΓg ∪ S, (2.8)

u = 0 onΓg ∪ S. (2.9)

For the case of TM polarization, the magnetic field has only a x3-component, i.e., H =

[0,0,u]⊤, and therefore it is convenient to formulate the problem in terms of the magnetic
field. It follows from Eqs. (2.5) and (2.7) that the total magnetic field satisfies

∇ ·
�
κ−2∇u

�
+ u= 0 aboveΓg ∪ S, (2.10)

∂nu= 0 onΓg ∪ S. (2.11)

We shall study the direct and inverse problems only for TE and TM polarized solutions.
The more complicated three-dimensional problem will be considered in a separate work.
We refer to [1, 4, 5] for the method of coupling finite element and boundary element for
solving some related scattering problems involving the full Maxwell equations.

To apply numerical methods, the open domain needs to be truncated into a bounded
domain. Therefore, a suitable boundary condition has to be imposed on the boundary of
the bounded domain so that no artificial wave reflection occurs. Here we present a method
of symmetric coupling of a boundary integral method for the truncated domain combined
with a finite element method in the inhomogeneous cavity. In this method, it is necessary
to enclose the cavity with inhomogeneous medium by a fictitious surface to separate the
finite element region from the exterior region where the boundary integral equations apply.
The field inside the surface is formulated using the finite element method, whereas those
exterior to the surface can be expressed in terms of surface integrals. The interior and
exterior are finally coupled via the field continuity conditions, leading to a complete system
for the solution of interior and surface fields. This technique is particularly attractive for
open-region problems involving complex structures and inhomogeneous materials, e.g.,
Brezzi and Johnson [8], Costable and Stephan [11], Gatica and Hsiao [13], Hsiao [17],
Johnson and Nédélec [22], Li [24], Meddahi et al [26].

3. TE polarization

In this section, we shall introduce a variational formulation for the direct problem
using a symmetric coupling of finite element and boundary integral methods and study
the well-posedness of the variational problem, and present a local stability result for the
inverse problem based on the domain derivative of the field with respect to the shape of
the cavity. As the discussion for the TE polarization and TM polarization are parallel, we
shall concentrate on the TE polarization first, and state the corresponding results on the
TM polarization and give the proofs when necessary.
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3.1. The direct problem

Let an incoming plane wave ui = exp(iαx1 − iβ x2) be incident on the perfect elec-
trically conducting surface Γg ∪ S from above, where α = κ0 sinθ ,β = κ0 cosθ ,θ ∈
(−π/2,π/2) is the angle of incidence with respect to the positive x2-axis, and κ0 =

ω
p
µ0ǫ0 is the wavenumber of the free space.
Denote the reference field uref as the solution of the homogeneous equation in the

upper half space:
∆uref + κ2

0uref = 0 inR2
+

together with the boundary condition

uref = 0 on {x2 = 0}.

It can be shown that the reference field consists of the incident field ui and the reflected
field ur:

uref = ui + ur,

where ur = −exp(iαx1 + iβ x2).
The total field u is composed of the reference field uref and the scattered field us:

u= uref + us.

It can be verified that the scattered field satisfies

∆us+ κ2us = −(κ2− κ2
0)u

ref aboveΓg ∪ S, (3.1)

us = −uref onΓg ∪ S. (3.2)

In addition, the scattered field is required to satisfy the radiation condition

lim
ρ→∞
p
ρ

�
∂ us

∂ ρ
− iκ0us

�
= 0, ρ = |x|. (3.3)

Given the reference field uref, the direct scattering problem is to determine the field dis-
tribution satisfying Eqs. (3.1)–(3.3). The following lemma is concerned with the unique-
ness of the direct scattering problem, while the existence will be given in the next section.

Lemma 3.1. The direct problem (3.1)–(3.3) has at most one solution.

Proof. It suffices to show that us = 0 if no source is present. Let Dρ be the union of the
domain Ω and the semi-disc with radius ρ and boundary Γρ in the upper half-space. We
have from the radiation condition (3.3) that

����
∂ us

∂ ρ
− iκ0us

����
2

=

����
∂ us

∂ ρ

����
2

+ κ2
0|us|2+ 2κ0Im

�
∂nus us

�
= o(ρ−1) asρ→∞. (3.4)
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Multiplying the complex conjugate of us and integrating by parts for Eq. (3.1), we have
from Green’s theorem that

∫

Dρ

�
|∇us|2 − κ̄2|us|2

�
=

∫

Γρ

∂nus us,

which yields

Im

∫

Γρ

∂nus us =ωµ0

∫

Dρ

σ|us|2. (3.5)

Combining Eqs. (3.4) and (3.5) give
∫

Γρ

 ����
∂ us

∂ ρ

����
2

+ κ2
0|us|2

!
+ 2κ0ωµ0

∫

Dρ

σ|us|2→ 0 asρ→∞.

Hence us must be identically zero in R2. �
Lemma 3.1 is an extension of the result of Rellich for obstacle scattering in free space,

see Colton and Kress [10], to the case of the cavity scattering problem in half-space. When
the medium inside the cavity is lossless, i.e., σ = 0, there may exist eigen-frequencies for
the direct scattering problem. Therefore, we exclude a possibly set of discrete wavenumber
κ0, corresponding to the eigen-frequencies, and assume that the direct problem always has
a unique solution.

3.2. Variational formulation

In this section, a variational formulation for the scattering problem will be derived by
using a symmetric coupling of the finite element and boundary integral methods, and the
well-posedness of variational problem will be studied.

