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Abstract
Consider the scattering problem for the one-dimensional stochastic Helmholtz
equation in a slab of an inhomogeneous medium, where the source function is
driven by the Wiener process. To determine the random wave field, the direct
problem is equivalently formulated as a two-point stochastic boundary value
problem. This problem is shown to have pathwise existence and uniqueness
of a solution. Furthermore, the solution is explicitly deduced with an integral
representation by solving the two-point boundary value problem. Since the
source and hence the radiated field are stochastic, the inverse problem is to
reconstruct the statistical structure, such as the mean and the variance, of the
source function from physically realizable measurements of the radiated field
on the boundary point. Based on the constructed solution for the direct problem,
integral equations are derived for the reconstruction formulas, which connect
the mean and the variance of the random source to those of the measured field.
Numerical examples are presented to demonstrate the validity and effectiveness
of the proposed method.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The inverse source scattering problem for wave propagation is largely motivated by medical
applications in which it is desirable to use the measurements of electric or magnetic field
on the surface of the human body, such as the head, to infer the source currents inside the
body, such as the brain, that produced these measured data. It has been considered as a basic
tool for the solution of reflection tomography, diffusion-based optical tomography, and more
recently fluorescence microscopy [29], where the fluorescence in the specimen, such as green
fluorescent protein, gives rise to emitted light which is focused to the detector by the same
objective that is used for the excitation. In addition, the inverse source problem has attracted
much research in the antenna community [12]. A variety of antenna-embedding materials
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or substrates, including plasmas, non-magnetic dielectrics, magneto-dielectrics, and, more
recently, double negative meta-materials are of interest.

The problem has been extensively investigated and there is much work on the scalar
and the full vector electromagnetic inverse source problems in the free space as well as in
nonhomogeneous background media, see e.g. Albanese and Monk [1], Ammari et al [2], Eller
and Valdivia [14], Marengo et al [23], and references cited therein. It is also known that
the inverse source problem does not have a unique solution due to the possible existence of
nonradiating sources, see e.g. Bleistein and Cohen [8], Devaney and Sherman [13], and Hauer
et al [17]. In order to obtain a unique solution, it is necessary to give additional constraints
that the source must satisfy. A typical choice of the constraint is to take the minimum energy
solution, which represents the pseudo-inverse solution for the inverse source problem, see
e.g. Marengo and Devaney [22]. See also Bao et al [7] for a multi-frequency inverse source
problem in which the uniqueness is shown and some stability estimates are established from
the radiated fields outside the source volume for a set of frequencies. A complete account of
the general theory of inverse scattering problems may be found in Colton and Kress [10].

In this paper, we study the inverse random source scattering problem for the one-
dimensional Helmholtz equation in a slab of the inhomogeneous medium, which is to
reconstruct the statistical characteristics of the random source function. Since the source, and
hence the radiated field, are modeled by random processes, the governing Helmholtz equation
is considered as a stochastic differential equation instead of its deterministic counterpart.

Stochastic inverse problems refer to inverse problems that involve uncertainties and
randomness. Compared to classical inverse problems, stochastic inverse problems have
substantially more difficulties on top of the existing hurdles, mainly due to the involved
randomness and uncertainties. For instance, unlike the deterministic nature of solutions for
classical inverse problems, the solutions for a stochastic inverse problem are random functions.
Therefore, it is less meaningful to find a solution for a particular realization of randomness.
On the contrary, the statistics, such as mean and variance, of the solutions are more interesting.
We refer to [4, 15, 16, 19, 27] for closely related imaging and wave propagation problems in
random media, where the medium properties are modeled as random functions.

In the context of the inverse random source scattering problem, the goal is to deduce
the statistical structure, such as the mean and the standard deviation or the variance of the
source function, from physically realizable measurements of the radiated fields, such as the
measurements taken on the boundaries. Although the deterministic counterpart has been
extensively investigated from both mathematical and numerical viewpoints, little is known for
the stochastic case, especially its computational aspect. A uniqueness result can be found in
Devaney [11], where it is shown that the auto-correlation function of the random source is
uniquely determined everywhere outside the source region by the auto-correlation function of
the radiated field. Recently, a novel and efficient Wiener chaos expansion-based technique
has been developed for modeling and simulation of spatially incoherent sources in photonic
crystals by Badieirostami et al [3]. See Bao et al [5] for a related inverse medium scattering
problem with a stochastic source. One may consult Kaipio and Somersalo [20] for statistical
inversion theory for general random inverse problems.

This paper is an extension of the work [6], which considered the inverse random source
scattering problem for the one-dimensional Helmholtz equation in a homogeneous background
medium. For the homogeneous medium case, the solution for the direct problem is able to be
analytically constructed by using the integrated solution method. Explicit inversion formulas
can also be derived to connect the mean and the variance of the random source function to the
Fourier transform of the measurements, which are implemented by the fast Fourier transform.
Since explicit solutions will not be available any more for the inhomogeneous medium
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case, the extension will be nontrivial and so the difference will be obvious from the work
in [6].

The random source function, representing the electric current density, is assumed to have
a compact support contained in a finite interval. The problem is modeled with an outgoing
wave condition imposed on the lateral end points of the finite interval, which reduces the
model to a second-order stochastic two-point boundary value problem. This model problem
is converted into an equivalent first-order stochastic two-point boundary value problem, and
is shown to have a unique pathwise solution. By using the fundamental matrix, an integral
equation is constructed for the solution of the direct problem. By studying the expectation and
variance of the integral equation, inversion formulas are deduced to reconstruct the mean and
variance of the random source function. Numerical examples are included to demonstrate the
validity and effectiveness of the proposed method.

