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Abstract

This paper is concerned with the mathematical analysis of the solution for the wave prop-
agation from the scattering by an unbounded penetrable rough surface. Throughout the
wavenumber is assumed to have a nonzero imaginary part which accounts for the energy ab-
sorption. The scattering problem is modeled as a boundary value problem governed by the
Helmholtz equation with transparent boundary conditions proposed on plane surfaces confin-
ing the scattering surface. The existence and uniqueness of the weak solution for the model
problem are established by using a variational approach. Furthermore, the scattering problem
is investigated for the case when the scattering profile is a sufficiently small and smooth de-
formation of a plane surface. Under this assumption, the problem is equivalently formulated
into a set of two-point boundary value problems in the frequency domain, and the analytical
solution, in the form of an infinite series, is deduced by using a boundary perturbation tech-
nique combined with the transformed field expansion approach.
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1 Introduction

This paper is concerned with the mathematical analysis of the solution for an acoustic wave scat-
tering problem by an unbounded penetrable rough surface. An unbounded rough surface is a
non-local perturbation of an infinite plane surface such that the whole surface lies within a finite
distance of the original plane. The problem studied in this work falls in the class of rough surface
scattering problems, which arise from various applications in industry and military, such as mod-
eling acoustic and electromagnetic wave propagation over outdoor ground and sea surfaces, optical
scattering from the surface of materials in near-field optics or nano-optics, detection of underwater
mines, especially those buried in soft sediments. These problems have received much attention and
been intensively examined by researchers in the engineering community. A considerable amount of
information is available concerning their solutions via both rigorous methods of computation and
approximate, asymptotic, or statistical methods, e.g., the reviews and monographs by Ogilvy [38],
Voronovich [42], Saillard and Sentenac [40], Warnick and Chew [43], DeSanto [22], Elfouhaily and
Guerin [26], and references cited therein.
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We study the acoustic wave propagation problem of the Helmholtz equation with an unbounded
penetrable scattering surface. Specifically, we consider the scattering of a time-harmonic wave field,
generated from a point source, incident on an infinite rough surface from the top, where the spaces
above and below the scattering surface are filled with some fixed materials, respectively. The
unbounded rough surface scattering problem is challenging due to three major reasons: (i) an
appropriate radiation condition is required as a part of the boundary value problem, since the
usual Sommerfeld radiation condition is no longer valid due to the unboundedness of the rough
surface; (ii) lack of compactness of the solution functional space due to the unboundedness of the
domain; (iii) computationally, a usual approach is to truncate the open domain into a bounded
domain, and thus transparent boundary conditions have to be imposed on the boundary of the
truncated bounded domain so that no artificial wave reflection occurs. Despite the large amount
of work done so far for the unbounded rough surface scattering problems, the above issues still
cannot be considered completely solved, particularly for the transparent boundary conditions from
the computational point of view, and remain to be the subject matter of much ongoing research.

This paper consists of two major parts. The first part is concerned with the existence and
uniqueness of the solution for a general scattering surface. The second part deals with the derivation
of an analytical solution for a special class of scattering surfaces: sufficiently small and smooth
deformation of plane surface.

In the first part, the scattering problem is modeled as a boundary value problem for acoustic
wave propagation governed by the two-dimensional Helmholtz equation with transparent boundary
conditions proposed on plane surfaces confining the scattering surface. Since the usual Sommerfeld
radiation condition is not valid, the transparent boundary conditions are derived from the new
radiation condition: the total field is consisted of bounded outgoing waves above and below the
scattering surface, plus the incident field above the scattering surface. This radiation condition is
equivalent to the upward propagating radiation condition proposed for a two-dimensional rough
surface scattering problems by Chandler-Wilde and Zhang [18], and has recently been analyzed
carefully by Arens and Hohage [5]. The existence and uniqueness of the weak solution for the model
problem are established by using a variational approach. The method enjoys a great generality in
the sense that it allows very general surface structures. Throughout we restrict to the case of
lossy medium, where the wavenumber is assumed to have a nonzero imaginary part accounting for
the energy absorption. We refer to Ritterbusch [39], Chandler-Wilde and Elschner [13] for related
scattering problems where weighted Sobolev spaces are studied for unbounded domains.

The rough surface scattering problems for the Helmholtz equation have been recently studied
by Chandler-Wilde and Monk [15], Chanlder-Wilde et al. [16], and Lechleiter and Ritterbusch [30],
who considered variational approaches to solve a two- or three-dimensional rough surface scattering
problem which models the time-harmonic acoustic wave scattering by a layer of homogeneous or
inhomogeneous medium above a sound soft rough surface. We refer to Li et al. [32] of the scattering
problem for the vector form of Maxwell’s equations with dielectric surfaces, which models the time-
harmonic electromagnetic wave by three layers of inhomogeneous medium with two infinite rough
surfaces. In addition, the two-dimensional scalar model problem has been considered by integral
equation methods in two cases. The first case assumes that the medium is homogeneous and the
surface is the graph of a sufficiently smooth bounded function, when the boundary integral equation
methods are applicable, e.g., Chandler-Wilde et al. [14,17], Zhang and Chandler-Wilde [45,46], and
DeSanto and Martin [23–25]. The second case studied is that the surface is a straight line, e.g.,
Chandler-Wilde and Zhang [19] and Li [31].

In the second part, we derive an analytical solution for the scattering problem based on a
boundary perturbation technique combined with the transformed field expansion, under the as-
sumption that scattering rough surface is a sufficiently small and smooth deformation of a plane
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surface. By the transformed field expansion, the original problem with complex scattering surface
is converted into a set of recursive transmission problems with a flat interface. Furthermore, the
nonlocal transparent boundary conditions become local boundary condition in the frequency do-
main. Therefore, we can reduce the two-dimensional problem into a sequence of one-dimensional
two-point boundary value problem with exact local boundary conditions. This approach not only
leads to the availability of analytical solution in the form of an infinite series, but also an efficient
and robust computational method (cf. [29]).

For boundary perturbation methods, we refer to a series of papers by Bruno and Reitich [8–12],
Nicholls and Reitich [35], and references cited therein, for the rigorous mathematical and numer-
ical analysis for solving some diffraction grating and obstacle scattering problems. An improved
boundary perturbation algorithm, termed as transformed field expansion, was proposed by Nicholls
and Reitich [36], where a change of variables was done first to flatten the shape of the scattering
surface and then followed by the boundary perturbation technique. The transformed field expan-
sion method was shown to be accurate, stable, and robust even at high order, see, e.g., Nicholls
and Shen [37] and Fang et al. [27] for solving the two- and three-dimensional bounded obstacle
scattering problems.