We shall use the following notations: for a bounded region Ω in R2 with boundary Γ,
Hs(Ω) and Hs(Γ) will denote the usual Sobolev spaces with norm ‖ · ‖Hs(Ω) and || · ||Hs(Γ),
respectively. Define the following spaces:

L2(Γ) := {u|Γ : u ∈ L2(∂Ω)},
H1/2(Γ) := {u|Γ : u ∈ H1/2(∂Ω)},
eH1/2(Γ) := {u ∈ H1/2(Γ) : suppu ⊂ Γ}.

In other words, eH1/2(Γ) contains functions u ∈ H1/2(Γ) such that their extension by zero to
the whole boundaryΩ is in H1/2(Γ). Now we denote by H−1/2(Γ) the dual space of eH1/2(Γ)

and by eH−1/2(Γ) the dual space of H1/2(Γ). We refer to [9,25] for detailed discussions on
these spaces.

In Ω, Eqs. (2.8) and (2.9) have an equivalent variational form: find u ∈ H1
S (Ω) = {u ∈

H1(Ω) : u = 0 on S} such that
∫

Ω

∇u · ∇v−
∫

Ω

κ2u v − 〈φ, v〉 = 0 for all v ∈ H1
S (Ω), (3.6)
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where φ is the normal derivative of the total field u on Γ, i.e., φ = ∂nu, and 〈·, ·〉 denotes
the duality between H−1/2(Γ) and eH1/2(Γ).

In Ωc, based on Eq. (3.1) and the radiation condition (3.3), it follows from Green’s
theorem that we obtain the following integral representation

us(x) =

∫

Γ

∂ny
GTE(x,y)us(y)dsy−

∫

Γ

GTE(x,y)∂nus(y)dsy, x ∈ Ωc. (3.7)

Taking the limit of us by letting x go to Γ and using jump relations for surface potentials
yield

us(x) =
1

2
us(x) +

∫

Γ

∂ny
GTE(x,y)us(y)dsy−

∫

Γ

GTE(x,y)∂nus(y)dsy, x ∈ Γ, (3.8)

where

GTE(x,y) =
i

4
H
(1)
0 (κ0|x− y|)− i

4
H
(1)
0 (κ0|x− y′|).

Here y′ = (y1,−y2) and H
(1)
0 is the Hankel function of first kind with order zero.

Regarding the reference field in Ω∩{x2 ≥ 0}, we have again from Green’s theorem that

uref(x) = −
∫

Γ

∂ny
GTE(x,y)uref(y)dsy+

∫

Γ

GTE(x,y)∂yuref(y)dsy, x ∈ Ω. (3.9)

It follows from the taking the limit of uref by letting x go to Γ and using jump relations for
surface potentials that

uref(x) =
1

2
uref(x)−

∫

Γ

∂ny
GTE(x,y)uref(y)dsy+

∫

Γ

GTE(x,y)∂yuref(y)dsy, x ∈ Γ. (3.10)

Combining (3.8) and (3.10) leads to an integral equation for the total field on the boundary
Γ:

u(x) =
1

2
u(x) +

∫

Γ

∂ny
GTE(x,y)u(y)dsy−

∫

Γ

GTE(x,y)φ(y)dsy + uref(x). (3.11)

By taking the normal derivatives in the representation formulas (3.7) and (3.9) on both
sides, and letting x go to Γ for x in D, we obtain

φ(x) =
1

2
φ(x) +

∫

Γ

∂nx
∂ny

GTE(x,y)u(y)dsy−
∫

Γ

∂nx
GTE(x,y)φ(y)dsy+ ∂nuref(x). (3.12)

To study the boundary integral equations, we introduce the single-layer potential oper-
ator VTE, the hypersingular integral operator DTE, the double-layer potential operator KTE
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and its adjoint operator K∗TE, which are defined as

(VTEu)(x) =

∫

Γ

GTE(x,y)u(y)dsy,

(DTEu)(x) = −
∫

Γ

∂nx
∂ny

GTE(x,y)u(y)dsy,

(KTEu)(x) =

∫

Γ

∂ny
GTE(x,y)u(y)dsy,

(K∗TEu)(x) =

∫

Γ

∂nx
GTE(x,y)u(y)dsy.

Using these operators, Eqs. (3.11) and (3.12) can be written as

u = (
1

2
I + KTE)u− VTEφ + f , (3.13)

φ = −DTEu+ (
1

2
I − K∗TE)φ+ g, (3.14)

where f = uref, g = ∂nuref, and I is the identity operator.
Substituting φ in Eq. (3.14) into Eq. (3.6) gives

∫

Ω

∇u · ∇v−
∫

Ω

κ2u v + 〈DTEu, v〉 − 〈(1
2

I − K∗TE)φ, v〉 = 〈g, v〉 for all v ∈ H1
S (Ω). (3.15)

Multiplying Eq. (3.13) by the complex conjugate of ψ and integrating over Γ arrives

〈(1
2

I − KTE)u,ψ〉+ 〈VTEφ,ψ〉 = 〈 f ,ψ〉 for allψ ∈ H−1/2(Γ). (3.16)

Eqs. (3.15) and (3.16) consist of the variational formulation for the symmetric coupling of
the finite element and boundary integral methods for the direct cavity scattering problem.

As this paper is concerned with the Helmholtz equation, the associated bilinear form
is not elliptic. Therefore, a generalized notion of coercivity is considered for our purpose.
A bilinear form a : V × V → C on a Hilbert space V is said to be coercive if it satisfies a
generalized Gårding inequality of the form

Re[a(u,u) + c(u,u)] ≥ C ||u||2V for allu ∈ V ,

where C > 0, c : V ×V → C is a compact bilinear form.
Before presenting the well-posedness result for the variational problem, we state a

useful lemma. The reader is referred to [25] for detailed discussions and proofs.

