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Consider the diffraction of a time-harmonic plane wave incident on a perfectly reflecting periodic surface. A
continuation method on the wavenumber is developed for the inverse diffraction grating problem, which recon-
structs the grating profile from measured reflected waves a constant distance away from the structure. Numerical
examples are presented to show the validity and efficiency of the proposed method. © 2012 Optical Society of
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1. INTRODUCTION
Consider a time-harmonic electromagnetic plane wave inci-
dent on a slab of some optical material, often referred to as
grating material, that is periodic in the x-direction. Through-
out, we assume that the material is invariant in the z-direction.
Thus the model problem of the three-dimensional Maxwell
equations can be reduced to a simpler model problem of the
two-dimensional Helmholtz equation. The more complicated
biperiodic diffraction problemwill be considered in a separate
work. The scattering theory in periodic structures has many
applications in micro-optics, where periodic structures are of-
ten called diffraction gratings. Diffractive optics is an emer-
ging technology with many applications, which include the
design and fabrication of optical elements such as corrective
lenses, antireflective interfaces, beam splitters, and sensors.

Recently, the scattering of electromagnetic waves in a
periodic structure has received considerable attention in
the applied mathematics community and has been studied ex-
tensively by either integral equation methods (e.g., [1]) or var-
iational approaches (e.g., [2]). We refer to Bao et al. [2] and
references cited therein for the mathematical studies of the
existence and uniqueness of the diffraction grating problem.
Numerical methods based on both an integral equation meth-
od and a variational (finite element) method have been
developed in [3,4]. A good introduction to the problem of elec-
tromagnetic diffraction through periodic structures, along
with some numerical methods, can be found in Petit [5]. A
more recent review on diffractive optics technology and its
mathematical modeling can be found in Bao et al. [6].

In this work, we are concerned with the numerical solution
of the inverse diffraction problem, which may be described as
follows: given the incident field, determine the grating struc-
ture from a measured reflected field a constant distance away
from the structure. Besides the intrinsic motivation and poten-
tial applications in the optical sciences, the inverse diffraction
problem also arises naturally in the study of optimal design
problems in diffractive optics, which is to design a grating
structure that gives rise to some specified far-field patterns

(see, e.g., the optimal design of antireflective and blazed dif-
fraction gratings by Dobson [7,8] and the optimal design of
binary gratings by Elschner and Schmidt [9,10].

The mathematical questions on uniqueness and stability for
the inverse diffraction problem of both the two-dimensional
Helmholtz equation and the three-dimensional Maxwell equa-
tions have been studied by Kirsch [11], Bao [12], Ammari [13],
Hettlich and Kirsch [14], Bao and Friedman [15], Bao and
Zhou [16], Bao et al. [17], and Bruckner et al. [18]. We refer
to [6] for a survey of recent developments in the mathematical
modeling of optimal design and inverse problems for diffrac-
tive optics. A complete account of the general theory of
inverse scattering problems in general (nonperiodic) struc-
tures may be found in the book by Colton and Kress [19]
and references cited therein.