We also point out that some related work for the scattering of acoustic and electromagnetic waves
in a grating (periodic surface) structure (diffractive optics) and in a cavity (local perturbation of
a plane surface). They have been studied extensively by either integral equation methods or
variational approaches (cf. Bao [6, 7], Ammari et al. [3, 4], Van and Wood [41], Woo [44], and
reference therein). More recently, existence of the solution to the acoustic and electromagnetic
scattering problem in infinite periodic surface perturbed by a single inhomogeneous object placed
inside the periodic structure are established via the integral equation method by Ammari and Bao
[1,2]. One may consult Colton and Kress [20,21], Nédélec [34], and Monk [33] for extensive accounts
of the integral equation methods and finite element methods for acoustic and electromagnetic
scattering problems.

The outline of this paper is as follows. In Section 2, the model problem is introduced and some
regularity properties of the trace operator are discussed. Section 3 is devoted to the derivation of
the transparent boundary condition. Some estimates of the capacity operator are introduced. A
variational formulation for the unbounded rough surface acoustic scattering problem is introduced
by using the transparent boundary condition. The existence and uniqueness of the weak solution for
the variational problem are established. Based on the boundary perturbation technique combined
with the transformed field expansion, an analytical solution is derived in Section 4. The paper is
concluded with some general remarks and directions for future research in Section 5.

2 A model problem

In this section, we shall introduce a mathematical model and define some notation for the scattering
problem by an unbounded rough surface. Let the scattering surface be described by the curve
S = {(x, y) : y = f(x), x ∈ R} with a bounded and Lipschitz continuous function f , as seen in
Figure 1. The scattering surface S is embedded in the strip

Ω = {(x, y) ∈ R2 : y− < y < y+} = R× (y−, y+),

where y− and y+ are two constants. Let Ω+
f = {(x, y) : y > f(x)} and Ω−

f = {(x, y) : y < f(x)}
be filled with materials whose wavenumbers are constants κ+ and κ−, respectively. In fact, the
wavenumber satisfies κ2± = ω2µε±, where ω is the angular frequency, µ is the magnetic permeability
which is assumed to be a constant everywhere, and ε± is the electric permittivity in Ω±

f . In this
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Figure 1: Problem geometry. A wave from the point source at (x0, y0) is incident on the scattering
surface S from the top. The spaces Ω+

f (above S) and Ω−
f (below S) are filled with materials whose

wavenumbers are constants κ+ and κ−, respectively.

work, the wavenumber κ± is assumed to be a fixed complex number with

α > Reκ2± > 0 and Imκ2± > β > 0. (2.1)

The condition Imκ2± > 0 accounts for energy absorption. Denote by Γ+ = {y = y+} and Γ− =
{y = y−} the top and bottom boundaries of the domain Ω.

Suppose that a wave generated from a point source is incident on S from the top. Explicitly,
the point incident field is taken as the fundamental solution of the Helmholtz equation in Ω+, i.e.,

uinc(x, y;x0, y0) =
i

4
H

(1)
0 (κ+|(x, y)− (x0, y0)|) , (2.2)

where H
(1)
0 is the Hankel function of first kind with order zero, x = (x, y) is the observation

point, and x0 = (x0, y0) is a given source point in Ω+. Clearly the incident field satisfies the two
dimensional Helmholtz equation:

∆uinc(x) + κ2+u
inc(x) = −δ(x− x0) in R2,

where δ is the Dirac delta function.
The scattering of time harmonic electromagnetic waves in the transverse electric case can also

be modeled by the two dimensional Helmholtz equation:

∆u(x) + κ2u(x) = −δ(x− x0) in R2, (2.3)

where the wavenumber

κ =

{
κ+ in Ω+

f ,

κ− in Ω−
f .

(2.4)

Due to the unbounded scattering surface, the usual Sommerfeld radiation condition is no longer
valid. The radiation condition that we impose is the boundedness of u as y tends to infinity. More
precisely, we insist that u is composed of bounded outgoing waves in Ω+ and Ω− plus the incident
wave uinc in Ω+.
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To describe the boundary value problem and derive its variational formulation, we need to
introduce some functional space notations. For u ∈ L2(Γ±), which is identified with L2(R), we
denote by û the Fourier transform of u defined by

û(ξ) =

∫
R
u(x)eixξdx.

Using Fourier modes, the norm on the space L2(Γ±) can be characterized by

∥ u ∥L2(Γ±)=∥ u ∥L2(R)=

[∫
R
|u|2dx

]1/2
=

[∫
R
|û|2dξ

]1/2
.

We denote by C∞
x (Ω) the linear space of infinitely differential functions with compact support with

respect to the variable x on Ω. Denote by L2(Ω) the space of complex square integrable functions
on Ω with the norm

∥ u ∥L2(Ω)=

[∫ y+

y−

∫
R
|u(x, y)|2dxdy

]1/2
=

[∫ y+

y−

∫
R
|û(ξ, y)|2dξdy

]1/2
.

Denote the Sobolev space: H1(Ω) = {Dsu ∈ L2(Ω) for all |s| ≤ 1}. A simple calculation yields an
explicit characterization of the norm in H1(Ω) via Fourier coefficient:

∥ u ∥2H1(Ω)=

∫ y+

y−

∫
R

[(
1 + |ξ|2

)
|û(ξ, y)|2 + |û′(ξ, y)|2

]
dξdy, (2.5)

where û′(ξ, y) = ∂yû(ξ, y). In addition, to describe the boundary operator and transparent bound-
ary condition in the formulation of the boundary value problem, we define the trace functional
space

Hs(Γ±) = {u ∈ L2(Γ±) :

∫
R
(1 + |ξ|2)s|û|2dξ <∞},

whose norm is characterized by

∥ u ∥2Hs(Γ±)=

∫
R
(1 + |ξ|2)s|û|2dξ. (2.6)

It is clear that the dual space associated with Hs(Γ±) is the space H
−s(Γ±). In particular, it holds

the following duality lemma.

Lemma 2.1. The spaces H1/2(Γ±) and H
−1/2(Γ±) are mutually adjoint with respect to the scalar

product in L2(Γ±).

The following lemma is concerned with the density of C∞
x (Ω). This is important, particularly

for our case of unbounded slab Ω, since it allows us to prove results for smooth functions with
compact support and extend them by limiting argument to more general functions.

Lemma 2.2. C∞
x (Ω) is dense in H1(Ω).

Proof. Noting that C∞
0 (R2) is dense in H1(R2), we have C∞

0 (R2)|Ω is dense in H1(R2)|Ω. From
the Sobolev extension theorem, H1(R2)|Ω = H1(Ω). Therefore C∞

x (Ω) ⊇ C∞
0 (R2)|Ω is dense in

H1(Ω).
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To simply proofs, we shall employ positive constants C and Ci as generic constants whose precise
values are not required and may change line by line but should be always be clear from the context.