Lemma 3.2. The single-layer potential operators VTE is compact from H−1/2(Γ) into eH1/2(Γ),

the double-layer potential operator KTE and its adjoint K∗TE are compact from eH1/2(Γ) into
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eH1/2(Γ) and from H−1/2(Γ) into H−1/2(Γ), respectively, and the hypersingular integral oper-

ator DTE is compact from eH1/2(Γ) into H−1/2(Γ). Furthermore, the sinle-layer potential oper-

ator VTE the and hypersingular integral operator DTE are coercive in H−1/2(Γ) and eH1/2(Γ),

i.e., there exit compact operators V0 and D0 such that

Re[〈VTEφ,φ〉+ 〈V0φ,φ〉] ≥ C ‖ φ ‖H−1/2(Γ) for allφ ∈ H−1/2(Γ),

Re[〈DTEu,u〉+ 〈D0u,u〉] ≥ C ‖ u ‖ eH1/2(Γ) for all u ∈ eH1/2(Γ).

Denote VTE = H1
S (Ω) × H−1/2(Γ) and the norm in VTE is naturally defined for any

u= [u,φ] ∈ VTE

‖ u ‖2VTE
=‖ u ‖2

H1(Ω)
+||φ||2

H−1/2(Γ)
.

Theorem 3.1. The variational problem (3.15)–(3.16) admits a unique solution [u,φ] ∈ VTE.

Proof. The variational problem (3.15)–(3.16) is equivalent to: find u = [u,φ] ∈ VTE

such that

aTE(u,v) = 〈g, v〉+ 〈 f ,ψ〉 for allv= [v,ψ] ∈ VTE, (3.17)

where the bilinear form aTE is defined by

aTE(u,v) =

∫

Ω

∇u · ∇v−
∫

Ω

κ2u v + 〈DTEu, v〉+ 〈VTEφ,ψ〉

−〈(1
2

I − K∗TE)φ, v〉+ 〈(1
2

I − KTE)u,ψ〉. (3.18)

To prove the theorem, it suffices to check the coercivity of the bilinear form a. Define
another bilinear form c by

c(u,v) =

∫

Ω

κ2u v + 〈D0u, v〉+ 〈V0φ,ψ〉.

It follows from the compactness of the operators D0 and V0 that the bilinear form c is
compact on VTE×VTE.

Evidently we have

Re[aTE(u,u) + c(u,u)] =

∫

Ω

|∇u|2+Re[〈DTEu,u〉+ 〈D0u,u〉] +Re[〈VTEφ,φ〉+ 〈V0φ,φ〉]

≥ C
h
‖ u ‖2

H1(Ω)
+ ‖ φ ‖2

H−1/2(Γ)

i
= C ‖ u ‖2VTE

,

where the Poincaré inequality is applied. It follows from the Fredholm alternative and
Lemma 3.1 regarding the uniqueness that the variational problem (3.15)–(3.16) admits a
unique solution u = [u,φ] ∈ H1

S (Ω)×H−1/2(Γ). �
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3.3. Uniqueness of the inverse problem

In this section, we study the uniqueness of the inverse cavity scattering problem: to
determine the cavity wall S from the total field u measured on Γ.

Theorem 3.2. Let [u j ,φ j] be the solution of (3.13)–(3.14) in Ω j with ∂Ω j = Γ ∪ S j for

j = 1,2. If u1 = u2 on Γ, then S1 = S2.

Proof. Assume that S1 6= S2. Then Ω1 \ (Ω1 ∩Ω2) or Ω2 \ (Ω1 ∩Ω2) is a non-empty set.
Without loss of generality, we assume that D = Ω1 \ (Ω1 ∩Ω2) 6= ;. Denote ∂ D by C1 ∪ C2

with C j ⊂ S j for j = 1,2.
Since u1 − u2 = 0 on Γ, it follows from the injectivity of the single-layer potential

operator VTE that φ1 − φ2 = 0 on Γ. Noticing u1 = u2 = 0 on Γg ∪ Γ and the radiation
condition, we have u1 − u2 = 0 above Γg ∪ Γ. By unique continuation, we get u1 − u2 = 0

in Ω1 ∩Ω2 and especially u1 − u2 = 0 on C2. It follows from u2 = 0 on C2 that we have
u1 = 0 on C2 and the problem

∆u1 +κ
2u1 = 0 inΩ1 \ (Ω1 ∩Ω2), (3.19)

u1 = 0 on C1 ∪ C2. (3.20)

Recalling the expression of wavenumber, we have from (3.19)–(3.20) that
∫

D

|∇u1|2 −ω2µ0

∫

D

ǫ|u1|2 − iωµ0

∫

D

σ|u1|2 = 0,

which yields u1 = 0 in D. An application of the unique continuation again gives u1 = 0
in Ω1. But this contradicts the transparent boundary condition (3.13) since f is a nonzero
function involving the incoming plane wave. �

