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Abstract

This paper is concerned with the mathematical analysis of the scattering of a time-
harmonic electromagnetic plane wave by an open and overfilled cavity which is embedded
in a perfect electrically conducting infinite ground plane, where the electromagnetic wave
propagation is governed by the Maxwell equations. Above the flat ground surface and the
open aperture of the cavity, the space is assumed to be filled with a homogeneous medium
with a constant permittivity and permeability; while the interior of the cavity is filled with
some inhomogeneous medium with a variable permittivity and permeability. The scattering
problem is modeled as a boundary value problem over a bounded domain, with transparent
boundary condition proposed on the hemisphere enclosing the inhomogeneity represented by
the cavity. The existence and uniqueness of the weak solution for the model problem are
established by using a variational approach. The perfectly matched layer (PML) method is
investigated to truncate the unbounded electromagnetic cavity scattering problem. It is shown
that the truncated PML problem attains a unique solution. An explicit error estimate is given
between the solution of the original scattering problem and that of the truncated PML prob-
lem. The error estimate implies that the PML solution converges exponentially to the original
cavity scattering problem by increasing either the PML medium parameter or the PML layer
thickness. The convergence result is expected to be useful for determining the PML medium
parameter in the computational electromagnetic scattering problem.
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1 Introduction

This paper is concerned with the mathematical analysis of an overfilled electromagnetic cavity
scattering problem for Maxwell’s equations. Broadly speaking, an overfilled cavity is referred to
as an inhomogeneous medium with compact support whose partial boundary, called as the cavity
wall, is a local perturbation of an infinite plane surface. So the cavity opening may protrude above
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the aperture on the infinite ground plane, which is in contrast with a regular cavity where the
opening coincides with the aperture of the ground plane.

The analysis of the electromagnetic scattering properties of cavities in a conducting ground
plane is of great interest to the engineering community due to its significant industrial and military
applications, which include the design of cavity-backed conformal antennas and the characterization
of radar cross section. The radar cross section is a measure of the detectability of a target by radar
system. Deliberate control in the form of enhancement or reduction of the radar cross section of a
target is of high importance in the aircraft or stealth design.

Time-harmonic analysis of cavity-backed apertures with penetrable material filling the cav-
ity interior has been examined by numerous researchers in the engineering community; see e.g.,
Jin [30, 31], Jin and Volakis [32], Liu and Jin [42], Wood and Wood [50], and references cited
therein. Mathematical treatment of the direct scattering problems involving cavities can be found
in Ammari, Bao, and Wood [5,6], Bao and Sun [14], Van and Wood [48], where a non-local trans-
parent boundary condition, based on the Fourier transform, is proposed on the open aperture of the
cavity. A closely related inverse cavity scattering problem, which is to determine the shape of the
cavity, has been studied by Bao and Li [11], Feng and Ma [29], and Liu [43] for the two-dimensional
Helmholtz equation, and Li [39] for the three-dimensional Maxwell equation in terms of uniqueness
and stability. It is a common assumption that the cavity opening coincides with the aperture on an
infinite ground plane, and hence simplifying the modeling of the exterior (to the cavity) domain.
This limits the application of these methods since many cavity openings are not planar. Recently,
Wood [49] has developed a technique for the two-dimensional Helmholtz equation that is capable
of characterizing the scattering by over-filled cavities in the frequency domain, where an artificial
boundary condition, based on Fourier series, is introduced on a semicircle enclosing the cavity. The
solution domain is the cavity plus the interior region enclosed by the semicircle.

One of our goals in this paper is to generalize the results in Wood [49] to the three-dimensional
Maxwell equation arising from the overfilled electromagnetic cavity scattering problem. We point
out that the techniques completely differ from Wood [49] due to the more complicated model
problem in the three-dimensional case. Specifically, we consider a time-harmonic electromagnetic
plane wave incident at an open and overfilled cavity embedded in an infinite ground plane. The
ground plane and the cavity wall are perfect electrical conductors. The interior of the cavity
is filled with some inhomogeneous medium characterized by variable dielectric permittivity and
magnetic permeability; while the space above the ground plane and the cavity opening is assumed
to be filled with a homogeneous medium with a constant permittivity and permeability. Based on
a transparent boundary condition proposed on a hemisphere enclosing the cavity, the scattering
problem is modeled as a boundary value problem over a bounded domain. One of our main results
for the overfilled cavity scattering problem indicates that it attains a unique weak solution for a
general cavity medium. An important step of our approach is to introduce a Calderon operator
and reduce the infinite nature of the scattering problem into a bounded domain via a transparent
boundary condition on the hemisphere. The proofs rely on a combination of a variational approach,
a Hodge decomposition, unique continuation, and the Fredholm alternative. Our method enjoys
a great generality in the sense that it allows very general cavity structure and complex medium
inside the cavity, i.e., the dielectric permittivity and magnetic permeability can be general spatially
varying bounded measurable functions. Computationally, the variational approach reported here
leads naturally to a class of finite edge element methods. Analysis and computation of the finite
element methods for the scattering problem will be studied and reported elsewhere.