Computationally, various numerical methods have been
proposed for the reconstruction of the grating profile of per-
fectly conducting gratings, e.g., García and Nieto-Vesperinas
[20] (within the validity of Rayleigh’s hypothesis [21,22]), Ito
and Reitich [23], Arens and Kirsch [24], Hettlich [25], and
Bruckner and Elschner [26]. Elschner et al. [27] proposed
an algorithm for the recovery of a two-dimensional periodic
structure based on finite elements and optimization techni-
ques. Our goal in this work is to present an efficient continua-
tion method that solves the nonlinear inverse diffraction
grating problem in a one-dimensional perfectly reflecting
structure based on a single-layer potential representation
[26]. The algorithm requires multifrequency data, and the
iterative steps are obtained by a continuation method with re-
spect to the wavenumber: at each step a nonlinear Landweber
iteration is applied, with the starting point given by the output
from the previous step at a lower wavenumber. Thus, at each
stage an approximation to the grating surface filtered at a
higher frequency is created. Starting from a reasonable initial
guess, the continuation method is shown to converge for a
larger class of surfaces than the usual Newton’s method
using the same initial guess. We refer to Chen [28] and Bao
and Li [29–31] for closely related inverse medium scattering
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problems in the two-dimensional Helmholtz equation and
three-dimensional Maxwell’s equations, where recursive line-
arization methods were proposed through a continuation with
respect to either the wavenumber or the spatial frequency. For
a nonperiodic perfectly reflecting surface scattering problem,
we refer to Coifman et al. [32] for discussions on an operator
expansion method for the direct and inverse scattering, where
a similar continuation method with respect to the wavenum-
ber was proposed to reconstruct the nonperiodic surface. We
also refer to Ammari et al. [33] for stability and resolution ana-
lysis in the presence of measurement noise for a topological
derivative based imaging functional.

The plan of this paper is as follows. The mathematical mod-
eling of the diffraction grating is briefly presented in Section 2.
In Section 3, a continuation method for solving the inverse
diffraction problem is proposed and a nonlinear Landweber
iteration is presented. Numerical examples are presented in
Section 4, and the paper is concluded with some remarks
and directions for future research in Section 5.

2. A MODEL PROBLEM
Let us first specify the problem geometry. Since the grating
surface is periodic in the variable x of period Λ, we may then
restrict it to a single period in x, as seen in Fig. 1. Let the
profile of the diffraction grating in one period be described
by the curve

S � f�x; y� ∈ R2:y � f �x�; 0 < x < Λg;

which is assumed to be above the x axis. Here f is assumed to
be a periodic function of period Λ. Let Ω � f�x; y� ∈ R2:y >
f �x�; 0 < x < Λg be filled with a material whose dielectric per-
mittivity and magnetic permeability are ε and μ, respectively.
Denote as ω > 0 the angular frequency, and the wavenumber
as κ � ω �����εμp

. Assume that a plane wave of the form uinc �
ei�αx−βy� is incident on the grating surface S from the top,
where α � κ sin θ, β � κ cos θ, and θ ∈ �−π∕2; π∕2� is the an-
gle of incidence. For convenience, ε and μ are assumed to be
equal to unity everywhere, i.e., κ � ω. For n ∈ Z, let
αn � α� 2πn∕Λ, and denote

βn �
� ���������������

κ2 − α2n
p

; for κ > jαnj;
i

���������������
α2n − κ2

p
; for κ < jαnj.

We exclude “resonance” by assuming that κ ≠ jαnj for all
n ∈ Z. The diffraction of time-harmonic electromagnetic
waves in the transverse electric mode (TE polarization) by
a one-dimensional perfectly reflecting grating can be formu-
lated as follows: to find the diffracted field u such that

Δu� κ2u � 0; in Ω; (1)

u� uinc � 0; on S: (2)

Motivated by uniqueness, we shall seek the quasiperiodic
solution, i.e., solution u, for which ue−iαx is Λ periodic in x.
Moreover, the diffracted field u is required to be bounded
by outgoing plane waves in Ω. It follows from Rayleigh’s ex-
pansion that u can be expressed as a sum of plane waves:

u �
X
n∈Z

Aneiαnx�iβny; y > max
x∈�0;Λ�

f �x�; (3)

where the coefficient An is a complex scalar. Each term n ∈

fn:jαnj < κg of the outgoing wave in Eq. (3) represents a pro-
pagating plane wave. If jnj is large n ∈ fn:jαnj > κg, then the
corresponding term in Eq. (3) represents an evanescent wave
that exponentially decays with respect to y and jnj. As pointed
out, the direct scattering problem has been well studied and
will not be discussed in this paper. This work is to study
the inverse problem of grating profile reconstruction: given
the incident wave uinc, determine the profile y � f �x� from
the measurements of the diffracted field at a straight line:

Γ � f�x; y0� ∈ R2:x ∈ �0;Λ�; y0 > max
x∈�0;Λ�

f �x�g;

i.e., the near-field data u�x; y0�.