The above uniqueness theorem relies on the fact that the wavenumber has nonzero
imaginary part. For real wavenumber or lossless medium, i.e., σ = 0, the uniqueness result
is still valid under the following two cases: (1) if u1 = u2 on Γ for all wavenumbers in some
open interval; (2) if u1 = u2 on Γ for one wavenumber κ satisfying κ2 ∈ (0,λ0), where λ0

is the first Dirichlet eigenvalue of negative Laplacian in a given ball B0 containing Ω1 and
Ω2. The proof is based on the exclusion of the possibility of the existence of eigenvalues
for (3.19)–(3.20). In fact, (1) u1 solves (3.19) and (3.20) for all wavenumber in an open
interval. Since the Dirichlet eigenvalue of negative Laplacian in Ω1 \ (Ω1 ∩Ω2) is discrete,
there exists some κ0 belonging to the interval but not being the Dirichlet eigenvalue. We
have for this κ0 that u1 = 0 in Ω1\(Ω1∩Ω2) from (3.19) and (3.20). The application of the
unique continuation yields u1 = 0 in D1, which is a contradiction to non-zero boundary
condition for u1 on Γ; (2) denote by τn and λn the n-Dirichlet eigenvalue of negative
Laplacian in Ω1 \ (Ω1 ∩ Ω2) and B0, respectively, where the eigenvalues are arranged in
ascending order with respect to the magnitude. It follows from the strong monotonicity
property of negative Laplacian with Dirichlet boundary (see Colton and Kress [10]) that
λn < τn for n = 0,1, . . . due to Ω1 \ (Ω1 ∩ Ω2) ⊂ B0. Therefore κ2 is not the Dirichlet
eigenvalue of negative Laplacian for κ2 < λ0 ≤ λn < τn for n = 0,1, . . . So we also derive
u1 = 0 in Ω1 \ (Ω1 ∩Ω2).
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3.4. Domain derivative

The calculation of domain derivative, or more generally of the Fréchet derivative of
the wave field with respect to the perturbation to the boundary of the medium, is an
essential step for inverse scattering problems. We will investigate the domain derivative of
the total field with respect to the perturbation of the cavity wall, which plays an important
role in the stability analysis. The domain derivatives for the inverse obstacle scattering
problem with different boundary conditions have been discussed by a number of authors,
e.g, Hettlich [16], Kirsch [23], and Haddar and Kress [15]. See Liu [20] for the domain
derivative for regular cavities based on a nonlocal transparent boundary condition from
Fourier transform by Ammari et al [2,3].

Introduce a domain Ωh bounded by Sh and Γ, where

Sh = {x+ hp(x) : x = (x1, x2) ∈ S},
where the cavity wall S is assumed to be in C2, the constant h > 0, and the function
p = (p1(x), p2(x)) ∈ C2(S,R2) satisfying p(x) = 0 at the two end points of S. Obviously, if
h is small enough then Sh ∈ C2 is a perturbation of S.

According to a standard continuity argument for elliptic boundary value problems,
there exists a unique solution uh = [uh,φh] to (3.15)–(3.16) corresponding to the domain
Ωh for any small enough h. Define a nonlinear map

MTE : Sh→ uh|Γ.
The domain derivative of the operator MTE on the boundary S along the direction p is
define by

M ′TE(S,p) := lim
h→0

uh|Γ− u|Γ
h

.

The weak formulation for uh is

ah
TE(uh,vh) = 〈g, vh〉+ 〈 f ,ψh〉 for allvh ∈ H1

Sh
(Ω)×H−1/2(Γ), (3.21)

where ah
TE is the bilinear form defined in (3.18) over Ωh.

Motivated by the technique applied by Kirsch [23], we make change of variables to
convert the integral in Ωh into Ω. For p ∈ C2(S,R2), we extend the definition of function
p(x) to Ω satisfying: p(x) ∈ C2(Ω,R2)∩ C(Ω); p(x) = 0 on Γ; y = ξh(x) = x+ hp(x) maps
Ω→ Ωh. In this way, ξh for h small enough is a diffeomorphism from Ω to Ωh. Denote by
ηh(y) = (ηh

1(y),η
h
2(y)) : Ωh→ Ω the inverse map of ξh.

For y ∈ Ωh, make the change of variable y = ξh(x) : x ∈ Ω and define ŭh(x) := uh ◦ ξh.
The integrals over Ωh in (3.18) can be converted into ones over Ω:

∫

Ωh

∇uh · ∇vh−
∫

Ωh

κ2uh vh =

∫

Ω

h
∇ŭhJηh J⊤

ηh∇v̆h− κ2ŭh v̆h

i
det(Jξh), (3.22)

where v̆h = vh ◦ ξh, Jηh and Jξh are the Jacobian matrices of the transform ηh and ξh,
respectively.
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For an arbitrary test function vh in domain Ωh, the function v̆h is a test function for
domain Ω according to the transform. Therefore, the bilinear form ah

TE in (3.21) can be
rewritten as

ah
TE(ŭh,v) =

∫

Ω

h
∇ŭhJηh J⊤

ηh∇v− κ2ŭh v
i

det(Jξh) + 〈DTEŭh, v〉+ 〈VTEφ̆h,ψ〉

−〈(1
2

I − K
′
TE)φ̆h, v〉+ 〈(1

2
I − KTE)ŭh,ψ〉, (3.23)

which leads to an equivalent variational formulation to (3.21):

ah
TE(ŭh,v) = 〈g, v〉+ 〈 f ,ψ〉 for allv ∈ H1

S (Ω)×H−1/2(Γ). (3.24)

Simple calculations yield

aTE(ŭh− u,v) = aTE(ŭh,v)− 〈g, v〉 − 〈 f ,ψ〉 = aTE(ŭh,v)− ah
TE(ŭh,v)

= −
∫

Ω

∇ŭh(JηhJ⊤
ηhdet(Jξh)− I)∇v − κ2(det(Jξh)− 1)ŭh v. (3.25)

Define a matrix Jp =
h
∂ p j

∂ xi

i
i, j=1,2

. Following from the definition of Jacobian matrix

that
det(Jξh) = 1+ h∇ · p+O(h2) (3.26)

and Jηh = J−1
ξh ◦ηh = I − hJp+O(h2), we can verify that

Jηh J⊤
ηhdet(Jξh) = I − h(Jp+ J⊤p ) + h∇ · pI +O(h2). (3.27)

Substituting (3.26) and (3.27) into (3.25), and dividing by h yield

aTE

�
ŭh− u

h
,v

�
=

∫

Ω

∇ŭh[Jp + J⊤p −∇ · pI +O(h)]∇v+

∫

Ω

[κ2∇ · p+O(h)]ŭh v. (3.28)

Based on this variational form, we have the following result for the domain derivative.