The following lemma shows that the space H1/2(Γ±) and H
−1/2(Γ±) are mutually adjoint under

the dual paring ⟨·, ·⟩Γ± defined by

⟨u, v⟩Γ± =

∫
R
ûv̂dξ. (2.7)

Note that, from the Parseval formula, the dual paring ⟨u, v⟩Γ± is the L2(Γ±) inner product between
u and v if u, v ∈ L2(Γ±).

The following trace regularity result in H1/2(Γ±) is useful in subsequent analysis.

Lemma 2.3. Let γ0 =
√
1 + (y+ − y−)−1. It holds the estimate

∥ u ∥H1/2(Γ±)≤ γ0 ∥ u ∥H1(Ω)

for all u ∈ H1(Ω).

Proof. First we have

(y+ − y−)|ζ(y±)|2 =
∫ y+

y−

|ζ(y)|2dy +
∫ y+

y−

∫ y±

y

d

dt
|ζ(t)|2dtdy

≤
∫ y+

y−

|ζ(y)|2dy + (y+ − y−)

∫ y+

y−

2|ζ(y)||ζ ′(y)|dy,

which implies by the Cauchy–Schwarz inequality that

(1 + |ξ|2)1/2|ζ(y±)|2 ≤ γ20(1 + |ξ|2)
∫ y+

y−

|ζ(y)|2dy +
∫ y+

y−

|ζ ′(y)|2dy. (2.8)

Given u in H1(Ω), it follows from the definition (2.6) that

∥ u ∥2H1/2(Γ±)=

∫
R
(1 + |ξ|2)1/2|û(ξ, y±)|2dξ.

Using (2.8) we obtain

(1 + |ξ|2)1/2|û(ξ, y±)|2 ≤ γ20(1 + |ξ|2)
∫ y+

y−

|û(ξ, y)|2dy +
∫ y+

y−

|û′(ξ, y)|2dy

≤ γ20

∫ y+

y−

[
(1 + |ξ|2)|û(ξ, y)|2 + |û′(ξ, y)|2

]
dy.

The proof is complete by combining the above estimate and noting the definition of ∥u∥H1(Ω) in
(2.5).

3 Variational problem

In this section, we shall derive the boundary operators, which map the electric fields to their
normal derivatives, introduce the transparent boundary conditions on the artificial boundaries Γ±,
and present a variational formulation for the scattering problem. The existence and uniqueness for
the weak solution of the model problem will then be established.

6



3.1 Transparent boundary condition

We wish to reduce the problem (2.3) in R2 to the domain Ω. The radiation condition for the
scattering problem insists that the total field u is composed of bounded outgoing waves in Ω+ and
Ω−, plus the incident field uinc in Ω+. Since the derivative of the transparent boundary conditions
on Γ+ and Γ− are parallel, we will only show how to deduce the transparent boundary condition
on Γ+, and state the corresponding transparent boundary condition on Γ− without derivation.

Observe that the medium is homogeneous above Γ+. The scattered field us = u− uinc satisfies

∆us + κ2+u
s = 0 above Γ+. (3.1)

By taking the Fourier transform of (3.1) with respect to x, we have

∂2ûs(ξ, y)

∂y2
+ (κ2+ − ξ2)ûs(ξ, y) = 0 for y > y+. (3.2)

Since only bounded outgoing wave is allowed for the solution of (3.2), we deduce that

ûs(ξ, y) = ûs(ξ, y+)e
iβ+(y−y+), (3.3)

where
β2
+(ξ) = κ2+ − |ξ|2 with Imβ+(ξ) > 0.

Taking the inverse Fourier transform of ûs(ξ, y), we find from (3.3) that

us(x, y) =

∫
R
ûs(ξ, y+)e

iβ+(y−y+)eiξxdξ.

Taking the normal derivative, which is the partial derivative with respect to y on Γ+, and evaluating
at y+ yield

∂n+u
s(x, y)

∣∣∣
y=y+

=

∫
R
iβ+û

s(ξ, y+)e
iξxdξ, (3.4)

where n+ is the unit outward normal on Γ+, i.e., n+ = (0, 1)⊤.
For any given u on Γ+, define the boundary operator T+:

T+u =

∫
R
iβ+û(ξ, y+)e

iξxdξ,

which leads to a transparent boundary condition on Γ+:

∂n+(u− uinc) = T+(u− uinc).

Equivalently it can be written as

∂n+u = T+u+ ρ on Γ+, (3.5)

where
ρ = ∂n+u

inc − T+u
inc. (3.6)

Similarly, for any given u on Γ−, define the boundary operator T−:

T−u =

∫
R
iβ−û(ξ, y−)e

iξxdξ,
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where
β2
−(ξ) = κ2− − |ξ|2 with Imβ−(ξ) > 0.

Thus, we deduce a transparent boundary condition on Γ−:

∂n−u = T−u, (3.7)

where n− is the unit outward normal on Γ−, i.e., n− = (0,−1)⊤.
To summarize, the problem (2.5) with the point incident field given in (2.2) and the radiation

condition is reduced to the following problem:

∆u+ κ2u = 0 in Ω,

∂n+u = T+u+ ρ on Γ+,

∂n−u = T−u on Γ−,

(3.8)

with κ and ρ given by (2.4) and (3.6), respectively.

Remark 3.1. Clearly, the transparent boundary conditions (3.5) and (3.7) are nonlocal in the
physical domain. However, they are local boundary conditions in the frequency domain. In fact,
taking the Fourier transform of (3.5) and (3.7) on both sides, we have

∂n± û(ξ, y±) = T̂±u = iβ±(ξ)û(ξ, y±). (3.9)

This observation is critical and makes it possible to derive an analytical solution in Section 4.

In order to derive some estimates on the boundary operators, it is useful to introduce the
following notations. Define

κ2± = φ± + iψ±,

where
φ± = Reκ2± and ψ± = Imκ2±.

Denote by
β2
± = κ2± − |ξ|2 = ϕ± + iψ±, (3.10)

where
ϕ± = Reκ2± − |ξ|2 = φ± − |ξ|2. (3.11)

A simple calculations gives
β± = a± + ib±,

where

a± = Reβ± =

(√
ϕ2
± + ψ2

± + |ϕ±|
2

)1/2

and b± = Imβ± =

(√
ϕ2
± + ψ2

± − |ϕ±|
2

)1/2

. (3.12)

It follows from (3.11) that
φ± ≥ ϕ± > −∞ and |ϕ±| ≥ 0,

which yields

a± ≥
(
Imκ2±
2

)1/2

and

(
Imκ2±
2

)1/2

≥ b± > 0. (3.13)

Lemma 3.1. The boundary operator T± : H1/2(Γ±) → H−1/2(Γ±) is continuous.