The PML technique, which was first proposed by Berenger [15,16], is an important and popular
mesh termination technique in computational wave propagation due to its effectiveness, simplicity,
and flexibility; see e.g., Chen and Liu [24], Chen and Wu [25], Collino and Monk [26], Hohage,
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Schmidt, and Zschiedrich [33], Lassas and Somersalo [41], Teixera and Chew [46], and Turkel and
Yefet [47]. Under the assumption that the exterior solution is composed of outgoing waves only,
the basic idea of the PML technique is to surround the computational domain by a layer of finite
thickness with specially designed model medium that either slows down or attenuates all the waves
of any frequency propagating into the PML medium from inside the computational domain. In
practice, the PML medium must be truncated and the truncation boundary generates reflective
waves which can pollute the solution in the computational domain. Therefore, it is important
to study the error estimate in the computational domain between the solution of the original
scattering problem and that of the truncated PML problem. We refer to Bao and Wu [13], Bramble
and Pasciak [17, 18], and Chen and Chen [23] for convergence analysis of the PML problems for
three-dimensional electromagnetic obstacle scattering involving Maxwell’s equations.

Another goal in this paper is to analyze the convergence of the PML solution for the overfilled
electromagnetic cavity scattering problem. We shall use a PML to truncate the infinite half-space
above the ground plane and the cavity into a bounded domain. Under a proper assumption on the
PML medium parameter, we prove that the truncated PML problem attains a unique solution and
obtain an error estimate between the solution of the scattering problem and the solution of the
truncated PML problem in the computational domain. The error estimate implies particulary that
the PML solution converges exponentially to the scattering problem when either the PML medium
parameter or the thickness of the layer is increased. We refer to Zhang and Ma [52], Zhang, Ma, and
Dong [53] for a finite element method with PML to solve the two-dimensional Helmholtz equation
of the regular cavity scattering problem.

Related work for the scattering of acoustic and electromagnetic waves in a grating (periodic
surface) structure (diffractive optics) and in an unbounded rough surface (with a nonlocal pertur-
bation of a plane surface) have been extensively studied by either variational approaches or integral
equation methods; see e.g., Ammari and Bao [2], Bao [10], Bao, Li, and Wu [12], Chandler-Wilde
and Elschner [19], Chandler-Wilde and Monk [20, 21], Li, Wu, and Zheng [40], Li and Shen [41],
and Lechleiter and Ritterbusch [38]. Recently, existence of the solution to the acoustic and electro-
magnetic scattering problems in an infinite periodic surface perturbed by a single inhomogeneous
object placed inside the periodic structure is established via the integral equation methods by
Ammari and Bao [3, 4]. One may consult Colton and Kress [27], Nédélec [45], and Monk [44] for
extensive accounts of integral equation methods and finite element methods for general acoustic
and electromagnetic scattering problems.

The outline of this paper is as follows. In Section 2, the Maxwell equations are introduced for
the model problem. Section 3 discusses some of the properties of spherical harmonics, Sobolev
spaces, and regularity of the trace operators on the hemisphere. The derivation of the transpar-
ent boundary condition and some estimates of the Calderon operator are presented in Section 4.
Section 5 is devoted to the study of the variational problem over a bounded domain by using the
transparent boundary condition. Based on a Hodge decomposition, compact embedding results,
and the Fredholm alternative, the existence and uniqueness of the weak solution are established.
The PML problem formulation and convergence analysis with an explicit error estimate for the
truncated PML problem are presented in Section 6. The paper is concluded with some general
remarks and directions for future research in Section 7.

2 Maxwell’s equations

We shall introduce a mathematical model problem and define some notation for the electromag-
netic scattering problems by an overfilled cavity. Let D be a cavity in the infinite ground plane
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Figure 1: The problem geometry. An open and overfilled cavity D with boundary ∂D is placed on
a perfect electrically conducting ground plane Γg. The cavity wall S is referred to as the part of
the cavity boundary that lies below the ground plane.

with boundary ∂D, as seen in Figure 1. The cavity is filled with some inhomogeneous material,
characterized by the dielectric permittivity ε and magnetic permeability µ, which protrudes above
the ground plane. Denote by S the cavity wall, which is the part of the cavity boundary lying
below the infinite ground plane and is assumed to be Lipschitz continuous. The infinite ground
plane excluding the cavity opening is denoted as Γg. The infinite region above the cavity is denoted
as R3

+ \D, where it is filled with some homogeneous material represented by a constant dielectric
permittivity ε0 and a constant magnetic permeability µ0. Throughout this paper, we assume for
simplicity in exposition that ε0 = 1 and µ0 = 1. Furthermore, let Γ+

R be a hemisphere of radius
R large enough to completely enclose the overfilled portion of the cavity. We denote the region
bounded by Γ+

R and the cavity wall S as Ω. Hence this region Ω consists of the cavity D and the
homogeneous part between Γ+

R and the opening of the cavity. As we can see, the problem geom-
etry is not only applied to the overfilled cavity scattering problems, but also to a broader class of
scattering problems where the interface or the boundary is modeled as a local perturbation of an
infinite plane.

The electromagnetic wave propagation is governed by the time-harmonic Maxwell equations
(time dependence e−iωt):

∇× E = iωµH, ∇×H = −iωεE, (2.1)

where ω is the angular frequency, E and H are denoted as the electric field and the magnetic field,
respectively. We assume that ε ∈ L∞(D) and µ ∈ L∞(D) with

0 < Re ε < α, Im ε ≥ 0, and 0 < µ < β,

where α and β are two positive constants. The condition Im ε > 0 corresponds for dispersive
medium accounting for energy absorption. In this paper, we consider a general case with Im ε ≥ 0,
which makes the analysis of the problem much more sophisticated. More regularity will be needed
for ε and µ when proving the uniqueness via the unique continuation.