Theorem 3.3. Let [u,φ] be the solution of (3.15)–(3.16) in Ω and n the outward normal to

S. Then the domain derivative can be expressed as M ′TE(S,p) = [u′|Γ,φ′], where [u′,φ′] ∈
H1(Ω)×H−1/2(Γ) is the weak solution of the following boundary value problem

∆u′ + κ2u′ = 0 inΩ, (3.29)

u′ = (
1

2
I + KTE)u

′− VTEφ
′ onΓ, (3.30)

φ′ = −DTEu′ + (
1

2
I − K∗TE)φ

′ onΓ, (3.31)

u′ = −(p · n)φ on S, (3.32)

where φ′ = ∂nu′ on Γ.
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Proof. Given p, it follows from the well-posedness of variational formulation in domain
Ω that ŭh→ u in H1

S (Ω)×H−1/2(Γ) as h→ 0. Taking h→ 0 in (3.28) gives

aTE

�
lim
h→0

ŭh− u

h
,v

�
=

∫

Ω

∇u(Jp+ J⊤p −∇ · pI)∇v + κ2(∇ · p)u v. (3.33)

Therefore (ŭh− u)/h is convergent in H1
S (Ω)× H−1/2(Γ) as h→ 0. Denote by w this limit

and rewrite (3.33) as
aTE(w,v) = l(p)(u, v). (3.34)

Next we compute l(p)(u, v). Using the fact that p= 0 on Γ and the identity

∇u(Jp+ J⊤p −∇ · pI)∇v =∇ · [(p · ∇u)∇v+ (p · ∇v)∇u− (∇u · ∇v)p]

−(p · ∇u)∆v− (p · ∇v)∆u,

we obtain from the divergence theorem that

l(p)(u, v) =

∫

Ω

κ2(∇ · p)u v− (p · ∇u)∆v− (p · ∇v)∆u

+

∫

S

[(p · ∇u)∇v+ (p · ∇v)∇u− (∇u · ∇v)p] · n, (3.35)

for any test function v ∈ H1
S (Ω)∩H2(Ω).

Noticing ∆u+ κ2u = 0 in Ω, we have from Green’s formula that

l(p)(u, v) =

∫

Ω

κ2(∇ · p)uv+ κ2(p · ∇v)u+∇v · ∇(p · ∇u)+

∫

S

l(p)(u) · ∇v,

where
l(p)(u) = (∇u · n)p− (p ·n)∇u. (3.36)

Noticing p= 0 on Γ and u = 0 on S and applying

(∇ · p)uv+ (p · ∇v)u=∇ · (uvp)− (p · ∇u)v,

we have from the Gauss theorem that

l(p)(u, v) =

∫

Ω

∇(p · ∇u) · ∇v− κ2(p · ∇u)v+

∫

S

l(p)(u) · ∇v.

It follows from the definition of the bilinear form a and the fact p = 0 on Γ that u′ =
[u′,φ′] :=w− [p · ∇u, 0] satisfies

aTE(u
′,v) =

∫

S

l(p)(u) · ∇v for allv ∈ H1
S (Ω)×H−1/2(Γ). (3.37)
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On the other hand, we have on Γ that

u′ =w= lim
h→0

ŭh− u

h
= lim

h→0

uh− u

h
= M ′TE(S,p). (3.38)

Finally we consider the right-hand side of (3.37). Since C1(Ω) is dense in H1(Ω), it
is enough to consider u, v ∈ C1(Ω) in this limit procedure. The spatial gradient and the
surface gradient has the relation for v and u:

∇v =∇S v+ (∂nv)n and ∇u =∇Su+ (∂nu)n,

where ∇S is the surface gradient on curve S and n is its unit outward normal vector. As
h→ 0, we get ∇Su=∇S v = 0 on S since v = u= 0 on S. Therefore

∫

S

l(p)(u) · ∇v =

∫

S

[(∇u · n)p− (p · n)∇u] · ∇v

=

∫

S

[(∂nu)p− (p · n)(∂nu)n]∂nvn= 0.

It follows from (3.37) that
∫

Ω

∇u′ · ∇v−
∫

Ω

κ2u′ v + 〈DTEu′, v〉+ 〈VTEφ
′,ψ〉

−〈(1
2

I − K∗TE)φ
′, v〉+ 〈(1

2
I − KTE)u

′,ψ〉 = 0. (3.39)

for all v = [v,ψ] ∈ H1
S (Ω) × H−1/2(Γ), which is the weak formulation of the problem

(3.29)-(3.31).
To verify the boundary condition of u′ on S, we recall the definition of u′ and have

u′ = lim
h→0

ŭh− u

h
− p · ∇u= −p · ∇u= −(p · n)∂nu on S, (3.40)

since ŭh− u = uh− u= 0 on S. The proof is complete by combining (3.39) and (3.40). �

3.5. Local stability of the inverse problem

In applications, it is impossible to make exact measurements. Stability is crucial in the
practical reconstruction of cavity walls since it contains necessary information to determine
to what extent the data can be trusted.