8



Proof. For any u, v ∈ H1/2(Γ±), it follows from the definitions (2.7), (3.5), and (3.7) that

⟨T±u, v⟩ = i

∫
R
β±ûv̂dξ = i

∫
R
β±(1 + |ξ|2)−1/2 × (1 + |ξ|2)1/4û× (1 + |ξ|2)1/4v̂dξ.

To prove the lemma, it is required to estimate

|β±|
(1 + |ξ|2)1/2

=

[
ψ2
± + ϕ2

±

(1 + φ± − ϕ±)2

]1/4
.

Let

F±(t) =
ψ2
± + t2

(1 + φ± − t)2
, −∞ < t ≤ φ±.

It can be verified that F±(t) decreases for −∞ < t ≤ K± = −ψ2
±/(1 + φ±) and increases for

K± ≤ t ≤ φ±. Hence, a simple calculation yields

F±(t) ≤ max{F±(−∞), F±(φ±)} = max{1, |κ±|4}.

Combining above estimates yields

|⟨T±u, v⟩| ≤ γ± ∥ u ∥H1/2(Γ±)∥ v ∥H1/2(Γ±),

where
γ± = max{1, |κ±|}.

Thus, from Lemma 2.2, we have

∥ T±u ∥H−1/2(Γ±)≤ sup
v∈H1/2(Γ±)

|⟨T±u, v⟩|
∥ v ∥H1/2(Γ±)

≤ γ± ∥ u ∥H1/2(Γ±) .

Lemma 3.2. Let u ∈ H1/2(Γ±). It holds that Re⟨T±u, u⟩ ≤ 0 and Im⟨T±u, u⟩ ≥ 0. If Re⟨T±u, u⟩ =
0 or Im⟨T±u, u⟩ = 0, then u = 0.

Proof. By definitions (2.7), (3.5), (3.7), and (3.12), we find

⟨T±u, u⟩ = i

∫
R
β±|û|2dξ = i

∫
R
a±|û|2dξ −

∫
R
b±|û|2dξ.

Taking the real part gives

Re⟨T±u, u⟩ = −
∫
R
b±|û|2dξ ≤ 0,

and taking the imaginary part yields

Im⟨T±u, u⟩ =
∫
R
a±|û|2dξ ≥ 0.

Furthermore, Re⟨T±u, u⟩ = 0 implies û = 0 and Im⟨T±u, u⟩ = 0 implies û = 0. Hence, either
Re⟨T±u, u⟩ = 0 implies u = 0 or Im⟨T±u, u⟩ = 0 implies u = 0.
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3.2 Well-posedness

We now present a variational formulation of the Helmholtz equation (3.8) in H1(Ω) and give a
simple proof of the well-posedness for the boundary value problem.

Multiplying (3.8) by the complex conjugate of a test function v ∈ H1(Ω), integrating over
Ω, and using integration by parts (recall that Lemma 2.2 implies the lateral boundary integrals
vanish as |x| → ∞), we deduce the variational formulation for the scattering problem (3.8): find
u ∈ H1(Ω) such that

a(u, v) = ⟨ρ, v⟩Γ+ for all v ∈ H1(Ω), (3.14)

with the sesquilinear form

a(u, v) =

∫
Ω

(
∇u · ∇v − κ2u v

)
−
∫
Γ+

T+u v −
∫
Γ−

T−u v, (3.15)

and the linear functional

⟨ρ, v⟩Γ+ =

∫
Γ+

ρ v. (3.16)

Lemma 3.3. Under the condition (2.1), we have ρ ∈ Hs(Γ+) for all s ∈ R.

Proof. Recall
ρ(x, y; x0, y0) = ∂n+u

inc(x, y; x0, y0)− T+u
inc(x, y;x0, y0). (3.17)

It suffices to prove

∥ ρ(x, y+; x0, y0) ∥2Hs(Γ+)=

∫
R
(1 + |ξ|2)s|ρ̂(ξ, y+;x0, y0)|2dξ <∞.

Let

ρ̂inc(ξ, y; x0, y0) =

∫
R
uinc(x, y;x0, y0)e

−iξxdx

be the Fourier transform of uinc(x, y;x0, y0) with respect to x. Since the incident field is taken as
the fundamental solution for the Helmholtz equation with number κ+, it can be explicitly written
as

ρ̂inc(ξ, y;x0, y0) =
i

2β+(ξ)
eiβ+|y−y0|e−iξx0 .

Noticing y0 > y+, we have by simple calculations that

∂n+ û
inc(x, y; x0, y0)|y=y+ = −1

2
eiβ+(y0−y+)e−iξx0 . (3.18)

Using the definition of the boundary operator T+, we have

T+u
inc(x, y+;x0, y0) =

∫
R
iβ+(ξ)û

inc(ξ, y+;x0, y0)e
iξxdξ,

which gives after taking the Fourier transform

T̂+uinc(ξ, y+;x0, y0) = iβ+(ξ)û
inc(ξ, y+;x0, y0) = −1

2
eiβ+(y0−y+)e−iξx0 . (3.19)

Combining (3.17), (3.18), and (3.19), we obtain after plugging (3.12) that

ρ̂(ξ, y+;x0, y0) = −eiβ+(y0−y+)e−iξx0 = −eia+(ξ)(y0−y+)e−b+(ξ)(y0−y+)e−iξx0 ,
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which gives
|ρ̂(ξ, y+;x0, y0)|2 = e−2b+(ξ)(y0−y+).

Using (3.11) and (3.12) yields

b+(ξ) =

(√
(|ξ|2 − φ+)2 + ψ2

+ + ||ξ|2 − φ+|
2

)1/2

,

where φ+ = Reκ2+ and ψ+ = Imκ2+ are fixed constants. It is easy to check that b+(ξ) ∼ |ξ| as
|ξ| → ∞. Hence we deduce that

∥ ρ(x, y+;x0, y0) ∥2Hs(Γ+) =

∫
R
(1 + |ξ|2)s|ρ̂(ξ, y+;x0, y0)|2dξ

=

∫
R
(1 + |ξ|2)se−2b+(ξ)(y0−y+)dξ <∞

for all s ∈ R, which completes the proof.

Remark 3.2. If the incident field is a plane wave uinc(x, y) = eiαx−iβy, where α = κ+ sin θ, β =
κ+ cos θ, and θ is the angel of incidence, then the linear functional (3.16) is not well-defined. In
fact, a simple calculation yields

ρ(x) = −2iβeiαx−iβy+ = −2iβe−iβy+eiReκ+ sin θxe−Imκ+ sin θx.