The paper is organized as follows. In section 2, we present the model problem and
formulate it as a first-order two-point stochastic boundary value problem. The existence and
uniqueness of the direct problem are established, and the solution is derived based on the
fundamental matrix. We derive four integral equations, which build the construction formulas
for the mean and the variance of the source function. In section 3, we discuss numerical
implementation of the method and present three numerical examples to demonstrate the
validity and effectiveness of the proposed approach. We conclude this paper with general
remarks and directions for future research in section 4.

2. Inverse random source problem

In this section, we introduce a mathematical model for the inverse random source scattering
problem. The model problem is first converted into a stochastic two-point boundary
value problem. A theoretical framework for the direct model problem is established and
reconstruction formulas are deduced for the solution of the inverse problem.

2.1. The model problem

Let u(x) be the time-harmonic wave field at location x with the time factor e−iωt omitted
and assume that the slab occupies the interval [0, 1]. Then the wave field u satisfies the
one-dimensional Helmholtz equation

u′′(x, ω) + ω2(1 + q(x))u(x, ω) = f (x), (2.1)

where the derivative is taken with respect to the spatial variable x, the magnetic permeability
and the electric permittivity of the vacuum are assumed to be the unity for simplicity, ω > 0 is
the angular frequency, q > 0 implies the relative electric permittivity of the inhomogeneous
medium and has a compact support in the interval [0, 1], and f , representing the electric
current density, is a stochastic source function, which is assumed to have the form

f (x) = g(x) + h(x)W ′
x.

Here g and h are the deterministic functions with compact supports contained in the interval
of the slab [0, 1], Wx is a one-dimensional spatial Wiener process, and W ′

x is its stochastic
differential in the Itô sense which is commonly used as a model for the white noise, i.e. a
spatial Gaussian random field. Throughout the paper, we assume that f, g, and h are the
bounded functions in [0, 1], i.e. f, g, h ∈ L∞[0, 1]. Following from the standard stochastic
theory on the white noise, we have

E[f (x)] = g(x) and V[f (x)] = h2(x),

3
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where E and V are the expectation and variance operators, respectively. Thus g stands for the
mean value of the random source function and h characterizes the size of the fluctuation for
the random source. Obviously, due to the random nature of the source function, the solution
u, the radiate field, is also a random function. Typical boundary conditions imposed on u are
the so-called outgoing radiation boundary conditions, which are equivalent to the boundary
conditions at two lateral end points of the interval [0, 1]:

u′(0, ω) + iωu(0, ω) = 0 and u′(1, ω) − iωu(1, ω) = 0. (2.2)

Remark 2.1. The Wiener process is one of the two fundamental examples (the Poisson
process is the simpler of the two) in the theory of continuous stochastic processes. Although
we only consider Gaussian random field driven by the Wiener process in this paper, the strategy
can be extended to other types of randomness in the source function with minor modifications.
For the completeness of the paper, some preliminaries, including the Wiener process and
stochastic Itô integral, are briefly presented in the appendix.

There are usually two types of problems posed for the above equations. Given the
mean g and the standard deviation h of the random source function f , the direct problem is to
determine the random wave field u. On the contrary, the inverse source problem is to determine
the mean value g and the standard deviation h or the variance h2 of the random source from the
boundary measurements of the random wave field u(0, ω), which is available for a sequence
of angular frequencies ω. Our goal is to investigate both the direct and inverse problems,
and particularly propose a novel and efficient numerical algorithm to solve the inverse source
problem. Although we use the radiated field measured at the left boundary point x = 0 in our
discussion, all of the results are still true if the measurements are taken at the right boundary
point x = 1.

First, we show that the direct problem has a unique pathwise solution for each realization
of the random field dWx , and the solution serves as the foundation of our numerical algorithm
for the inverse problem. To begin with, we convert the second-order wave equation in the
direct problem into a first-order two-point stochastic boundary value problem.

Let u1 = u and u2 = u′, the second-order stochastic boundary value problem (2.1)–(2.2)
can be equivalently written as a first-order two-point boundary value problem:

du = (Mu + g) dx + h dWx, (2.3)

A0u(0) = 0, (2.4)

B1u(1) = 0, (2.5)

where

u =
[
u1

u2

]
, g =

[
0
g

]
, h =

[
0
h

]
, M =

[
0 1

−ω2(1 + q) 0

]
,

and

A0 = [iω1], B1 = [−iω1].

We use this equivalent problem to establish our analysis and deduce reconstruction formulas
in the rest of this section.
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2.2. Two-point boundary value problem

To solve the two-point boundary value problem, we treat it as a standard initial value problem at
the left boundary point, x = 0, and then enforce the solution to satisfy the boundary condition
at the right boundary point, x = 1. The reader is referred to Nualart and Pardoux [24],
Ocone and Pardoux [25] for discussions on general boundary value problems for stochastic
differential equations.