For any two domains D1 and D2 in R2, define d(D1, D2) the Hausdorff distance between
them by

d(D1, D2) =max{ρ(D1, D2),ρ(D2, D1)}
where

ρ(Dm, Dn) = sup
x∈Dm

inf
y∈Dn

|x− y|.
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Introduce domains Ωh bounded by Sh and Γ, where

Sh : x+ hp(x)n,

where p ∈ C2(S,R). It is easily seen that the Hausdorff distance between Ω and Ωh is of
the order h, i.e., d(Ωh,Ω) = O(h).

We have the following local stability result.

Theorem 3.4. If p ∈ C2(S,R) and h> 0 is sufficiently small, then

d(Ωh,Ω) ≤ C ‖ uh− u ‖ eH1/2(Γ) (3.41)

where C is a positive constant independent of h.

Proof. We prove it by contradiction. Suppose now that the assertion is not true, for any
given p ∈ C2(S,R), there exists a subsequence from {uh}, which is still denoted as {uh} for
simplicity, such that

���
���
uh− u

h

���
��� eH1/2(Γ)

→‖ u′ ‖ eH1/2(Γ)= 0 as h→ 0, (3.42)

which yields u′ = 0 on Γ. Based on Theorem 3.3, it follows from the boundary condition of
u′ on Γ in (3.30) and the injectivity of the single-layer potential operator VTE that φ′ = 0
on Γ. We infer by unique continuation that u′ = 0 in Ω. The boundary condition of u′ in
(3.32) gives (p · n)φ = pφ = 0 on S. Since p is arbitrary, φ = 0 on S. Recalling that u = 0
on S, we infer by unique continuation once again that u= 0 in Ω, which is a contradiction
to (3.17). �

The result indicates that for small h, if the boundary measurements are O(h) close to
the wave field in the eH1/2 norm, then Ωh is O(h) close to Ω in the Hausdorff distance.

4. TM polarization

In this section we study the direct and inverse problems for the TM polarization case.
We will state some parallel results for the direct problem and show the differentiability of
the field with respect to the cavity shape and prove a local stability result.

4.1. The direct problem

Consider the same problem geometry as that in TE polarization case, let an incoming
plane wave ui = exp(iαx1− iβ x2) be incident on the perfect electrically conducting surface
Γg ∪ S from above.

Denote the reference field uref as the solution of the homogeneous equation in the
upper half space:

∆uref + κ2
0uref = 0 inR2

+
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together with the boundary condition

∂nuref = 0 on {x2 = 0}.

It can be shown that the reference field consists of the incident field ui and the reflected
field ur:

uref = ui + ur,

where ur = exp(iαx1 + iβ x2).
The total field u is composed of the reference field uref and the scattered field us:

u= uref + us.

It is easy to verify that the scattered field satisfies

∇ · (κ−2∇us) + us = −∇ · [(κ−2 − κ−2
0 )∇uref] aboveΓg ∪ S,

∂nus = −∂nuref onΓg ∪ S.

In addition, the scattered field is required to satisfy the radiation condition

lim
ρ→∞
p
ρ

�
∂ us

∂ ρ
− iκ0us

�
= 0, ρ = |x|.

Regarding Eqs. (2.10) and (2.11) for the total field, the direct problem has an equiva-
lent variational form: find u ∈ H1(Ω) such that

(κ−2∇u,∇v)− (u, v)− κ−2
0 〈φ, v〉 = 0 for all v ∈ H1(Ω), (4.1)

where φ = ∂nu is normal derivative of the magnetic field on the boundary Γ.
Following a similar procedure, we may also derive a boundary integral equation for the

total field on Γ:

u(x) =
1

2
u(x) +

∫

Γ

∂ny
GTM(x,y)u(y)dsy−

∫

Γ

GTM(x,y)φ(y)dsy+ uref(x), (4.2)

φ(x) =
1

2
φ(x) +

∫

Γ

∂nx
∂ny

GTM(x,y)u(y)dsy−
∫

Γ

∂nx
GTM(x,y)φ(y)dsy+ ∂nuref(x), (4.3)

where

GTM(x,y) =
i

4
H
(1)
0 (κ0|x− y|)+ i

4
H
(1)
0 (κ0|x− y′|).

To study the boundary integral equations, we similarly introduce the single-layer po-
tential operator VTM, the hypersingular integral operator DTM, the double-layer potential
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operator KTM and its adjoint operator K∗TM, which are defined as

(VTMu)(x) =

∫

Γ

GTM(x,y)u(y)dsy,

(DTMu)(x) = −
∫

Γ

∂nx
∂ny

GTM(x,y)u(y)dsy,

(KTMu)(x) =

∫

Γ

∂ny
GTM(x,y)u(y)dsy,

(K∗TMu)(x) =

∫

Γ

∂nx
GTM(x,y)u(y)dsy.

Similarly, the proofs of the following lemma can be found in [25].

Lemma 4.1. The single-layer potential operators VTM is compact from eH−1/2(Γ) into H1/2(Γ),

the double-layer potential operator KTM and its adjoint K∗TM are compact from H1/2(Γ) into

H1/2(Γ) and from eH−1/2(Γ) into eH−1/2(Γ), respectively, and the hypersingular integral oper-

ator DTM is compact from H1/2(Γ) into eH−1/2(Γ). Furthermore, the sinle-layer potential oper-

ator VTM the and hypersingular integral operator DTM are coercive in eH−1/2(Γ) and H1/2(Γ),

i.e., there exit compact operators V1 and D1 such that

Re[〈VTMφ,φ〉+ 〈V1φ,φ〉] ≥ C ‖ φ ‖ eH−1/2(Γ) for allφ ∈ eH−1/2(Γ),

Re[〈DTMu,u〉+ 〈D1u,u〉] ≥ C ‖ u ‖H1/2(Γ) for all u ∈ H1/2(Γ).