Due to the perfectly conducting material, the following homogenous Dirichlet boundary condi-
tion is satisfied for the tangential trace of the electric field on the infinite ground plane and the
cavity wall:

n× E = 0 on Γg ∪ S, (2.2)

where n is the unit outward normal vector.
Let (Einc,Hinc) be the plane waves that are incident upon the cavity from the above, where

Einc = teiωq·x, Hinc = seiωq·x, s =
q× t

ω
, t · q = 0.
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Here q = (α1, α2,−β) = (sin θ1 cos θ2, sin θ1 sin θ2,− cos θ1), and θ1, θ2 are incident angles satisfying
0 ≤ θ1 < π/2, 0 ≤ θ2 < 2π. Evidently, the incident electric field Einc and magnetic field Hinc satisfy
the Maxwell equation (2.1) for ε = ε0 and µ = µ0 in R3

+ \D. The reflected fields (Eref ,Href) can
be written as

Eref = −teiωq
∗·x and Href = −t× q∗eiωq

∗·x,

where q∗ = (α1, α2, β). Denote by

Eb = Einc + Eref Hb = Hinc +Href

the background electromagnetic fields from the unperturbed half-space, i.e., no cavity is present,
then it is easy to check that

n× Eb = 0 on Γg.

The total electric and magnetic fields can be decomposed as the summation of the background
fields and the scattered fields:

E = Eb + Es and H = Hb +Hs, (2.3)

where Es,Hs are the scattered electric field and the magnetic field, respectively. In addition, the
scattered fields are required to satisfy the Silver–Müller radiation condition:

lim
ρ→∞

ρ (Es −Hs × eρ) = 0, (2.4)

where ρ = |x|, eρ = x/|x|. Given the incident electromagnetic waves (Einc,Hinc), the scattering
problem is to determine the scattered fields (Es,Hs) or equivalently the total fields (E,H) in the
cavity D and in the homogeneous region above the cavity R3

+ \D.
To analyze the problem, the open domain needs to be truncated into a bounded domain. There-

fore, a suitable boundary condition has to be imposed on the boundary of the bounded domain
so that no artificial wave reflection occurs. We shall present a transparent boundary condition
on a hemisphere enclosing the inhomogeneous cavity. It is necessary to introduce some spherical
harmonics in order to put the boundary operator in a suitable context.

3 Spherical harmonics on hemisphere

To describe the variational formulation of the cavity scattering problem, we introduce some of the
properties of spherical harmonics on a hemisphere, which are relevant in scattering theory, and
some Sobolev spaces for the boundary value problem. We refer to Lebedev [37] for a more detailed
study of spherical harmonics on a whole sphere.

The spherical coordinates (ρ, θ, φ) are related to the Cartesian coordinates x = (x1, x2, x3) by
x1 = ρ sin θ cosφ, x2 = ρ sin θ sinφ, x3 = ρ cos θ, with the local orthonormal basis {eρ, eθ, eφ}:

eρ = (sin θ cosφ, sin θ sinφ, cos θ),

eθ = (cos θ cosφ, cos θ sinφ, − sin θ),

eφ = (− sinφ, cosφ, 0),

where θ and φ are the Euler angles. Let Γ = {x : ρ = 1}, Γ+ = {x : ρ = 1, x3 ≥ 0}, Γ− = {x :
ρ = 1, x3 ≤ 0} be the unit sphere, upper unit hemisphere, and lower unit hemisphere, respectively.
Denote by ΓR = {x : ρ = R}, Γ+

R = {x : ρ = R, x3 ≥ 0}, Γ−
R = {x : ρ = R, x3 ≤ 0} the whole

sphere, upper hemisphere, and lower hemisphere with radius R, respectively.
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Following Colton and Kress [27], let {Y m
n (θ, φ), |m| ≤ n, n = 0, 1, 2, . . . } be an orthonormal

sequence of spherical harmonics of order n on the unit sphere Γ that satisfies

∆ΓY
m
n + n(n+ 1)Y m

n = 0, (3.1)

where

∆Γ =
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂φ2

is the Laplace-Beltrami operator on Γ. Explicitly, the spherical harmonics of order n is written as

Y m
n (θ, φ) =

√
2n+ 1

4π

(n− |m|)!
(n+ |m|)!

P |m|
n (cos θ)eimφ, (3.2)

where the associated Legendre functions are

Pm
n (t) := (1− t2)m/2d

mPn(t)

dtm
, m = 0, 1, . . . , n. (3.3)

Here Pn is the Legendre polynomial of degree n, which is an even function if n is even and an odd
function if n is odd.

Next we shall introduce the spherical harmonics defined on the hemisphere Γ+
R. Define a se-

quence of rescaled spherical harmonics of order n:

Xm
n (θ, φ) =

√
2

R
Y m
n (θ, φ). (3.4)

Denote by L2(Γ+
R) the complex square integrable functions on the hemisphere Γ+

R. For convenience
of notation, we simply the following double summation

∑
|m|≤n

wm
n :=

∞∑
n=1

n∑
m=−n

wm
n ,

odd∑
|m|≤n

wm
n :=

∞∑
n=1

n∑
m=−n

m+n=odd

wm
n ,

even∑
|m|≤n

wm
n :=

∞∑
n=1

n∑
m=−n

m+n=even

wm
n .

Lemma 3.1. The spherical harmonics Xm
n (θ, φ) for |m| ≤ n, m+n = odd, n ∈ N, form a complete

orthonormal system in L2(Γ+
R).