Consider the general first-order linear stochastic differential equation

du = (Mu + g) dx + h dWx, (2.6)

together with the boundary conditions given in the form of linear equations:

A0u0 = v0, (2.7)

B1u1 = v1, (2.8)

where u(x) ∈ C
n, g(x) ∈ C

n, and h(x) ∈ C
n are n-dimensional vector fields, v0 ∈ C

n1 is
a given n1-dimensional vector field, M(x) ∈ C

n×n is a matrix, A0 ∈ C
n1×n is matrix, and

B1 ∈ C
n2×n and v1 ∈ C

n2 with n1 + n2 = n. For the general first-order stochastic boundary
value problem (2.6)–(2.8), we give a necessary and sufficient condition for the pathwise
existence and uniqueness of solution for any fixed realization of the Wiener process Wx.

We note that a solution to (2.6), if any, takes the form

u(x) = �(x)

[
u0 +

∫ x

0
�−1(y)g(y) dy +

∫ x

0
�−1(y)h(y) dWy

]
, (2.9)

where the last expression is given in the sense of the Itô integral and � is the fundamental
matrix of the nonautonomous system for the ordinary differential equation:

�′(x) = M(x)�(x), �(0) = I. (2.10)

Here I is the n × n identity matrix.
Evaluating (2.9) at x = 1 yields

u(1) = �(1)

[
u0 +

∫ 1

0
�−1(x)g(x) dx +

∫ 1

0
�−1(x)h(x) dWx

]
.

The solution is required to satisfy the boundary condition (2.8):

B1�(1)

[
u0 +

∫ 1

0
�−1(x)g(x) dx +

∫ 1

0
�−1(x)h(x) dWx

]
= v1.

We denote the random vector

B1�(1)

∫ 1

0
�−1(y)h(y) dWy = w ∈ C

n.

The well-posedness of the two-point stochastic boundary value problem (2.6)–(2.8) can be
equivalently formulated as follows: given v0 and v1, for any random process w, there exists a
unique solution u0 to the linear equations

A0u0 = v0,

B1�(1)u0 = v1 − w − B1�(1)

∫ 1

0
�−1(y)g(y) dy.

It follows from the linear algebra that the unique solvability of the above linear system can
be obtained if the coefficient matrix is nonsingular. Therefore we obtain the necessary and
sufficient condition for the well-posedness of the two-point stochastic boundary value problem.
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Theorem 2.1. The two-point stochastic boundary value problem (2.6)–(2.8) has a unique
solution if and only if

det

[
A0

B1�(1)

]
�= 0. (2.11)

2.3. Reconstruction formulas

Using the theory developed in the previous subsection, we may obtain the existence and
uniqueness for the direct source problem. Furthermore, the constructed proof deduces the
reconstruction formulas for the inverse source scattering problem.

Before presenting the well-posedness of the direct problem, we have to verify that the
solution of the fundamental matrix is invertible for any x ∈ [0, 1] in the context of the scattering
problem (2.1) and (2.2). In fact, it is easy to check that

[det�(x)]′ = trace M(x) · det�(x) = 0,

which gives

det �(x) = det �(0) = 1.

Thus the fundamental matrix � is invertible for any x ∈ [0, 1].

Corollary 2.1. The two-point boundary value problem (2.3)–(2.5) attains a unique solution.

Proof. Denote the 2 × 2 matrix

�(1) =
[
φ1 φ2

φ3 φ4

]
.

We have from the unity of the determinant for the fundamental matrix that

det �(1) = φ1φ4 − φ2φ3 = 1. (2.12)

A simple calculation yields

det

[
A0

B1�(1)

]
=

∣∣∣∣ iω 1
−iωφ1 + φ3 −iωφ2 + φ4

∣∣∣∣ = (ω2φ2 − φ3) + iω(φ1 + φ4).

Taking the square of the amplitude for the above determinant and substituting (2.12) yield

|(ω2φ2 − φ3) + iω(φ1 + φ4)|2 = ω4φ2
2 + ω2(φ2

1 + φ2
4 + 2

)
+ φ2

3 > 0 for all ω > 0,

which implies that

det

[
A0

B1�(1)

]
�= 0.

It follows from theorem 2.1 that the two-point boundary value problem (2.3)–(2.5) has a
unique solution. �

Next we deduce the integral equations to reconstruct the mean and the variance of the
random source function.

Recalling

u(1) = �(1)

[
u0 +

∫ 1

0
�−1(x)g(x) dx +

∫ 1

0
�−1(x)h(x) dWx

]
, (2.13)

where u0 = [u(0, ω),−iωu(0, ω)] and u1 = [u(1, ω), iωu(1, ω)] due to the radiation
condition (2.2).
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To simply the derivation, we introduce the following notation:

�(1) =
[
φ1(ω) φ2(ω)

φ3(ω) φ4(ω)

]
, �(1)u0 =

[
v1(ω)

v2(ω)

]
,

and

�(1)�−1(x) =
[
ψ1(x, ω) ψ2(x, ω)

ψ3(x, ω) ψ4(x, ω)

]
,

where

v1(ω) = [φ1(ω) − iωφ2(ω)]u(0, ω),

v2(ω) = [φ3(ω) − iωφ4(ω)]u(0, ω).

Using the above notation, we may obtain the expressions of the two components in (2.13):

u1(1, ω) = v1(ω) +
∫ 1

0
ψ2(x, ω)g(x) dx +

∫ 1

0
ψ2(x, ω)h(x) dWx (2.14)

u2(1, ω) = v2(ω) +
∫ 1

0
ψ4(x, ω)g(x) dx +

∫ 1

0
ψ4(x, ω)h(x) dWx. (2.15)

It follows from the radiation condition (2.2) that

u2(1, ω) = iωu1(1, ω),

which leads to the identity after substituting (2.14) and (2.15) into the above equation:∫ 1

0
[ψ4(x, ω) − iωψ2(x, ω)]g(x) dx +

∫ 1

0
[ψ4(x, ω) − iωψ2(x, ω)]h(x) dWx

= iωv1(ω) − v2(ω). (2.16)

It will be helpful to split all the complex functions into the sum of real and imaginary
parts in order to derive the variance reconstruction formulas. So denote

u(0, ω) = Re u(0, ω) + iIm u(0, ω).