3. RECONSTRUCTION METHOD
Following Bruckner and Elschner [26], we begin with the
single-layer potential representation for the diffracted field:

u�x; y� �
Z Λ

0
ϕ�s�G�x; y; s; 0�ds; (4)

with an unknown periodic density function ϕ in L2�0;Λ�,
where the free-space quasiperiodic Green function is given ex-
plicitly as

G�x; y; s; t� � i
2π

X
n∈Z

1
βn

eiαn�x−s��iβnjy−tj; �x; y� ≠ �s; t�: (5)

This function is well-defined, i.e., βn ≠ 0, since the resonance
is excluded by assuming k ≠ jαnj. We then have

u�x; y0� �
Z Λ

0
ϕ�s�G�x; y0; s; 0�ds: (6)

Since the unknown density ϕ is assumed to be a periodic
function with periodicity Λ, it admits a Fourier series
expansion

ϕ�s� �
X
n∈Z

ϕneiαns; �7�

where ϕn is the Fourier coefficient of ϕ. It follows from the
quasiperiodicity of u�x; y0� thatFig. 1. Problem geometry.
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u�x; y0� �
X
n∈Z

uneiαnx; (8)

where un can be calculated from the measurement

un � 1
Λ

Z Λ

0
u�x; y0�e−iαnxdx: (9)

Combining the above expansions yields

ϕn � −iβnune−iβny0 : (10)

We define the operator Tf :L2�0;Λ� → L2�0;Λ�:

�Tfϕ��x� �
Z Λ

0
ϕ�s�G�x; f �x�; s; 0�ds: (11)

Substituting Eqs. (7) and (10) and the quasiperiodic Green
function [Eq. (5)] into Eq. (11) gives

�Tfϕ��x� �
X
n∈Z

ψneiαnx�iβnf �x�;

where ψn � une−iβny0 . In practice, some regularization should
be employed in order to suppress the possible exponential
growth of noise [34]:

ψn �
8<
:
une−i

����������
k2−α2n

p
y0 ; for k > jαnj;

un
e−

��������
α2n−k

2
p

y0

e−2
��������
α2n−k

2
p

y0�γ
for k < jαnj;

�12�

where γ is some positive regularization parameter. Because of
the perfectly conducting condition [Eq. (2)], we may study the
nonlinear problem

�����Tfϕ��x� � uinc�x; f �x��
����2
L2�0;Λ�

� 0;

which yields, after substituting the expansion for the operator
Tf ,

�����
X
n∈Z

ψneiαnx�iβnf �x� � ei�αx−βf �x��
�����
2

L2�0;Λ�
� 0.

Though the summation has infinitely many terms of evanes-
cent waves, it could be truncated into finite summation with
arbitrary accuracy due to its exponential decay with respect
to jnj. Choosing a sufficiently large N , we consider the numer-
ical solution of the following nonlinear equation:

������
X
jnj≤N

ψneiαnx�iβnf �x� � ei�αx−βf �x��

������
2

L2�0;Λ�

� 0. �13�

The profile f �x� is a real Λ-periodic function. Without the
loss of generality, the period Λ is taken to be 2π from now on.
Since the profile f �x� is a periodic function with periodicity 2π,
it has the following Fourier series expansion:

f �x� � c0 �
X∞
m�1

�c2m−1 cos�mx� � c2m sin�mx��; �14�

where m is exactly the mth Fourier mode for the 2π-periodic
function f �x�, which may have finitely or infinitely many Four-
ier modes. In practice, the infinite series [Eq. (14)] needs to be
approximated by truncating the expansion into a finite series:

f �x� ≈ c0 �
XM
m�1

�c2m−1 cos�mx� � c2m sin�mx��: (15)

Theoretically, for sufficiently large M , the finite series repre-
sentation [Eq. (15)] can either fully recover the original grating
profile, if f has finitely many Fourier modes, or reasonably
approximate the original profile, if f has infinitely many Four-
ier modes. Therefore, it is necessary to determine all the Four-
ier coefficients c0; c1; c2;…; c2M−1; c2M in order to reconstruct
the grating profile.