Using these operators, boundary integral equations can be written as

u= (
1

2
I + KTM)u− VTMφ + f , (4.4)

φ = −DTMu+ (
1

2
I − K∗TM)φ + g, (4.5)

where f = uref, g = ∂nuref, and I is the identity operator.
Substituting (4.5) into (4.1) and multiplying a test function on (4.4), we arrive the

variational problem for the symmetric coupling of finite element and boundary integral
method ∫

Ω

κ−2∇u · ∇v−
∫

Ω

u v + κ−2
0 〈DTMu, v〉−〈(1

2
I − K∗TM)φ, v〉

= 〈g, v〉 for all v ∈ H1(Ω), (4.6)

〈(1
2

I − KTM)u,ψ〉+ 〈VTMφ,ψ〉 = 〈 f ,ψ〉 for allψ ∈ eH−1/2(Γ). (4.7)

Introducing a bilinear form

aTM(u,v) =

∫

Ω

κ−2∇u · ∇v−
∫

Ω

u v + κ−2
0 〈DTMu, v〉+ 〈VTMφ,ψ〉

−〈(1
2

I − K∗TM)φ, v〉+ 〈(1
2

I − KTM)u,ψ〉, (4.8)
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we have the variational formulation for the coupling of the finite element and boundary
integral methods for the direct scattering problem: find u = [u,φ] ∈ VTM = H1(Ω) ×
eH−1/2(Γ) such that

aTM(u,v) = 〈g, v〉+ 〈 f ,ψ〉 for allv ∈ VTM. (4.9)

The following theorem is an analogue of Theorem 3.1.

Theorem 4.1. The variational problem (4.9) admits a unique solution [u,ϕ] ∈ VTM.

4.2. The inverse problem

In this section, we investigate the uniqueness, domain derivative, and the local stability.
We will briefly prove the uniqueness but elaborate the domain derivative and the local
stability since the arguments vary quite a lot from those for the TE case.

Theorem 4.2. Let [u j,φ j] be the solution of (4.9) in Ω j with ∂Ω j = Γ ∪ S j for j = 1,2. If

u1 = u2 on Γ, then S1 = S2.

Proof. Following essentially the same arguments for TE case, we consider

∇ · (κ−2∇u1) + u1 = 0 inΩ1 \ (Ω1 ∩Ω2), (4.10)

∂nu1 = 0 on C1 ∪ C2. (4.11)

Recalling the expression of wavenumber, we have from (4.10)–(4.11) that
∫

Ω1\(Ω1∩Ω2)

κ−2|∇u1|2−
∫

Ω1\(Ω1∩Ω2)

|u1|2 = 0,

which yields ∇u1 = 0 in Ω1 \ (Ω1 ∩ Ω2). The proof is complete by noticing u1 = 0 from
(4.10). �

The above uniqueness theorem again relies on the fact that the wavenumber has
nonzero imaginary part. When the medium is not lossy, the uniqueness result is not obvious
and needs further investigation since there is no monotonicity property for the eigenvalues
as in the TE case.

Introduce the domain Ωh bounded by Sh and Γ, where

Sh = {x+ hp(x) : x ∈ S},
where the cavity wall S is assumed to be in C2, the constant h > 0, and the function
p ∈ C2(S,R2) satisfying p(x) = 0 at the two end points of S.

Define a nonlinear map
MTM : Sh→ uh|Γ.

The domain derivative of the operator MTM on the boundary S along the direction p is
define by

M ′TM(S,p) := lim
h→0

uh|Γ− u|Γ
h

.
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The weak formulation for uh is

ah
TM(uh,vh) = 〈g, vh〉+ 〈 f ,ψh〉 for allvh ∈ VTM, (4.12)

where ah
TM is the bilinear form defined in (4.8) over Ωh.

Using the change of variable and identities (3.24)–(3.25), we may arrive

aTM

�
ŭh− u

h
,v

�
=

∫

Ω

κ−2∇ŭh[Jp+ J⊤p −∇ · pI +O(h)]∇v

+

∫

Ω

[∇ · p+O(h)]ŭh v. (4.13)

Based on this variational form, we have the following result for the domain derivative.

Theorem 4.3. Let [u,φ] be the solution of (4.9) in Ω and n the outward normal to S. Then

the domain derivative can be expressed as M ′TM(S,p) = [u′|Γ,φ′], where = [u′,φ′] ∈ VTM is

the weak solution of the following boundary value problem

∇ · (κ−2∇u′) + u′ = 0 inΩ, (4.14)

u′ = (
1

2
I + KTM)u

′− VTMφ
′ onΓ, (4.15)

φ′ = −DTMu′ + (
1

2
I − K∗TM)φ

′ onΓ, (4.16)

κ−2φ′ =∇S · [κ−2(p · n)∇Su] + (p · n)u on S, (4.17)

where φ′ = ∂nu′ on Γ.