Separating the real and imaginary parts of (2.16) gives∫ 1

0
ψ4(x, ω)g(x) dx +

∫ 1

0
ψ4(x, ω)h(x) dWx = ϕ1(ω), (2.17)

∫ 1

0
ψ2(x, ω)g(x) dx +

∫ 1

0
ψ2(x, ω)h(x) dWx = ϕ2(ω), (2.18)

where ϕ1 and ϕ2 are given in terms of the real and the imaginary parts of the measured field
u(0, ω):

ϕ1(ω) = Re[iωv1(ω) − v2(ω)] = Re[ω2φ2(ω) − φ3(ω) + iω(φ1(ω) + φ4(ω))]u(0, ω),

= [ω2φ2(ω) − φ3(ω)]Re u(0, ω) − ω[φ1(ω) + φ4(ω)]Im u(0, ω),

ϕ2(ω) = − 1

ω
Im[iωv1(ω) − v2(ω)] = − 1

ω
Im[ω2φ2(ω) − φ3(ω) + iω(φ1(ω) + φ4(ω))]u(0, ω)

= − 1

ω
[ω2φ2(ω) − φ3(ω)]Im u(0, ω) − [φ1(ω) + φ4(ω)]Re u(0, ω).

Now ϕ1(ω) and ϕ2(ω) can be viewed as the measurement data corresponding to a sequence of
angular frequency ω.
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Taking the expectation on both sides of (2.17) and (2.18) and using the property of the
Itô integral

E

[∫ 1

0
ψ2(x, ω)h(x) dWx

]
= E

[∫ 1

0
ψ4(x, ω)h(x) dWx

]
= 0,

we obtain the integral equations to reconstruct the mean of the random source function:∫ 1

0
ψ4(x, ω)g(x) dx = E[ϕ1(ω)], (2.19)

∫ 1

0
ψ2(x, ω)g(x) dx = E[ϕ2(ω)]. (2.20)

Recalling the Itô isometry, we have

E

[(∫ 1

0
ψ4(x, ω)h(x) dWx

)2
]

=
∫ 1

0
ψ2

4 (x, ω)h2(x) dx,

E

[(∫ 1

0
ψ2(x, ω)h(x) dWx

)2
]

=
∫ 1

0
ψ2

2 (x, ω)h2(x) dx.

Taking the variance on both sides of (2.17) and (2.18), and using the above Itô isometry, we
deduce the integral equations to reconstruct the variance of the random source function:∫ 1

0
ψ2

4 (x, ω)h2(x) dx = V[ϕ1(ω)], (2.21)

∫ 1

0
ψ2

2 (x, ω)h2(x) dx = V[ϕ2(ω)]. (2.22)

Remark 2.2. In principle, both integral equations (2.19) and (2.20) can be used to reconstruct
the mean of the random source function; both integral equation (2.21) and (2.22) can be used
to reconstruct the variance of the random source function. In practice, the selection of one
integral equation over another is determined by the singular values of the matrix obtained from
the discretization of the integral kernel.

Remark 2.3. It is not hard to see that the data essentially require the knowledge of the
quantity E[u(0, ω)]. According to the strong law of large numbers

P

[
lim

m→∞
u1(0, ω) + · · · + um(0, ω)

m
= E[u(0, ω)]

]
= 1,

where ui(0, ω), i = 1, 2, . . . , m is for the ith measurement or realization, m is the total
number of measurements or realizations, and P stands for the probability. The exact value of
E[u(0, ω)] will be obtained only if the measurement is taken at infinitely many times. Due to
the finite number of realizations, the actual data will not be accurate and always have certain
level of error.

Remark 2.4. In [6], an explicit formula is derived for the solution of the stochastic Helmholtz
equation in the homogeneous medium based on the integrated solution method, which cannot
be applied in the case of inhomogeneous media. However, the method introduced in this paper
can easily handle the homogeneous medium and deduce the same solution as that from the
method of the integrated solution.

8
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In fact, in the homogeneous medium case, i.e. q = 0, the coefficient matrix M in the
nonautonomous system (2.10) becomes a constant matrix. Thus, the fundamental matrix can
be explicitly computed. Simple calculations yield

�(1) =
[

cos ω 1
ω

sin ω

−ω sin ω cos ω

]
, �(1)u0 = u(0, ω)e−iω

[
1

−iω

]
,

and

�(1)�−1(x) =
[

cos[(1 − x)ω] 1
ω

sin[(1 − x)ω]
−ω sin[(1 − x)ω] cos[(1 − x)ω]

]
.

Substituting above expressions into (2.14) and (2.15) we get

u1(1, ω) = u(0, ω) e−iω +
1

ω

∫ 1

0
sin[(1 − x)ω]g(x) dx +

1

ω

∫ 1

0
sin[(1 − x)ω]h(x) dWx,

u2(1, ω) = −iωu(0, ω) e−iω +
∫ 1

0
cos[(1 − x)ω]g(x) dx +

∫ 1

0
cos[(1 − x)ω]h(x) dWx.