Thus, it can be easily verified that ∥ ρ ∥L2(Γ+)= ∞, i.e., ρ /∈ L2(Γ+). This is the reason why we
consider the incident field generated from a point source instead of the plane wave.

Theorem 3.1. Under the condition (2.1), the variational problem (3.14) has a unique solution in
H1(Ω) satisfying

∥u∥H1(Ω) ≤ (1 +
1 + α

β
)∥∂n+u

inc − T+u
inc∥H−1/2(Γ+). (3.20)

Proof. It suffices to prove the continuity and coercivity of the sesquilinear form a. The continuity
follows directly from the Cauchy–Schwarz inequality, Lemma 3.1, and Lemma 2.3:

|a(u, v)| ≤C1 ∥ u ∥H1(Ω)∥ v ∥H1(Ω) +C2 ∥ T+u ∥H−1/2(Γ+)∥ v ∥H1/2(Γ+)

+ C3 ∥ T−u ∥H−1/2(Γ−)∥ v ∥H1/2(Γ−)

≤C1 ∥ u ∥H1(Ω)∥ v ∥H1(Ω) +C2 ∥ u ∥H1/2(Γ+)∥ v ∥H1/2(Γ+)

+ C3 ∥ u ∥H1/2(Γ−)∥ v ∥H1/2(Γ−)

≤C ∥ u ∥H1(Ω)∥ v ∥H1(Ω) .

Taking the real part of the sesquilinear form a and using Lemma 3.2 yield

Re[a(u, u)] =

∫
Ω

|∇u|2 −
∫
Ω

Re(κ2)|u|2 − Re⟨T+u, u⟩Γ+ − Re⟨T−u, u⟩Γ−

≥
∫
Ω

|∇u|2 −
∫
Ω

Re(κ2)|u|2 ≥∥ ∇u ∥2L2(Ω) −α ∥ u ∥2L2(Ω) .

Taking the imaginary part of the sesquilinear form a and using Lemma 3.2 give

Im[a(u, u)] = −
∫
Ω

Im(κ2)|u|2 − Im⟨T+u, u⟩Γ+ − Im⟨T−u, u⟩Γ− ≤ −
∫
Ω

Im(κ2)|u|2,
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which, along with (2.1), leads to

|Im[a(u, u)]| ≥ β ∥ u ∥2L2(Ω) .

Denote γ = (1 + α)/β > 0. It follows from

|a(u, u)| ≥ |Re[a(u, u)]| and γ|a(u, u)| ≥ γ|Im[a(u, u)]|

that we have

(1 + γ)|a(u, u)| ≥ |Re[a(u, u)]|+ γ|Im[a(u, u)]|
≥∥ ∇u ∥2L2(Ω) −α ∥ u ∥2L2(Ω) +γβ ∥ u ∥2L2(Ω)≥∥ u ∥2H1(Ω) .

It follows from the Lax–Milgram lemma and Lemma 3.3 that there exists a unique weak solution
of the variational problem (3.14) in H1(Ω) satisfying (3.20).

Remark 3.3. Classical results from the theory of elliptic partial differential equations in Gilbarg
and Trundinger [28] indicate that if ρ = ∂n+u

inc − T+u
inc ∈ H1/2(Γ+), then the unique solution

satisfies
∥u∥H2(Ω) ≤ C∥∂n+u

inc − T+u
inc∥H1/2(Γ+), (3.21)

where C is a positive constant.

4 Boundary perturbation method

In this section, we study the method of boundary perturbation and deduce an analytical solution
for the unbounded rough surface scattering problem. Here the scattering profile f is assumed to a
bounded and twice continuously differentiable function. First, the scattering problem is formulated
as a transmission problem where the scattering profile plays the role of the interface. Then the
transformed field expansion method (cf. [36]) is applied to derive the analytical solution as an
infinite series.

4.1 Transmission problem

We formulate the variational problem (3.14) into an equivalent transmission problem or interface
problem, which is of more convenient form for the method of boundary perturbation.

Denote Ω+ = Ω+
f ∩ Ω and Ω− = Ω−

f ∩ Ω, as seen in Figure 1. Consider the Helmholtz equation
(2.3) in Ω+ and Ω−, respectively:

∆u+ + κ2+u
+ = 0 in Ω+, (4.1)

∆u− + κ2−u
− = 0 in Ω−. (4.2)

Recall the nonlocal transparent boundary conditions (3.5) and (3.7):

∂n+u
+ = T+u

+ + ρ on Γ+, (4.3)

∂n−u
− = T−u

− on Γ−. (4.4)

Following from the jump conditions, we obtain that the field and its normal derivative are continuous
across the scattering surface S, i.e.,

u+(x, f(x)) = u−(x, f(x)), (4.5)

∂nu
+(x, f(x)) = ∂nu

−(x, f(x)), (4.6)
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where n = (n1, n2)
⊤ is the unit normal vector pointing from Ω+ to Ω−. Explicitly, we have

n1 =
f ′(x)√

1 + [f ′(x)]2
and n2 = − 1√

1 + [f ′(x)]2
.

Hence, the transmission problem is to find the fields u+ and u−, which satisfy the Helmholtz
equations (4.1) and (4.2), the continuity conditions (4.5) and (4.6), and the boundary conditions
(4.3) and (4.4).

Remark 4.1. It is easy to see that the solution u of the variational problem (3.14) restricted to Ω+

and Ω−, i.e., u
+ = u|Ω+ and u− = u|Ω−, is the solution of the transmission problem (4.1)–(4.6).

Conversely, the solution u+ and u− of the transmission problem (4.1)–(4.6) constructs the solution
of the variational problem (3.14) in the domain Ω.

4.2 Transformed field expansion

The transformed field expansion method, as applied to the unbounded rough surface scattering,
begins with the change of variables:

x1 = x, y1 = y+

(
y − f

y+ − f

)
, f < y < y+,

and

x2 = x, y2 = y−

(
y − f

y− − f

)
, y− < y < f,

which maps the perturbed domains Ω+ and Ω− to unperturbed strip domains D+ and D−, re-
spectively. We now seek to restate the transmission problem (4.1)–(4.6) in these transformed
coordinates. It is easy to verify the differentiation rules

∂x = ∂x1 − f ′
(
y+ − y1
y+ − f

)
∂y1 ,

∂y =

(
y+

y+ − f

)
∂y1 ,

for f < y < y+, and

∂x = ∂x2 − f ′
(
y− − y2
y− − f

)
∂y2 ,

∂y =

(
y−

y− − f

)
∂y2 ,

for y− < y < f .
Introduce new functions w+(x1, y1) = u+(x, y) and w−(x2, y2) = u−(x, y) under the transfor-

mation. It can be verified after tedious but straightforward calculations that w+ and w−, upon
dropping the subscript, satisfy the equation

c+1
∂2w+

∂x2
+ c+2

∂2w+

∂y2
+ c+3

∂2w+

∂x∂y
+ c+4

∂w+

∂y
+ c+1 κ

2
+w

+ = 0, 0 < y < y+, (4.7)

c−1
∂2w−

∂x2
+ c−2

∂2w−

∂y2
+ c−3

∂2w−

∂x∂y
+ c−4

∂w−

∂y
+ c−1 κ

2
−w

− = 0, y− < y < 0, (4.8)
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where

c±1 = (y± − f)2,

c±2 = [f ′(y± − y)]2 + y2+,

c±3 = −2f ′(y± − y)(y± − f),

c±4 = −(y± − y)[f ′′(y± − f) + 2(f ′)2].