Proof. First we prove the orthogonality. It can be verified from the definitions of the spherical
harmonics (3.2) and (3.3) that

Y m
n (π − θ, φ) = (−1)m+n Y m

n (θ, φ). (3.5)

Using (3.4), (3.5), and the change of variables, we have∫
Γ+
R

Xm
n (θ, φ)X̄m′

n′ (θ, φ) = 2

∫
Γ+

Y m
n (θ, φ)Ȳ m′

n′ (θ, φ) =

∫
Γ

Y m
n (θ, φ)Ȳ m′

n′ (θ, φ),

where the bar is denoted as the complex conjugate. It is proved (cf., Colton and Kress [27],
Theorem 2.7) that the spherical harmonics Y m

n (θ, φ) for |m| ≤ n, n = 0, 1, 2, . . . , form a complete
orthonormal system in L2(Γ), which yields the orthogonality of Xm

n on Γ+
R, i.e.,∫

Γ+
R

Xm
n (θ, φ)X̄m′

n′ (θ, φ) = δnn′δmm′ .
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Next is to prove the completeness. For any w ∈ L2(Γ+
R), we define an extended function w̃ to

the whole sphere ΓR by odd reflection:

w̃(θ, φ) =

{
w(θ, φ) if 0 ≤ θ ≤ π

2
,

−w(π − θ, φ) if π
2
< θ ≤ π.

Evidently, the extension w̃ ∈ L2(Γ) and thus can be written in a series expansion in terms of the
orthonormal system Y m

n in L2(Γ):

w̃(θ, φ) =
∑
|m|≤n

wm
n Y

m
n (θ, φ), (3.6)

where the coefficient wm
n is given by

wm
n =

∫
Γ

w̃(θ, φ)Ȳ m
n (θ, φ) =

∫
Γ+

w(θ, φ)Ȳ m
n (θ, φ)−

∫
Γ−
w(π − θ, φ)Ȳ m

n (θ, φ)

=

∫
Γ+

w(θ, φ)Ȳ m
n (θ, φ)− (−1)m+n

∫
Γ+

w(θ, φ)Ȳ m
n (θ, φ).

Therefore we have
wm

n = 0 for m+ n = even

and

wm
n = 2

∫
Γ+

w(θ, φ)Ȳ m
n (θ, φ) for m+ n = odd.

Plugging the coefficient wm
n into (3.6) and restricting w̃ to Γ+

R, we obtain a series expansion of w
in terms of the spherical harmonics Xm

n :

w(θ, φ) =
odd∑

|m|≤n

wm
n X

m
n (θ, φ),

where

wm
n =

∫
Γ+
R

w(θ, φ)X̄m
n (θ, φ),

which completes the proof.

To describe vector wave functions on the hemisphere, we introduce some boundary differential
operators. For a smooth scalar function w defined on Γ+

R, let

∇Γw =
∂w

∂θ
eθ +

1

sin θ

∂w

∂φ
eφ (3.7)

be the tangential gradient on Γ+
R. The surface vector curl is defined by

curlΓw = ∇Γw × eρ. (3.8)

Denote by divΓ and curlΓ the surface divergence and the surface scalar curl, respectively. For a
smooth vector function w tangential to Γ+

R, it can be represented by its coordinates in the local
orthonormal basis:

w = wθ eθ + wφ eφ,
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where
wθ = w · eθ and wφ = w · eφ.

The surface divergence and the surface scalar curl can be defined as

divΓw =
1

sin θ

[
∂

∂θ
(wθ sin θ) +

∂wφ

∂φ

]
, (3.9)

curlΓw =
1

sin θ

[
∂

∂θ
(wφ sin θ)−

∂wθ

∂φ

]
. (3.10)

It is known (cf., Nédélec [45]) that these boundary differential operators satisfy

∆Γ = divΓ∇Γ = −curlΓ curlΓ and curlΓ∇Γ = divΓcurlΓ = 0. (3.11)

Following Colton and Kress [27] (cf., Theorem 6.23), an orthonormal basis for TL2(ΓR) = {w ∈
(L2(ΓR))

3 : eρ ·w = 0}, the tangential fields on ΓR, consists of functions of the form

Um
n (θ, φ) =

1

R
√
n(n+ 1)

∇ΓY
m
n (θ, φ)

and

Vm
n (ϕ, ψ) = eρ ×Um

n (ϕ, ψ) = − 1

R
√
n(n+ 1)

curlΓY
m
n

for |m| ≤ n, n ∈ N. It follows from (3.11) and (3.1) that

divΓU
m
n = −

√
n(n+ 1)

R
Y m
n , curlΓV

m
n = −

√
n(n+ 1)

R
Y m
n ,

and
curlΓU

m
n = divΓV

m
n = 0.

Define two sequences of tangential fields

Xm
n (θ, φ) =

1√
n(n+ 1)

∇ΓX
m
n (θ, φ) =

√
2Um

n (θ, φ) (3.12)

and
Ym

n (θ, φ) = eρ ×Xm
n (θ, φ) =

√
2Vm

n (θ, φ). (3.13)

Using the definition of the tangential gradient (3.7), and noticing that eθ × eφ = eρ, eφ × eρ =
eθ, eρ × eθ = eφ, we get

eθ ×Xm
n (
π

2
, φ) = 0 for |m| ≤ n, m+ n = odd, n ∈ N, (3.14)

and
eθ ×Ym

n (
π

2
, φ) = 0 for |m| ≤ n, m+ n = even, n ∈ N. (3.15)

Define a subspace of complex square integrable tangential fields functions on the hemisphere Γ+
R:

TL2(Γ+
R) = {w ∈ (L2(Γ+

R))
3 : eρ ·w = 0}.