Recalling the radiation condition u2(1, ω) = iωu1(1, ω), we obtain the integral representation
for the radiated field at x = 0 after combing the above two equations:

u(0, ω) = 1

2iω

∫ 1

0
eiωxg(x) dx +

1

2iω

∫ 1

0
eiωxh(x) dWx. (2.23)

Once u(0, ω) is available, we may plug it into (2.9) and derive the explicit expression of the
solution for the direct random source problem:

u(x, ω) = 1

2iω

∫ 1

0
eiω|x−y|g(y) dy +

1

2iω

∫ 1

0
eiω|x−y|h(y) dWy.

We refer to [6] for the detailed derivation of the inversion formulas to reconstruction the mean
and variance of the random source function from (2.23).

3. Numerical experiments

In this section, we discuss the algorithmic implementation for the direct and inverse random
source scattering problems, and present three numerical examples to demonstrate the validity
and effectiveness of the proposed method.

3.1. Direct problem

First we comment on the scattering data and the direct solver for the one-dimensional stochastic
Helmholtz equation. We refer to Cao et al [9] for the finite element and discontinuous Galerkin
method for solving the two-dimensional stochastic Helmholtz equation, Higham [18] and
Kloeden and Platen [21] for an account of various numerical methods and approximation
schemes for general stochastic partial differential equations.

To generate the scattering data u(0, ω), it is required to solve the initial value problem
(2.10) to numerically obtain the fundamental matrix, and the following linear system:

A0u0 = 0,

B1�(1)u0 = −z − w,
(3.1)

where w is a random number given in terms of the Itô integral

w = B1�(1)

∫ 1

0
�−1(x)h(x) dWx, (3.2)

9
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and z is a deterministic number given by the regular integral:

z = B1�(1)

∫ 1

0
�−1(x)g(x) dx. (3.3)

Upon computing w and z, the scattering data can be analytically obtained from the solution
of (3.1) by using the Gram rule:

u(0, ω) = (z + w)/[(ω2φ2 − φ3) + iω(φ1 + φ4)]. (3.4)

Note that the determinant is nonzero due to corollary 2.1.
The interval [0, 1] was divided into n equal subintervals with nodes xj = jh, j =

0, 1, . . . , n, h = 1/n. The initial value problem (2.10) for the fundamental matrix is solved
by the classic fourth-order Runge–Kutta formula:

K1 = hM(xj )�j ,

K2 = hM
(
xj + 1

2h
)(

�j + 1
2K1

)
,

K3 = hM
(
xj + 1

2h
)(

�j + 1
2K2

)
,

K4 = hM(xj + h)(�j + K3),

�j+1 = �j + 1
6 (K1 + 2K2 + 2K3 + K4),

where

M(xj ) =
[

0 1
−ω2(1 + q(xj )) 0

]
and �0 =

[
1 0
0 1

]
.

The random number w is computed by using the definition of the Itô integral:

w = B1�(1)

∫ 1

0
�−1(x)h(x) dWx =

∫ 1

0
[ψ4(x, ω) − iωψ2(x, ω)]h(x) dWx

≈
n−1∑
j=1

[ψ4(xj , ω) − iωψ2(xj , ω)]h(xj ) dWj,

where the spatial Brownian motion dWj = ξj /
√

n, in which ξj ∈ N(0, 1) is a random variable
in the standard Gaussian distribution with zero mean and unit variance. We generate ξj by
a random number generator in FORTRAN90. The deterministic number z is computed by a
regular numerical quadrature:

z = B1�(1)

∫ 1

0
�−1(x)g(x) dx =

∫ 1

0
[ψ4(x, ω) − iωψ2(x, ω)]g(x) dx

≈ h

n−1∑
j=1

[ψ4(xj , ω) − iωψ2(xj , ω)]g(xj ).

Therefore, at each frequency ω, we solve the initial value problem (2.10) to obtain the
fundamental matrix and compute the deterministic number z. The scattering data are then
available from (3.4) after computing the random number w corresponding to some specific
realization of the random variable.

3.2. Inverse problem

The inverse problem consists of recovering the mean g and variance h2 from the data function
in terms of the u(0, ω). In section 2.3, two integral equations are derived for the reconstruction
of the mean and the variance, respectively. Both of the integral equations are implemented by

10
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using the pseudo-inverse solution in order to compare the results, and provide us a criterion to
choose one integral equation over another one.

Let T denote the linear operator with kernel T (x, ω) standing for ψ2(x, ω) in (2.19) or
ψ4(x, ω) in (2.20), or for ψ4

2 (x, ω) in (2.21) or ψ2
4 (x, ω) in (2.22). We briefly introduce the

singular value decomposition (SVD) of the linear operator. The SVD of T is a representation
of the form

T (x, ω) =
∞∑

j=1

σjuj (x)v∗
j (ω),

where σj is the singular value associated with the singular functions uj and vj . The pseudo-
inverse solution to the integral equations (2.19)–(2.20) or (2.21)–(2.22) generates the minimal
norm solution. The SVD of T may be used to express the generalized inverse T + as

T +(x, ω) =
∞∑

j=1

1

σj

vj (ω)u∗
j (x).

In order to avoid the numerical instability, the SVD inversion formulas must be regularized.
In particular, 1/σ is replaced in the above generalized inverse by R(σ), where R(σ) is a suitable
regularizer. The role of regularization is to limit the contribution of small singular values to
the reconstruction. This has the effect of replacing an ill-posed problem with a well-posed one
that closely approximates the original one. A simple choice for R(σ) consists of truncation,
i.e.