The nonlocal transparent boundary conditions are

∂n+w
+ = ∂yw

+ =

(
1− f

y+

)(
T+w

+ + ρ
)
, y = y+, (4.9)

∂n−w
− = −∂yw− =

(
1− f

y−

)
T−w

−, y = y−. (4.10)

The continuity conditions at the interface y = 0 reduce to

w+(x, 0) = w−(x, 0), (4.11)(
y+

y+ − f

)
∂yw

+(x, 0) =

(
y−

y− − f

)
∂yw

−(x, 0). (4.12)

Now, we use a classical boundary perturbation argument. Let f = εg with ε sufficiently small,
and consider the formal expansions of (w+, w−) in a power series of ε:

w+(x, y; ε) =
∞∑
n=0

w+
n (x, y)ε

n and w−(x, y; ε) =
∞∑
n=0

w−
n (x, y)ε

n. (4.13)

Substituting f = εg into c±j and inserting the above expansions into (4.7) and (4.8), we may derive
the recursions for w+

n and w−
n :

∂2w+
n

∂x2
+
∂2w+

n

∂y2
+ κ2+w

+
n = υ+n , 0 < y < y+, (4.14)

∂2w−
n

∂x2
+
∂2w−

n

∂y2
+ κ2−w

+
n = υ−n , y− < y < 0, (4.15)

where

υ±n =
2g

y±

∂2w±
n−1

∂x2
+

2g′(y± − y)

y±

∂2w±
n−1

∂x∂y
+
g′′(y± − y)

y±

∂w±
n−1

∂y
+

2κ2±g

y±
w±

n−1

− g2

y2±

∂2w±
n−2

∂x2
− (g′)2(y± − y)2

y2±

∂2w±
n−2

∂y2
− 2gg′(y± − y)

y2±

∂2w±
n−2

∂x∂y

+
[2(g′)2 − gg′′](y± − y)

y2±

∂w±
n−2

∂y
−
κ2±g

2

y2±
w±

n−2.

The nonlocal boundary conditions (4.9) and (4.10) become

∂yw
+
n − T+w

+
n = ρ+n , y = y+, (4.16)

∂yw
−
n + T−w

−
n = ρ−n , y = y−, (4.17)
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where

ρ+0 = ρ, ρ+1 = −
(
g

y+

)
T+w

+
0 −

(
g

y+

)
ρ, ρ+n = −

(
g

y+

)
T+w

+
n−1, n = 2, 3, . . . ,

ρ−0 = 0, ρ−n =

(
g

y−

)
T−w

−
n−1, n = 1, 2, . . . .

The continuity conditions at the interface y = 0 reduce to

w+
n (x, 0)− w−

n (x, 0) = 0, (4.18)

∂yw
+
n (x, 0)− ∂yw

−
n (x, 0) = ϱn, (4.19)

where

ϱ0 = 0, ϱn =

(
g

y−

)
∂yw

+
n−1 −

(
g

y+

)
∂yw

−
n−1, n = 1, 2, . . . .

Note that the Helmholtz problem (4.14)-(4.15) for the current terms w±
n involve some non-homogeneous

terms υ±n , ρ
±
n , and ϱn, which only depend on previous two terms w±

n−1 and w±
n−2. Thus, the trans-

mission problems (4.14)–(4.19) indeed can be solved in a recursive manner starting from n = 0.
Taking the Fourier transform of (4.14) and (4.15) with respect to the variable x yields

∂2ŵ+
n

∂y2
+ (κ2+ − ξ2)ŵ+

n = υ̂+n , 0 < y < y+, (4.20)

∂2ŵ−
n

∂y2
+ (κ2− − ξ2)ŵ−

n = υ̂−n , y− < y < 0. (4.21)

According to Remark 3.1, the nonlocal boundary conditions become local boundary condition in
the frequency domain:

∂yŵ
+
n − iβ+ŵ

+
n = ρ̂+n , y = y+, (4.22)

∂yŵ
−
n + iβ−ŵ

−
n = ρ̂−n , y = y−. (4.23)

The continuity conditions reduce to

ŵ+
n (ξ, 0)− ŵ−

n (ξ, 0) = 0, (4.24)

∂yŵ
+
n (ξ, 0)− ∂yŵ

−
n (ξ, 0) = ϱ̂n. (4.25)

After taking the Fourier transform, the two-dimensional problem (4.14)–(4.19) reduces to the
one-dimensional transmission problem (4.20)–(4.25) in the frequency domain. This problem falls
in the class of so-called two-point boundary value problem, whose detailed solution is discussed in
Appendix B. An application of Theorem B.1, along with (B.13) and (B.23), leads to the following
explicit solution of the transmission problem.

Theorem 4.1. Let f be in C2(R) and assume that (w+, w−) admit the asymptotic expansions
(4.13). Then the fields (w+

n , w
−
n ) are determined as the unique solution of the transmission problem

(4.20)–(4.25), given explicitly as

ŵ+
n (ξ, y) = eiβ+yŵ+

n (ξ, 0)−K+
1 (ξ, y)ρ̂

+
n +

∫ y+

0

K+
2 (ξ, y, z)υ̂

+
n (z)dz, (4.26)

ŵ−
n (ξ, y) = e−iβ−yŵ−

n (ξ, 0) +K−
1 (ξ, y)ρ̂

−
n −

∫ 0

y−

K−
2 (ξ, y, z)υ̂

−
n (z)dz, (4.27)
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where

K+
1 (ξ, y) =

eiβ+y+
(
e−iβ+y − eiβ+y

)
2iβ+

,

K−
1 (ξ, y) =

e−iβ−y−
(
eiβ−y − e−iβ−y

)
2iβ−

,

and

K+
2 (ξ, y, z) =


eiβ+y

(
e−iβ+z − eiβ+z

)
2iβ+

if z < y,

eiβ+z
(
e−iβ+y − eiβ+y

)
2iβ+

if z > y,

K−
2 (ξ, y, z) =


e−iβ−z

(
e−iβ−y − eiβ−y

)
2iβ+

if z < y,

e−iβ−y
(
e−iβ−z − eiβ−z

)
2iβ−

if z > y,

with

ŵ+
n (ξ, 0) =ŵ

−
n (ξ, 0) =

−i

β+ + β−
×[

ϱ̂n + e−iβ−y− ρ̂−n − eiβ+y+ ρ̂+n +

∫ y+

0

eiβ+zυ̂+n (z)dz +

∫ 0

y−

e−iβ−zυ̂−n (z)dz

]
. (4.28)