Lemma 3.2. The vector spherical harmonics Xm
n (m + n = odd) and Ym

n (m + n = even) for
|m| ≤ n, n ∈ N form a complete orthonormal system in TL2(Γ+

R).
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Proof. First we prove the orthogonality. Following (3.7), we have

∇ΓY
m
n (θ, φ) =

∂

∂θ
Y m
n (θ, φ) eθ +

1

sin θ

∂

∂φ
Y m
n (θ, φ) eφ.

It can be verified from the spherical harmonics (3.2) and (3.3) that

∂

∂φ
Y m
n (π − θ, φ) = (−1)m+n ∂

∂φ
Y m
n (θ, φ) (3.16)

and
∂

∂θ
Y m
n (π − θ, φ) = (−1)m+n+1 ∂

∂θ
Y m
n (θ, φ). (3.17)

Using (3.16) and (3.17), the change of variables, and the fact that the vector spherical harmonics
Um

n and Vm
n for |m| ≤ n, n ∈ N form a complete orthonormal system in TL2(ΓR), we obtain∫

Γ+
R

Xm
n (θ, φ) · X̄m′

n′ (θ, φ) = 2

∫
Γ+
R

Um
n (θ, φ) · Ūm′

n′ (θ, φ) =

∫
ΓR

Um
n (θ, φ) · Ūm′

n′ (θ, φ) = δnn′δmm′ .

Similarly, it holds∫
Γ+
R

Ym
n (θ, φ) · Ȳm′

n′ (θ, φ) =

∫
ΓR

Vm
n (θ, φ) · V̄m′

n′ (θ, φ) = δnn′δmm′ .

Besides, it is easy to show that∫
Γ+
R

Xm
n (θ, φ) · Ȳm′

n′ (θ, φ) = 2

∫
Γ+
R

Um
n (θ, φ) · V̄m′

n′ (θ, φ) = 0,

which completes the proof of the orthogonality.
Next is to prove the completeness. For any w ∈ TL2(Γ+

R), it can be represented by its coordi-
nates in the local orthonormal basis

w(θ, φ) = wθ(θ, φ) eθ + wφ(θ, φ) eφ.

We define an extended tangential field to the whole sphere ΓR by even reflection for wθ and odd
reflection for wφ:

w̃(θ, φ) =

{
wθ(θ, φ) eθ + wφ(θ, φ) eφ if 0 ≤ θ ≤ π

2
,

wθ(π − θ, φ) eθ − wφ(π − θ, φ) eφ if π
2
< θ ≤ π.

Evidently w̃ ∈ TL2(ΓR) and thus it has the following series expansion

w̃ =
∑
|m|≤n

wm
1nU

m
n + wm

2nV
m
n . (3.18)

Here, using (3.16) and (3.17), we can compute the coefficient w1n by

wm
1n =

∫
ΓR

w̃ · Ūm
n =

1

R
√
n(n+ 1)

∫
Γ+
R

[
wθ(θ, φ)

∂

∂θ
Y m
n (θ, φ) +

wφ(θ, φ)

sin θ

∂

∂φ
Y m
n (θ, φ)

]
+

1

R
√
n(n+ 1)

∫
Γ−
R

[
wθ(π − θ, φ)

∂

∂θ
Y m
n (θ, φ)− wφ(π − θ, φ)

sin θ

∂

∂φ
Y m
n (θ, φ)

]
=
[
1− (−1)m+n

] ∫
Γ+
R

w · Ūm
n ,
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and the coefficient w2n by

wm
2n =

∫
ΓR

w̃ · V̄m
n =

1

R
√
n(n+ 1)

∫
Γ+
R

[
wθ(θ, φ)

sin θ

∂

∂φ
Y m
n (θ, φ)− wφ(θ, φ)

∂

∂θ
Y m
n (θ, φ)

]
+

1

R
√
n(n+ 1)

∫
Γ−
R

[
wθ(π − θ, φ)

sin θ

∂

∂φ
Y m
n (θ, φ) + wφ(π − θ, φ)

∂

∂θ
Y m
n (θ, φ)

]
=
[
1 + (−1)m+n

] ∫
Γ+
R

w · V̄m
n .

Therefore, we have

wm
1n = 0 for m+ n = even, wm

2n = 0 for m+ n = odd,

and

wm
1n = 2

∫
Γ+
R

w · Ūm
n for m+ n = odd,

wm
2n = 2

∫
Γ+
R

w · V̄m
n for m+ n = even.

Plugging the coefficients wm
1n and wm

2n into (3.18) and restricting w̃ to Γ+
R, we obtain the expansion

of w under the vector spherical harmonics Xm
n and Ym

n :

w(θ, φ) =
odd∑

|m|≤n

wm
1nX

m
n (θ, φ) +

even∑
|m|≤n

wm
2nY

m
n (θ, φ),

where

wm
1n =

∫
Γ+
R

w · X̄m
n and wm

2n =

∫
Γ+
R

w · Ȳm
n ,

which completes the proof.

To describe the Calderon operator and transparent boundary condition in the formulation of
the boundary value problem, we introduce some trace functional spaces. Denote by Hs

0(Γ
+
R) the

Sobolev space, the completion of C∞
0 (Γ+

R) in the norm ∥ · ∥Hs(Γ+
R) characterized by

∥ w ∥2
Hs(Γ+

R)
=

odd∑
|m|≤n

(1 + n(n+ 1))s |wm
n |2, (3.19)

where

w(θ, φ) =
odd∑

|m|≤n

wm
n X

m
n (θ, φ).