R(σ) =
{
σ−1 for σ � ε

0 for σ < ε
,

where ε > 0 is a regularized parameter. Let the sequence of the truncated singular values be
arranged in a decreasing order:

σmax � · · · � σmin � ε > 0,

i.e. σmax is the largest singular value and σmin is the smallest singular value which is greater
than the given regularization parameter. Define a reference number ρ = σmax/σmin, which
is the ratio between the largest and smallest singular valued, and will provide us a criterion
on how to choose the integral equations for the inversions. In the following three numerical
examples, the scatterer function, representing the inhomogeneous medium, is taken as

q(x) = exp

[
−π2(2x − 1)2

0.64

]
.

Example 1. Reconstruct the mean and the standard deviation given by

g1(x) = sin(2πx) and h1(x) = 0.5 − 0.5 cos(2πx)

inside the interval [0, 1]. See figure 1 for the random source function f (x) = g1(x)+h1(x) dWx

corresponding to a realization of the randomness. This is a simple example as both functions
g1 and h1 contain very few low frequency Fourier modes. For the reconstruction of the mean
value g1 and the variance h2

1, the scattering data u(0, ωj ) are computed at discrete frequencies
ωj = ωmin + j (ωmax − ωmin)/k, j = 0, 1, . . . , k, where ωmin = 1.0, ωmax = 7.0, and k = 6.

Table 1 shows some parameters, such as the regularization parameter ε for the truncated
SVD, largest and smallest singular values σmax and σmin, and the reference number ρ as the ratio
between the largest singular value and the smallest singular value, related to the SVD of the

11
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Figure 1. The random source function f for example 1.

Table 1. Example 1. Truncated SVD of the four integral kernels for the mean and variance.

Mean Variance

ψ2 ψ4 ψ2
2 ψ2

4

ε 0.10 0.10 0.10 0.10
σmax 6.18 11.56 3.50 12.83
σmin 0.90 1.24 0.17 0.64
ρ 6.86 9.32 20.59 20.04

integral kernels corresponding to the functions ψ2(x, ω), ψ4(x, ω), ψ2
2 (x, ω), and ψ2

4 (x, ω),
respectively. The regularization parameter ε is chosen mainly based on an observation of
the distribution for the singular values. Usually it is taken as a positive number between two
consecutive singular values with a big gap.

Figure 2 plots the singular values of the matrices corresponding to the integral kernels
ψ2(x, ω) and ψ4(x, ω) in (2.19) and (2.20), which are the reconstruction formulas for the
mean. Figure 3 shows the reconstructed mean against the exact ones with the number of
realization m = 104. The relative error of the reconstruction is e = 4.13 × 10−2 by using
the integral equation (2.19), while the relative error of the reconstruction e = 2.30 × 10−1 by
using the integral equation (2.20). Obviously the inversion result from the integral kernel ψ2

is better than that from the integral kernel ψ4. In fact, it can be confirmed by observing the
reference numbers: ρ = 6.86 for the integral kernel ψ2, while ρ = 9.32 for the integral kernel
ψ4. The reference number plays the role of the condition number for a matrix, which reflects
the ill-posedness of the problem. The smaller the reference number is, the more well-posed
the problem will be. Hence, it will be more reliable for the inversion by choosing the equation
with a smaller reference number.

Figure 4 plots the singular values of the matrices discretized from the integral kernels
ψ2

2 (x, ω) and ψ2
4 (x, ω) in (2.21) and (2.22), which are the reconstruction formulas for the

variance. Figure 5 shows the reconstructed variance against the exact ones with the number
of realization m = 104. The relative errors are on the same level: e = 3.65 × 10−2 by using
the kernel ψ2

2 and e = 3.72 × 10−2 by using the kernel ψ2
4 , which is not surprising at all. If

we compare the reference numbers for the variance in table 1: one is ρ = 20.59 and another

12
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Figure 2. Singular values for example 1: (left) ψ2; (right) ψ4.
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Figure 3. Reconstruction of the mean for example 1: (left) ψ2; (right) ψ4.

is ρ = 20.04. The reference numbers imply that the reconstructions should not have much
differences by using either ψ2

2 or ψ2
4 since they are very close.

The reconstructed results are almost indistinguishable from the exact functions from the
graphs even for the number of realizations m = 104 if the right equations are chosen for
the inversions. It is obvious that the better reconstructions may be obtained when the more
accurate data are used, i.e. larger number of realizations.

Example 2. Let

g(x) = 0.3
[
(1 − cos(2x)) − 16

21 (1 − cos(3x)) + 5
28 (1 − cos(4x))

]
,

h(x) = 0.6 − 0.3 cos(x) − 0.3 cos(2x),

reconstruct the mean and the standard deviation given by

g2(x) = g(2πx) and h2(x) = h(2πx)

inside the interval [0, 1]. See figure 6 for the random source function f (x) = g2(x)+h2(x) dWx

corresponding to a realization of the randomness. This example is a little more complicated
than example 1 since both functions contain more higher frequency modes. Correspondingly,
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Figure 4. Singular values for example 1: (left) ψ2
2 ; (right) ψ2
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Figure 5. Reconstruction of the variance for example 1: (left) ψ2
2 ; (right) ψ2

4 .

the data at high frequencies should be computed to recover the mean g2 and the standard
deviation h2. For the reconstruction of the mean value g2, the scattering data u(0, ωj ) are
computed at discrete frequencies ωj = ωmin + j (ωmax − ωmin)/k, j = 0, 1, . . . , k, where
ωmin = 1.0, ωmax = 31.0, and k = 20; while the scattering data u(0, ωj ) are computed at
frequencies ωj = ωmin + j (ωmax − ωmin)/k, j = 1, 2, . . . , k, where ωmin = 1.0, ωmax = 11.0,
and k = 10, for the reconstruction of the standard deviation h2.