Remark 4.2. Under the assumption that f has two continuous derivative, i.e., f ∈ C2(R), we
may follow the same techniques by Nicholls and Reitich [35] to show inductively, for ε sufficiently
small, that

∥ w+
n ∥H2(Ω)≤ K+ and ∥ w−

n ∥H2(Ω)≤ K−, ∀n ≥ 0,

where K+ and K− are two positive constants independent of the index n. Therefore, the power
series for w+ and w− in (4.13) converge for sufficiently small ε.

5 Concluding remarks

We proposed in this paper a variational formulation for the scattering problem by an unbounded
penetrable rough surface, and derived the analytical solution when the scattering surface is assumed
to be a sufficiently small and smooth perturbation of a plane surface.

In the first part, we reduced the scattering problem to a boundary value problem using trans-
parent boundary condition, and proved the uniqueness and existence of the weak solution for the
variational problem. In the second part, by using the transformed field expansion and Fourier
transform, we converted the original two-dimensional problem with complex scattering surface into
a sequence of one-dimensional two-point boundary value problems with decoupled boundary con-
ditions in the frequency space for which the analytical solution can be explicitly expressed by using
the integrated solution method.

While the analytical solution given in Theorem 4.1 is of interest for many purposes, it is not very
convenient to use in practice due to the lack of discrete Fourier transform on the infinite domain
R. In [29], we shall extend the numerical method in [27, 37] to construct a practical algorithm for
solving this problem.
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An essential assumption we made is that Imκ2± ̸= 0. A challenging problem is to study the
infinite rough surface scattering problem in lossless medium, i.e., Imκ2± = 0. Without energy
decay, the capacity operator introduced in this paper is unbounded and the proposed method
can not be directly applied to this case. We hope to be able to address these issues by studying
the limiting absorption principle in the future. We also intend to extend the method to more
complicated three-dimensional Maxwell’s equations.

A A two-point boundary value problem

In this section, the integrated solution method is briefly introduced to solve a two-point boundary
value problem. We refer to Zhang [47] for the details of the integrated solutions of ordinary
differential equation system and two-point boundary value problems.

Consider the two-point boundary value problem

u′(y) +M(y)u(y) = f(y), (A.1)

A0u(y)|y=0 = r0, (A.2)

B1u(y)|y=L = s1, (A.3)

where f(y) ∈ Cm are m-dimensional vector fields, r0 ∈ Cm1 and s1 ∈ Cm2 are given m1- and
m2-dimensional vector fields, respectively, M(y) ∈ Cm×m is an m × m matrix, and A0 ∈ Cm1×m

and B1 ∈ Cm2×m are full rank matrices with m1 +m2 = m, i.e., rankA0 = m1 and rankB1 = m2.
Let Φ(y) be the fundamental matrix of the system

Φ′(y) +M(y)Φ(y) = 0, (A.4)

Φ(0) = I, (A.5)

where I is the m×m identity matrix.

Theorem A.1. The two-point boundary value problem (A.1)–(A.3) has a unique solution if and
only if

det

[
A0

B1Φ(L)

]
̸= 0. (A.6)

Let the pair of functions {A(y), r(y)} and {B(y), s(y)} be the integrated solutions of the
problems (A.1)–(A.2) and (A.1)–(A.3), respectively, then there exist D0(A, y) ∈ Cm1×m1 and
D1(B, y) ∈ Cm2×m2 such that

A′ = AM +D0A, A(0) = A0, (A.7)

r′ = Af +D0r, r(0) = r0, (A.8)

and

B′ = BM +D1B, B(L) = B1, (A.9)

s′ = Bf +D1s, s(L) = s1. (A.10)

Theorem A.2. If the two-point boundary value problem (A.1)–(A.3) has a unique solution, then
the matrix [

A(y)
B(y)

]
∈ Cm×m

is nonsingular.
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Theorem A.3. The two-point boundary value problem (A.1)–(A.3) is equivalent to the linear sys-
tem [

A(y)
B(y)

]
u(y) =

[
r(y)
s(y)

]
. (A.11)

B A transmission problem

In this section, we discuss the solution of a transmission problem in details. Consider the second
order boundary value problem

u′′+ + λ2+u+ = f+, 0 < y < y+, (B.1)

u′′− + λ2−u− = f−, y− < y < 0, (B.2)

with the boundary conditions

∂yu+ − iλ+u+ = g+ at y = y+, (B.3)

∂yu− + iλ−u− = g− at y = y−, (B.4)

and the jump conditions across the interface y = 0:

u+(0)− u−(0) = h1, (B.5)

∂yu+(0)− ∂yu−(0) = h2. (B.6)

We now convert the second order differential equation into a first order two-point boundary
value problem. Let v+1 = u+ and v+2 = u′+, the second order boundary value problem (B.1) and
(B.3) can be formulated into a first order two-point boundary value problem:

v′
+ +M+v+ = f+, (B.7)

A+
0 v+(0) = u+(0), (B.8)

B+
1 v+(y+) = g+, (B.9)

where

v+ =

[
v+1
v+2

]
, f+ =

[
0
f+

]
, M+ =

[
0 −1
λ2+ 0

]
,

and
A+

0 = [1, 0], B+
1 = [−iλ+, 1].

Similarly, let Let v−1 = u− and v−2 = u′−, the second order boundary value problem (B.2) and (B.4)
can be formulated into a first order two-point boundary value problem:

v′
− +M−v− = f−, (B.10)

A−
0 v−(0) = u−(0), (B.11)

B−
1 v−(y−) = g−, (B.12)

where

v− =

[
v−1
v−2

]
, f− =

[
0
f−

]
, M− =

[
0 −1
λ2− 0

]
,

and
A−

0 = [1, 0], B−
1 = [iλ−, 1].
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Lemma B.1. Given f+ ∈ L1(0, y+), u+(0), g+ ∈ R. The two-point boundary value problem
(B.7)–(B.9) has a unique solution given by

u+(y) = eiλ+yu+(0)−K+
1 (y)g+ +

∫ y+

0

K+
2 (y, z)f+(z)dz, (B.13)

where

K+
1 (y) =

eiλ+y+
(
e−iλ+y − eiλ+y

)
2iλ+

and

K+
2 (y, z) =


eiλ+y

(
e−iλ+z − eiλ+z

)
2iλ+

if z < y,

eiλ+z
(
e−iλ+y − eiλ+y

)
2iλ+

if z > y.