Because of the nonlinearity of Eq. (13), we propose a con-
tinuation method to recursively reconstruct these Fourier
coefficients. The method proceeds as follows to solve the non-
linear equation [Eq. (13)].

• Step 1. Set the initial approximation c0 � y0, with
cj � 0, j � 1; 2;….

• Step 2. Choose an initial value for the wavenumber κ,
and seek an approximation to the function f �x� by a Fourier
series with Fourier modes not exceeding the wavenumber κ:

f k�x� � c0 �
Xk
m�1

�c2m−1 cos�mx� � c2m sin�mx��;

where k is taken to be the largest integer that is smaller
or equal to the wavenumber κ. Denote Ck �
�c0; c1;…; c2k−1; c2k�⊤, where ⊤ denotes transpose. For incident
angle θl ∈ �−π∕2; π∕2�, l � 1; 2;…; L, define

gl�Ck; x� �
X
jnj≤N

ψneiαnx�iβnf �x� � ei�αx−βf �x��;

Hl�Ck� �
Z

2π

0
jgl�Ck; x�j2dx:

Nowwe denoteH�Ck� � �H1�Ck�;…; HL�Ck��⊤. Then the non-
linear equation [Eq. (13)] could be reformulated as

H�Ck� � 0;

where H:R2k�1
→ RL. In order to reduce the computational

cost and instability, we consider the nonlinear Landweber
iteration [34],

C�i�1�
k � C�i�

k − τkDH⊤�C�i�
k �H�C�i�

k �; i � 1; 2;…;

where τk is a relaxation parameter and the Jacobi matrix

DH �
�
∂Hl

∂cj

�
l�1;…;L;j�0;1;…;2k

can be computed explicitly. So, we solve for coefficients cj
using the above nonlinear Landweber method with the
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previous approximation as the starting point. The resulting so-
lution represents the Fourier coefficients of f �x� correspond-
ing to the frequencies not exceeding k.

• Step 3. Increase k to a new value ~k, which is again the
largest integer smaller than or equal to the wavenumber ~κ > κ
for the next available data. We repeat Step 2 with the previous
approximation to f �x� as our starting point. More precisely,
we approximate f �x� by the Fourier series

~c0 �
X~k
m�1

�~c2m−1 cos�mx� � ~c2m sin�mx��

and determine the coefficients ~cj , j � 0; 1;…; ~k, by using
the nonlinear Landweber method starting from the previous
result:
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Fig. 2. (Color online) Evolution of the reconstructions in Example 1. Solid curve, test profile; dotted curve, reconstructed profile. Left: recon-
struction at κ � 1. Right: reconstruction at κ � 2.
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Fig. 3. (Color online) Evolution of the reconstructions in Example 2. Solid curve, test profile; dotted curve, reconstructed profile. Left column
from top to bottom: reconstruction at κ � 1, reconstruction at κ � 2, reconstruction at κ � 3. Right column from top to bottom: reconstruction at
κ � 4, reconstruction at κ � 5, reconstruction at κ � 6.
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~cj �
�
cj; for j ≤ 2k;
0; for j > 2k;

where the coefficients cj come from Step 2. The resulting so-
lution in this step represents the Fourier coefficients of f �x�
corresponding to the frequencies not exceeding ~k.

We now repeat Step 3 until a prescribed frequency is
reached. For a complete reconstruction we need to choose
the prescribed wavenumber larger than the highest Fourier
mode of the grating profile. Numerical experiments have
shown that the continuation method described above con-
verges for a larger class of surfaces than the usual Newton’s
method starting at the same initial guess of y0.