Table 2 shows the regularization parameter, largest and smallest singular values,
and the reference numbers for the truncated SVD of the kernels corresponding to
ψ2(x, ω), ψ4(x, ω), ψ2

2 (x, ω), and ψ2
4 (x, ω), respectively.

Figures 7 and 8 plot the singular values of the matrices corresponding to the integral
kernels ψ2(x, ω) and ψ4(x, ω) in (2.19) and (2.20), and ψ2

2 (x, ω) and ψ2
4 (x, ω) in (2.21)

and (2.22), respectively. Figures 9 and 10 show the reconstructed mean and variance against
the exact ones with the number of realization m = 104. The relative reconstruction errors
are e = 6.06 × 10−2 (using ψ2 to reconstruct the mean) and e = 5.08 × 10−2 (using ψ4

to reconstruct the mean), and e = 1.47 × 10−1 (using ψ2
2 to reconstruct the variance) and

e = 6.78 × 10−2 (using ψ2
4 to reconstruct the variance). Again, it is confirmed from the
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Figure 6. The random source function f for example 2.
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Figure 7. Singular values for example 2: (left) ψ2; (right) ψ4.

Table 2. Example 2. Truncated SVD of the four integral kernels for the mean and variance.

Mean Variance

ψ2 ψ4 ψ2
2 ψ2

4

ε 0.10 0.50 0.04 0.10
σmax 5.54 10.59 3.46 16.28
σmin 0.24 2.85 0.04 0.56
ρ 23.08 3.71 86.50 29.07

numerical results that better reconstructions can be obtained when using the equation with a
smaller reference number than that with a larger reference number.

Example 3. Let

g(x) = 0.4
[
(1 − cos(3x)) − 1215

2783 (1 − cos(11x)) + 7
23 (1 − cos(12x))

]
,

h(x) = 0.5e1 − 0.3ecos(2x) − 0.2ecos(3x),
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Figure 8. Singular values for example 2: (left) ψ2
2 ; (right) ψ2
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Figure 9. Reconstruction of the mean for example 2: (left) ψ2; (right) ψ4.
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Figure 10. Reconstruction of the variance for example 2: (left) ψ2
2 ; (right) ψ2
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Figure 11. The random source function f for example 3.

Table 3. Example 3. Truncated SVD of the four integral kernels.

Mean Variance

ψ2 ψ4 ψ2
2 ψ2

4

ε 0.10 5.00 0.02 0.10
σmax 7.27 12.98 3.45 19.77
σmin 0.11 8.28 0.03 0.91
ρ 66.09 1.57 115.00 21.72

reconstruct the mean value and the standard deviation given by

g3(x) = g(2πx) and h3(x) = h(2πx)

inside the interval [0, 1]. See figure 11 for the random source function f (x) =
g3(x) + h3(x)dWx corresponding to a realization of the randomness. This example is
clearly much more complicated than the previous two examples since both functions
contain substantially more higher frequency modes. Therefore, the data at even higher
frequencies should be computed to recover the mean g3 and the standard deviation h3.
For the reconstruction of the mean value g3, the scattering data u(0, ωj ) are computed at
discrete frequencies ωj = ωmin + j (ωmax − ωmin)/k, j = 0, 1, . . . , k, where ωmin = 1.0,
ωmax = 91.0, and k = 40; while the scattering data u(0, ωj ) are computed at frequencies
ωj = ωmin + j (ωmax −ωmin)/k, j = 1, 2, . . . , k, where ωmin = 1.0, ωmax = 17.0, and k = 17,
for the reconstruction of the standard deviation h3.

Table 3 shows the regularization parameter, largest and smallest singular values,
and the reference numbers for the truncated SVD of the kernels corresponding to
ψ2(x, ω), ψ4(x, ω), ψ2

2 (x, ω), and ψ2
4 (x, ω), respectively. In this example, the differences

in the reference numbers are obvious, which clearly suggests that the usage of the kernels ψ4

and ψ2
4 will generate better results than that of ψ2 and ψ2

2 for the inversion of the mean and
variance, respectively.

Figures 12 and 13 plot the singular values of the matrices corresponding to the integral
kernels ψ2(x, ω) and ψ4(x, ω) in (2.19) and (2.20), and ψ2

2 (x, ω) and ψ2
4 (x, ω) in (2.21) and

(2.22), respectively. Figures 14 and 15 show the reconstructed mean and variance against
the exact ones with the number of realization m = 104. The relative reconstruction errors
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Figure 12. Singular values for example 3: (left) ψ2; (right) ψ4.
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Figure 13. Singular values for example 3: (left) ψ2
2 ; (right) ψ2

4 .