Proof. Since M+ is a non-singular matrix, there exists a non-singular matrix Q+ such that

Q−1
+ M+Q+ = N+,

where

N+ =

[
−iλ+ 0
0 iλ+

]
, Q+ =

[
1 1
iλ+ −iλ+

]
, and Q−1

+ =
1

2iλ+

[
iλ+ 1
iλ+ −1

]
.

A simple calculation yields

det

[
A+

0

B+
1 e

M+

]
=

∣∣∣∣ 1 0
iλ+e

iλ+ −e−iλ+

∣∣∣∣ = −e−iλ+ ̸= 0.

It follows from Theorem A.1 that the two-point boundary value problem (B.7)–(B.9) has a unique
solution.

Let {A+(y), r+(y)} and {B+(y), s+(y)} be the integrated solutions of the problems (B.7), (B.8),
and (B.7), (B.9), respectively. Taking

D+
0 = iλ+, D+

1 = −iλ+,

we obtain from (A.7)–(A.10) that the integrated solutions satisfy

A′
+ = A+M+ + iλ+A+, A+(0) = A+

0 , (B.14)

r′+ = A+f+ + iλ+r+, r+(0) = u+(0), (B.15)

and

B′
+ = B+M+ − iλ+B+, B+(y+) = B+

1 , (B.16)

s′+ = B+f+ − iλ+s+, s+(y+) = g+. (B.17)

Upon solving the above initial value problem, we obtain the integrated solutions

A+ = [A+
1 , A

+
2 ] =

1

2iλ+
[iλ+(1 + e2iλ+y), 1− e2iλ+y], (B.18)

B+ = [B+
1 , B

+
2 ] = [−iλ+, 1], (B.19)

r+ = eiλ+yu+(0) +

∫ y

0

eiλ+(y−z)A+
2 (z)f+(z)dz, (B.20)

s+ = eiλ+(y+−y)g+ −
∫ y+

y

eiλ+(z−y)f+(z)dz. (B.21)
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It follows from Theorem A.3 that the two-point boundary value problem (B.7)–(B.9) is equivalent
to the linear system [

A+
1 A+

2

B+
1 B+

2

] [
u+
u′+

]
=

[
r+
s+

]
.

An application of Gram’s rule yields

u+ =
r+B

+
2 − s+A

+
2

A+
1 B

+
2 −B+

1 A
+
2

. (B.22)

A simple calculation yields
A+

1 B
+
2 −B+

1 A
+
2 = 1.

Substituting (B.18)–(B.21) into (B.22), we deduce (B.13).

Lemma B.2. Given f− ∈ L1(y−, 0), u−(0), g− ∈ R. The two-point boundary value problem
(B.10)–(B.12) has a unique solution given by

u−(y) = e−iλ−yu−(0) +K−
1 (y)g− −

∫ 0

y−

K−
2 (y, z)f−(z)dz, (B.23)

where

K−
1 (y) =

e−iλ−y−
(
eiλ−y − e−iλ−y

)
2iλ−

and

K−
2 (y, z) =


e−iλ−z

(
e−iλ−y − eiλ−y

)
2iλ+

if z < y,

e−iλ−y
(
e−iλ−z − eiλ−z

)
2iλ−

if z > y.

Proof. The proof is similar to the one for Lemma B.1. It can be verified that

det

[
A−

0

B−
1 e

M−

]
=

∣∣∣∣ 1 0
iλ−e

−iλ− e−iλ−

∣∣∣∣ = e−iλ− ̸= 0,

So the Theorem A.1 implies that the problem (B.10)–(B.12) has a unique solution.
Let {A−(y), r−(y)} and {B−(y), s−(y)} be the integrated solutions of the problems (B.10),

(B.11), and (B.10), (B.12), respectively. Taking

D−
0 = −iλ−, D−

1 = iλ−,

we obtain from (A.7)–(A.10) that the integrated solutions satisfy

A′
− = A−M− − iλ−A−, A−(0) = A−

0 , (B.24)

r′− = A−f− − iλ−r−, r−(0) = u−(0), (B.25)

and

B′
− = B−M− + iλ−B−, B−(y−) = B−

1 , (B.26)

s′− = B−f− + iλ−s−, s−(y−) = g−. (B.27)
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Upon solving the above initial value problem, we obtain the integrated solutions

A− = [A−
1 , A

−
2 ] =

1

2iλ−
[iλ−(e

−2iλ−y + 1), e−2iλ−y − 1], (B.28)

B− = [B−
1 , B

−
2 ] = [iλ−, 1], (B.29)

r− = e−iλ−yu−(0) +

∫ y

0

e−iλ−(y−z)A−
2 (z)f−(z)dz, (B.30)

s− = e−iλ−(y−−y)g− −
∫ y−

y

e−iλ+(z−y)f−(z)dz. (B.31)

An application of Gram’s rule yields

u− =
r−B

−
2 − s−A

−
2

A−
1 B

−
2 −B−

1 A
−
2

. (B.32)

A simple calculation yields
A−

1 B
−
2 −B−

1 A
−
2 = 1.

Substituting (B.28)–(B.31) into (B.32), we deduce (B.23).

To completely determine the solutions u+(y) and u−(y), it is required to compute u+(0) and
u−(0), which can be obtained by using the jump conditions (B.5) and (B.6). Simple calculations
yields

∂yK
+
1 (0) = −eiλ+y+ , ∂yK

+
2 (0, z) = −eiλ+z,

∂yK
−
1 (0) = e−iλ−y− , ∂yK

−
2 (0, z) = −e−iλ−z,

which gives

∂yu+(0) = iλ+u+(0) + eiλ+y+g+ −
∫ y+

0

eiλ+zf+(z)dz,

∂yu−(0) = −iλ−u−(0) + e−iλ−y−g− +

∫ 0

y−

e−iλ−zf−(z)dz.

It follows from the jump conditions (B.5) and (B.6) we obtain

u−(0) =
−i

λ+ + λ−
×[

h2 − iλ+h1 + e−iλ−y−g− − eiλ+y+g+ +

∫ y+

0

eiλ+zf+(z)dz +

∫ 0

y−

e−iλ−zf−(z)dz

]
(B.33)

and
u+(0) = u−(0) + h1. (B.34)

Theorem B.1. Given f− ∈ L1(y−, 0), f+ ∈ L1(0, y+), and g± ∈ R. The transmission problem
(B.1)–(B.6) has a unique solution explicitly expressed by (B.13) and (B.23) with u±(0) given by
(B.33)-(B.34).
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