Proof. Taking h→ 0 in (4.13) yields

aTM

�
lim
h→0

ŭh− u

h
,v

�
=

∫

Ω

κ−2∇u(Jp+ J⊤p −∇ · pI)∇v+ (∇ · p)u v. (4.18)

Therefore (ŭh − u)/h is convergent in VTM as h→ 0. Denote by w this limit and rewrite
(4.18) as

aTM(w,v) = l(p)(u, v). (4.19)

Next we compute l(p)(u, v). For test function v ∈ H1(Ω) ∩ H2(Ω), we obtain from p = 0
on Γ that

l(p)(u, v) =

∫

Ω

(∇ · p)u v− (p · ∇u)∇ · (κ−2∇v)− (p · ∇v)∇ · (κ−2∇u)

+

∫

S

κ−2[(p · ∇u)∇v+ (p · ∇v)∇u− (∇u · ∇v)p] ·n

+

∫

Ω

(∇u · ∇v)p · ∇κ−2 (4.20)
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Here we applied the divergence theorem and the identity

κ−2∇u(Jp+ J⊤p −∇ · pI)∇v =∇ · [κ−2((p · ∇u)∇v+ (p · ∇v)∇u− (∇u · ∇v)p)]

+(∇u · ∇v)p · ∇κ−2 − (p · ∇u)∇ · (κ−2∇v)− (p · ∇v)∇ · (κ−2∇u),

By applying ∇ · (κ−2∇u) + u = 0 in Ω, ∂nu = 0 on S, and Green’s formula for the test
function v, we have

l(p)(u, v) =

∫

Ω

(∇ · p)uv+ (p · ∇v)u+ κ−2∇v · ∇(p · ∇u)

+

∫

Ω

(∇u · ∇v)p · ∇κ−2 −
∫

S

κ−2(∇u · ∇v)p · n.

Applying
(∇ · p)uv+ (p · ∇v)u=∇ · (uvp)− (p · ∇u)v

and the divergence theorem yields

l(p)(u, v) =

∫

Ω

κ−2∇(p · ∇u) · ∇v− (p · ∇u)v+

∫

Ω

(∇u · ∇v)p · ∇κ−2

+

∫

S

uvp ·n−
∫

S

κ−2(∇u · ∇v)p ·n,

which leads to

l(p)(u, v) =

∫

Ω

∇(κ−2(p · ∇u) · ∇v− (p · ∇u)v−
∫

S

κ−2(∇u · ∇v)p · n+
∫

S

uvp · n.

It follows from Eq. (4.19) and the definition of the bilinear form aTM that u′ := w−
[p · ∇u, 0] satisfies

aTM(u
′,v) = −

∫

S

κ−2(∇u · ∇v)p · n+
∫

S

uvp · n for allv ∈ VTM. (4.21)

On the other hand, we have on Γ that

w= lim
h→0

ŭh−u

h
= lim

h→0

uh− u

h
= M ′TM(S,p). (4.22)

Finally we consider the right-hand side of (4.21). The spatial gradient and surface
gradient has the relation

∇u=∇Su+ (∂nu)n and ∇v =∇S v + (∂nv)n

Since ∂nu = 0 on S, we have from the surface divergence theorem that

aTM(u
′,v) =

∫

S

[∇S · (κ−2[(p · n)∇Su)] + (p ·n)u]v for allv ∈ VTM,
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which completes the proof. �
Now we consider the local stability. Introduce domains Ωh bounded by Sh and Γ, where

Sh : x+ hp(x)n,

where p ∈ C2(S,R).

Theorem 4.4. If p ∈ C2(S,R) and h> 0 is sufficiently small, then

d(Ωh,Ω) ≤ C ‖ uh− u ‖H1/2(Γ) (4.23)

where C is a constant independent of h.

Proof. We prove it by contradiction. Suppose now that the assertion is not true, we
have for any given p ∈ C2(S,R) that

���
���
uh− u

h

���
���
H1/2(Γ)

→‖ u′ ‖H1/2(Γ)= 0 ash→ 0, (4.24)

which yields u′ = 0 on Γ. It follows from (4.15) and the injectivity of the single-layer
potential operator VTM that φ′ = 0 on Γ. We infer by unique continuation that u′ = 0 in Ω
and thus φ′ = 0 on S. We have by (4.17)

∇S · (κ−2p∇Su) + pu = 0 onS.

Multiplying the complex conjugate of u and integrating over S yield

∫

S

p(κ−2|∇Su|2− |u|2) = 0.

Since p is arbitrary, we have from the definition of the wavenumber that

κ−2|∇Su|2 − |u|2 = |∇Su|2− (ω2µ0ǫ+ iωµ0σ)|u|2 = 0 on S.

It follows that u = 0 on S. Recalling that also ∂nu = 0 on S, we infer by the Holmgren
uniqueness result and unique continuation that u = 0 in Ω, which is a contradiction to
(4.4) since f is a nonzero function. �

5. Concluding remarks

A method of symmetric coupling of the finite element and boundary integral methods
is developed for solving the electromagnetic scattering of a cavity embedded in perfect
electrically conductor ground plane for both the transverse electrical and magnetic polar-
ization cases. The method is to enclose the inhomogeneous sample with a fictitious surface
to separate the finite element region from the exterior region where the boundary inte-
gral equation applies. The field inside the surface is formulated using the finite element
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method, whereas those exterior to the surface can be expressed in terms of surface in-
tegrals. The interior and exterior are finally coupled via the field continuity conditions,
leading to a complete system for the solution of interior and surface fields. Variational
formulations for the direct scattering problems are presented, existence and uniqueness
of weak solutions are studied, and the domain derivatives of the field with respect to the
cavity shape are derived. Computationally, the variational approaches give an efficient
method to solve the direct scattering problem for regular and overfilled cavities. We have
established uniqueness and local stability results in terms of the inverse problem, which
indicates that the cavity is uniquely determined by boundary measurement of the total
field and that for small h, if the boundary measurements are O(h) close to the wave field
either in the eH1/2 norm for the TE case or in the H1/2 norm for the TM case, then Ωh is
O(h) close to Ω in the Hausdorff distance.

We are currently extending the method and the techniques developed in this paper
to more complicated three-dimensional Maxwell’s equations. The results will be reported
elsewhere.
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