0 0.2 0.4 0.6 0.8 1
−0.8

−0.4

0

0.4

0.8

1.2

m=104        e=1.04× 10−1
0 0.2 0.4 0.6 0.8 1

−0.8

−0.4

0

0.4

0.8

1.2

m=104        e=8.08× 10−2

Figure 14. Reconstruction of the mean for example 3: (left) ψ2; (right) ψ4.

are e = 1.01 × 10−1 (using ψ2 to reconstruct the mean) and e = 8.08 × 10−2 (using ψ4

to reconstruct the mean), and e = 1.07 × 10−1 (using ψ2
2 to reconstruct the variance) and

e = 7.77 × 10−2 (using ψ2
4 to reconstruct the variance). Once again, it is confirmed from the
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Figure 15. Reconstruction of the variance for example 3: (left) ψ2
2 ; (right) ψ2
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Figure 16. Reconstruction of the random source function for example 3 with the number of
realization m = 105: (left) mean; (right) variance.

numerical results that better reconstructions can be obtained when using the equation with a
smaller reference number than that with a larger reference number.

To show the effect of the number of the realization m on the reconstruction, figure 16
shows the reconstructed mean (using ψ4) and variance (using ψ2

4 ) against the exact ones
with m = 105. The relative errors are e = 2.79 × 10−2 for the mean (comparing the error
e = 8.08 × 10−2 when m = 104) and e = 3.62 × 10−2 for the variance (comparing the error
e = 7.77 × 10−2 when m = 104). As expected, better results are obtained since a larger
number of realization intends to reduce the effect of data error.

Finally, to test the stability of the method, we reconstruct the mean and variance with
noisy data. Some relative random noise is added to the data, i.e. the scattering data take

u := (1 + δ rand)u.

Here, rand gives uniformly distributed random numbers in [−1, 1] and δ is a noise level
parameter. Figure 17 displays the reconstructed mean and variance with the scattering data
corresponding to the noisy level δ = 5% and the number of the realization m = 105. It
reconstructs the mean with a 8.81% relative error and the variance with a 5.86% relative error.
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Figure 17. Reconstruction of the random source function for example 3 with noisy data: (left)
mean; (right) variance.

An examination of the plot shows that the error of the reconstructions occurs largely around
the edges, while the middle parts of the functions are recovered more accurately.

In summary, the following observations can be made based on numerical experiments.
When the functions contain few low Fourier modes or fast decaying Fourier coefficients,
accurate and stable reconstructions can be obtained easily by using scattering data with low
frequencies. To get better results, scattering data containing high frequencies should be used to
recover the functions with high Fourier modes. Generally, the system with a smaller reference
number will generate a better construction and a more reliable solution due to a relatively
well-posed nature of the problem.

4. Concluding remarks

We studied an inverse scattering problem for the stochastic Helmholtz equation with a random
source function in a slab of the inhomogeneous medium. Both the direct and the inverse
problems were considered. The direct problem was equivalently formulated as a two-point
stochastic boundary value problem, and was shown having pathwise existence and uniqueness
of a solution. Based on a constructed solution for the direct problem, the integral equations
were derived for the reconstruction formulas, which connect the mean value and variance
of the random source to those of the measured field. Numerical examples were presented
to demonstrate the validity and effectiveness of the proposed method. We are currently
investigating the inverse random source scattering problem for the two- and three-dimensional
Helmholtz equation in homogeneous and inhomogeneous media and will report the progress
elsewhere in the future.
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Appendix. Preliminaries

This section is a brief introduction to some notations for the stochastic differential equations.
More details can be found in any good introductory book, for instance Øksendal [26] and
Protter [28].

Let the triple (,F, P ) be a complete probability space, where  is a given set called
a sample space, F is a σ -algebra on , and P is a probability measure on the measurable
space (,F). A random variable B is an F-measurable function B :  → R. Every random
variable induces a probability measure μB on R, defined by μB(U) = P [B−1(U)] for U ∈ F .
Here μB is called the distribution of B. If

∫


|B(ξ)|dP(ξ) < ∞ then the number

E[B] =
∫



B(ξ) dP(ξ) =
∫

R

y dμB(y)

is called the expectation of B with respect to P.
A stochastic process is a parameterized collection of random variable {Bx}x∈X defined on

the probability space (,F, P ) and assuming values in R. The parameter space X is usually
the half-line [0,∞), but it may also be an interval [a, b], as in this paper [0, 1]. Note that for
each x ∈ X fixed we have a random variable

ξ → Bx(ξ); ξ ∈ .

On the other hand, fixing ξ ∈  we can consider the function

x → Bx(ξ); x ∈ X,

which is called a path of Bx.
The Brownian motion is an important example of the stochastic process, which is explained

by the random collisions with the molecules of the liquid. In mathematics, Brownian motion
is described by the Wiener process Wx, which is characterized by three facts: (1) W0 = 0; (2)
Wx is almost surely continuous; (3) Wx has independent increments with normal distribution
of expected value zero and variance x−y, i.e. Wx − Wy ∼ N(0, x − y) for 0 � y � x.

The Itô integral of a random function f is defined by∫ b

a

f (x, ξ) dWx(ξ) = lim
n→∞

∫ b

a

fn(x, ξ) dWx(ξ),

where Wx is the one-dimensional Wiener process, the limit is taken in L2(P ), and {fn} is a
sequence of elementary functions such that

E

[∫ b

a

(f (x, ξ) − fn(x, ξ))2dx

]
→ 0 as n → ∞.

It can be shown that the Itô integral satisfies the mean zero:

E

[∫ b

a

f (x, ξ) dWx

]
= 0

and the Itô isometry

E

[(∫ b

a

f (x, ξ) dWx

)2
]

= E

[∫ b

a

f 2(x, ξ) dx

]
.
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