4. NUMERICAL EXPERIMENTS
Here we present the results of numerical experiments using
our method. The near-field measurements u�x; y0� are simu-
lated by solving the direct problem using an adaptive finite
element method with a perfectly matched absorbing layer
[4,35]. For a simple stability analysis, some relative random
noise is added to the data, i.e., the diffracted field measure-
ment is updated with

u�x; y0�≔ u�x; y0��1� σ rand�;

where rand represents normally distributed random numbers
in �−1; 1� and σ is the noise level. In the following experiments,
The unknown profile will be probed by incoming incident
plane waves with incident angle θl � −π∕3� 2πl∕18,
l � 0; 1;…; 6. The noise level σ and regularization parameter
γ are taken as 0.02 and 10−6, respectively. The truncation of
the infinite summation in Eq. (13) is taken as N � 8.

Example 1. Reconstruct a finite Fourier grating

f �x� � 1.5� 0.2 cos x� 0.2 cos 2x:

This is a simple example, since the profile only contains a few
Fourier modes. The diffractive field is measured at y0 � 2.1,
and the relaxation parameter τk � 0.002∕κ. The graphs of this
tested profile and the reconstructed profiles with a different
wavenumber κ are shown in Fig. 2. Since the tested profile
consists of a couple of low frequencies, only a few iterations
are needed to get a good reconstruction.

Example 2. Reconstruct a smooth infinite Fourier grating

f �x� � 1.7� 0.05ecos 2x � 0.04ecos 3x:

The diffractive field is measured at y0 � 2.1, and the relaxa-
tion parameter τk � 0.002∕k. The graphs of this tested profile
and the reconstructed profiles with a different wavenumber k
are shown in Fig. 3. As we can see, this grating profile contains
more Fourier modes. It is expected that incident waves with
higher frequencies are needed in order to recover those Four-
ier modes for the grating profile and to get a good resolution of
the reconstruction.

Example 3. Reconstruct a binary grating

f �x� �
(
1.5; for x ∈

�
π
2 ;

3π
2

�
;

1.0; otherwise:

The diffractive field is measured at y0 � 2.0, and the relaxa-
tion parameter τk � 0.0001∕k. The graphs of this tested profile
and the reconstructed profiles with a different wavenumber k
are shown in Fig. 4. The profile is a piecewise constant func-
tion and thus contains infinitely many Fourier modes with
slow decay of the Fourier coefficients. Clearly, incident fields
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Fig. 4. (Color online) Evolution of the reconstructions in Example 3. Solid curve, test profile; dotted curve, reconstructed profile. Left column
from top to bottom: reconstruction at κ � 1, reconstruction at κ � 3. Right column from top to bottom: reconstruction at κ � 5, reconstruction at
k � 7.
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with even higher wavenumbers and more iterations are
needed to get a reasonable reconstruction. In addition, the
Gibbs phenomenon appears in the reconstructed surface be-
cause of the discontinuity.

5. CONCLUSION
We presented an efficient continuation method for recon-
structing the diffraction grating profile. The continuation pro-
ceeds along the wavenumber, and a nonlinear Landweber
iteration is done at each step. Experimentally, the proposed
continuation method converges for a larger class of surfaces,
starting at a reasonable initial guess c0 � y0. Although our nu-
merical examples demonstrate the convergence of the meth-
od, no rigorous convergence analysis is available. We plan to
investigate the convergence properties of the continuation
method and the reconstruction of the grating profile from
the far-field measurement, i.e., to reconstruct the grating pro-
file from the far-field pattern of the reflected field. It will be
interesting and may be more practical to study the inverse dif-
fraction grating problem by using phaseless measurements.
We also plan to extend the method to solve the inverse
diffraction grating problem for three-dimensional Maxwell’s
equations.
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