Introduce the following spaces:

THs
0(Γ

+
R) = {w ∈ (Hs

0(Γ
+
R))

3, eρ ·w = 0, eθ ×w(
π

2
, φ) = 0},

TH
−1/2
0 (curl, Γ+

R) = {w ∈ TH
−1/2
0 (Γ+

R), curlΓw ∈ H−1/2(Γ+
R)},

TH
−1/2
0 (div, Γ+

R) = {w ∈ TH
−1/2
0 (Γ+

R), divΓw ∈ H−1/2(Γ+
R)}.
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Due to Lemma 3.2, for any tangential field w ∈ THs
0(Γ

+
R), it can be represented in the series

expansion

w =
odd∑

|m|≤n

wm
1nX

m
n (θ, φ) +

even∑
|m|≤n

wm
2nY

m
n (θ, φ).

Trace spaces of tangential vector fields on Γ+
R can be characterized by the weighted sums of the

expansion coefficients. Using the series coefficients, the norm on the space THs
0(Γ

+
R) can be char-

acterized by

∥ w ∥2
THs

0(Γ
+
R)
=

odd∑
|m|≤n

(1 + n(n+ 1))s |wm
1n|2 +

even∑
|m|≤n

(1 + n(n+ 1))s |wm
2n|2; (3.20)

the norm on the space TH
−1/2
0 (curl, Γ+

R) can be characterized by

∥ w ∥2
TH

−1/2
0 (curl,Γ+

R)
=

odd∑
|m|≤n

1√
1 + n(n+ 1)

|wm
1n|2 +

even∑
|m|≤n

√
1 + n(n+ 1) |wm

2n|2; (3.21)

and the norm on the space TH
−1/2
0 (div, Γ+

R) can be characterized by

∥ w ∥2
TH

−1/2
0 (div,Γ+

R)
=

odd∑
|m|≤n

√
1 + n(n+ 1) |wm

1n|2 +
even∑
|m|≤n

1√
1 + n(n+ 1)

|wm
2n|2. (3.22)

Define a dual pairing ⟨·, ·⟩Γ+
R
by

⟨u,v⟩Γ+
R
=

odd∑
|m|≤n

um1n v̄
m
1n +

even∑
|m|≤n

um2n v̄
m
2n,

where

u =
odd∑

|m|≤n

um1nX
m
n +

even∑
|m|≤n

um2nY
m
n and v =

odd∑
|m|≤n

vm1nX
m
n +

even∑
|m|≤n

vm2nY
m
n .

Denote by TH−1/2(div, Γ+
R) the dual space of TH

−1/2
0 (curl, Γ+

R) and by TH−1/2(curl, Γ+
R) the dual

space of TH
−1/2
0 (div, Γ+

R), i.e.,

TH−1/2(div, Γ+
R) =

(
TH

−1/2
0 (curl, Γ+

R)
)′

and TH−1/2(curl, Γ+
R) =

(
TH

−1/2
0 (div, Γ+

R)
)′
.

The norm on the space TH−1/2(div, Γ+
R) is characterized by

∥ u ∥TH−1/2(div,Γ+
R)= sup

v∈TH
−1/2
0 (curl,Γ+

R)

⟨u,v⟩Γ+
R

∥ v ∥
TH

−1/2
0 (curl,Γ+

R)

, (3.23)

and the norm on the space TH−1/2(curl, Γ+
R) is characterized by

∥ u ∥TH−1/2(curl,Γ+
R)= sup

v∈TH
−1/2
0 (div,Γ+

R)

⟨u,v⟩Γ+
R

∥ v ∥
TH

−1/2
0 (div,Γ+

R)

. (3.24)
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Introduce the following space

HS(curl, Ω) = {u ∈ (L2(Ω))3, ∇× u ∈ (L2(Ω))3, n× u = 0 on S},

which is clearly a Hilbert space for the norm:

∥ u ∥=
(
∥ u ∥2(L2(Ω))3 + ∥ ∇ × u ∥2(L2(Ω))3

)1/2
. (3.25)

Let Γρ be the sphere of radius ρ and center the origin and let Γ+
ρ be the hemisphere {x ∈ Γρ, x3 ≥ 0}.

For any vector field u, denote the tangential component on the sphere Γ+
ρ by

uΓ+
ρ
= −eρ × (eρ × u|Γ+

ρ
).

To simply proofs, we shall employ positive constants C and Ci as generalized constants whose
precise values are not required and may change line by line but should always be clear from the
context.

The following trace regularity results in TH
−1/2
0 (curl, Γ+

R) and TH
−1/2
0 (Γ+

R) are useful in subse-
quent analysis.

Lemma 3.3. Let γ1 =
√
2max{R, 1/R}. The following estimate holds

∥ uΓ+
R
∥
TH

−1/2
0 (curl,Γ+

R)
≤ γ1 ∥ u ∥HS(curl,Ω)

for any u ∈ HS(curl, Ω).

Proof. Let B+
R be the half ball between Γ+

R and the ground. Noting that u = uρeρ+uθeθ +uφeφ =
uΓρ + ureρ, we have the following expansion in B+

R (cf. Lemma 3.1 and Lemma 3.2):

u =
odd∑

|m|≤n

um1n(ρ)X
m
n +

even∑
|m|≤n

um2n(ρ)Y
m
n +

odd∑
|m|≤n

um3n(ρ)X
m
n eρ. (3.26)

From (3.21),

∥ uΓ+
R
∥2
TH−1/2(curl,Γ+

R)
=

odd∑
|m|≤n

1√
1 + n(n+ 1)

|um1n(R)|2 +
even∑
|m|≤n

√
1 + n(n+ 1) |um2n(R)|2. (3.27)

Clearly, ∫ π/2

0

∫ 2π

0

Xm
n · X̄m′

n′ R2 sin θdφdθ =

∫
Γ+
R

Xm
n · X̄m′

n′ = δnn′δmm′ ,∫ π/2

0

∫ 2π

0

Ym
n · Ȳm′

n′ R2 sin θdφdθ = δnn′δmm′ ,∫ π/2

0

∫ 2π

0

Xm
n · X̄m′

n′ R2 sin θdφdθ = δnn′δmm′ , if m+ n+m′ + n′ = even.∫ π/2

0

∫ 2π

0

Xm
n · Ȳm′

n′ R2 sin θdφdθ = 0, Xm
n · eρ = Ym

n · eρ = 0.
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Therefore,

∥ u ∥2
(L2(B+

R))3
=

∫ R

0

∫ π/2

0

∫ 2π

0

u · u ρ2 sin θdφdθdρ

=
1

R2

∫ R

0

( odd∑
|m|≤n

|um1n(ρ)|2 +
even∑
|m|≤n

|um2n(ρ)|2 +
odd∑

|m|≤n

|um3n(ρ)|2
)
ρ2dρ (3.28)

On the other hand, noting that (cf. (3.12), (3.13), and (3.4))

curlΓX
m
n = 0, curlΓY

m
n = −

√
n(n+ 1)Xm

n , and ∇ΓX
m
n × eρ = −

√
n(n+ 1)Ym

n ,

we have

curlu =
1

ρ sin θ

(
∂(sin θuφ)

∂θ
− ∂uθ
∂φ

)
eρ +

(
1

ρ sin θ

∂uρ
∂φ

− 1

ρ

∂(ρuφ)

∂ρ

)
eθ

+
1

ρ

(
∂(ρuθ)

∂ρ
− ∂uρ

∂θ

)
eφ

=
1

ρ

(
curlΓu eρ +∇Γuρ × eρ −

∂(ρu)

∂ρ
× eρ

)
=
1

ρ

(
−

even∑
|m|≤n

um2n(ρ)
√
n(n+ 1)Xm

n eρ −
odd∑

|m|≤n

um3n(ρ)
√
n(n+ 1)Ym

n

+
odd∑

|m|≤n

d(ρum1n(ρ))

dρ
Ym

n −
even∑
|m|≤n

d(ρum2n(ρ))

dρ
Xm

n

)
.

Therefore,

∥ curlu ∥2
(L2(B+

R))3
=

1

R2

∫ R

0

( even∑
|m|≤n

(
n(n+ 1)|um2n(ρ)|2 +

∣∣∣d(ρum2n(ρ))
dρ

∣∣∣2)

+
odd∑

|m|≤n

∣∣∣d(ρum1n(ρ))
dρ

−
√
n(n+ 1)um3n(ρ)

∣∣∣2)dρ (3.29)

By combining (3.28) and (3.29) we have

∥ u ∥2
H(curl, B+

R)
=

1

R2

∫ R

0

( even∑
|m|≤n

((
ρ2 + n(n+ 1)

)
|um2n(ρ)|2 +

∣∣∣d(ρum2n(ρ))
dρ

∣∣∣2)

+
odd∑

|m|≤n

(
|um1n(ρ)|2ρ2 + |um3n(ρ)|2ρ2

+
∣∣∣d(ρum1n(ρ))

dρ
−
√
n(n+ 1)um3n(ρ)

∣∣∣2))dρ
≥ 1

R2

∫ R

0

( even∑
|m|≤n

((
ρ2 + n(n+ 1)

)
|um2n(ρ)|2 +

∣∣∣d(ρum2n(ρ))
dρ

∣∣∣2)

+
odd∑

|m|≤n

(
ρ2|um1n(ρ)|2 +

ρ2

ρ2 + n(n+ 1)

∣∣∣d(ρum1n(ρ))
dρ

∣∣∣2))dρ (3.30)
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We have

|um1n(R)|2√
1 + n(n+ 1)

=
1

R3
√

1 + n(n+ 1)

∫ R

0

d
(
ρ|ρum1n(ρ)|2

)
dρ

dρ

=
1

R3
√

1 + n(n+ 1)

∫ R

0

(
ρ2|um1n(ρ)|2 + 2ρRe

(
ρum1n(ρ)

d(ρūm1n(ρ))

dρ

))
dρ

≤ 1

R3

∫ R

0

(
ρ2|um1n(ρ)|2 + 2max{R, 1}ρ

∣∣um1n(ρ)∣∣ ρ√
ρ2 + n(n+ 1)

∣∣∣d(ρum1n(ρ))
dρ

∣∣∣)dρ.
Thus,

|um1n(R)|2√
1 + n(n+ 1)

≤ max
{
1,

1

R

} 1

R2

∫ R

0

(
2ρ2|um1n(ρ)|2 +

ρ2

ρ2 + n(n+ 1)

∣∣∣d(ρum1n(ρ))
dρ

∣∣∣2)dρ. (3.31)

Similarly,√
1 + n(n+ 1) |um2n(R)|2 =

√
1 + n(n+ 1)

R2

∫ R

0

d
(
|ρum2n(ρ)|2

)
dρ

dρ

≤
√

1 + n(n+ 1)

R2

∫ R

0

2|ρum2n(ρ)|
∣∣∣d(ρum2n(ρ))

dρ

∣∣∣dρ
≤ max{R, 1}

R2

∫ R

0

(
(ρ2 + n(n+ 1))|um2n(ρ)|2 +

∣∣∣d(ρum2n(ρ))
dρ

∣∣∣2)dρ. (3.32)

The proof of the lemma is completed by combining (3.27), (3.30), (3.31), and (3.32).

Lemma 3.4. For any η > 0 there is a constant C(η) such that the following estimate holds

∥ uΓ+
R
∥2
TH

−1/2
0 (Γ+

R)
≤ η ∥ ∇ × u ∥2(L2(Ω))3 +C(η) ∥ u ∥2(L2(Ω))3

for any u ∈ HS(curl, Ω).

Proof. We have

∥ uΓ+
R
∥2
H−1/2(Γ+

R)
=

odd∑
|m|≤n

1√
1 + n(n+ 1)

|um1n(R)|2 +
even∑
|m|≤n

1√
1 + n(n+ 1)

|um2n(R)|2. (3.33)

From (3.28) and (3.29),

η ∥ ∇ × u ∥2(L2(Ω))3 + C(η) ∥ u ∥2(L2(Ω))3

=
1

R2

∫ R

0

( even∑
|m|≤n

((
C(η)ρ2 + η n(n+ 1)

)
|um2n(ρ)|2 + η

∣∣∣d(ρum2n(ρ))
dρ

∣∣∣2)

+
odd∑

|m|≤n

(
C(η)|um1n(ρ)|2ρ2 + C(η)|um3n(ρ)|2ρ2

+ η
∣∣∣d(ρum1n(ρ))

dρ
−
√
n(n+ 1)um3n(ρ)

∣∣∣2))dρ
≥ 1

R2

∫ R

0

( even∑
|m|≤n

((
C(η)ρ2 + η n(n+ 1)

)
|um2n(ρ)|2 + η

∣∣∣d(ρum2n(ρ))
dρ

∣∣∣2)

+
odd∑

|m|≤n

(
C(η)ρ2|um1n(ρ)|2 +

η C(η)ρ2

C(η)ρ2 + η n(n+ 1)

∣∣∣d(ρum1n(ρ))
dρ

∣∣∣2))dρ (3.34)

14



All we need is to choose C(η) properly to bound the right hand side of (3.33) by that of (3.34).
We have

|um1n(R)|2√
1 + n(n+ 1)

=
1

R3
√
1 + n(n+ 1)

∫ R

0

d
(
ρ|ρum1n(ρ)|2

)
dρ

dρ

=
1

R3
√
1 + n(n+ 1)

∫ R

0

(
ρ2|um1n(ρ)|2 + 2ρRe

(
ρum1n(ρ)

d(ρūm1n(ρ))

dρ

))
dρ

≤ 1

R3

∫ R

0

(
ρ2|um1n(ρ)|2 + 2ρ

∣∣um1n(ρ)∣∣ ρ√
1 + n(n+ 1)

∣∣∣d(ρum1n(ρ))
dρ

∣∣∣)dρ
≤ 1

R3

∫ R

0

((
1 +

C(η)ρ2 + η n(n+ 1)

Rη C(η)(1 + n(n+ 1))

)
ρ2|um1n(ρ)|2

+
Rη C(η)ρ2

C(η)ρ2 + η n(n+ 1)

∣∣∣d(ρum1n(ρ))
dρ

∣∣∣2)dρ.
Let

C(η) =
1

η
+

2

R
. (3.35)

Then, for any integer n,

1 +
C(η)ρ2 + η n(n+ 1)

Rη C(η)(1 + n(n+ 1))
≤ 1 +

R

η
+

1

RC(η)
≤ RC(η).

Thus,

|um1n(R)|2√
1 + n(n+ 1)

≤ 1

R2

∫ R

0

(
C(η)ρ2|um1n(ρ)|2 +

η C(η)ρ2

C(η)ρ2 + η n(n+ 1)

∣∣∣d(ρum1n(ρ))
dρ

∣∣∣2)dρ. (3.36)

Similarly,

|um2n(R)|2√
1 + n(n+ 1)

≤ 1

R2

∫ R

0

(
C(η)ρ2|um2n(ρ)|2 +

η C(η)ρ2

C(η)ρ2 + η n(n+ 1)

∣∣∣d(ρum2n(ρ))
dρ

∣∣∣2)dρ
≤ 1

R2

∫ R

0

((
C(η)ρ2 + η n(n+ 1)

)
|um2n(ρ)|2 + η

∣∣∣d(ρum2n(ρ))
dρ

∣∣∣2)dρ. (3.37)

Now the proof of the lemma is completed by combining (3.33)–(3.37).

4 Transparent boundary condition on hemisphere

In this section, we introduce a Calderon operator which induces a transparent boundary condition
and maps the tangential component of the electric field to the value of the tangential trace of the
magnetic field on the hemisphere.

Let h
(1)
n (z) be the spherical Hankel function of the first kind of order n. We introduce the vector

wave functions

Mm
n (ρ, θ, φ) = ∇×

(
xh(1)n (ωρ)Xm

n (θ, φ)
)
, Nm

n (ρ, θ, φ) =
1

iω
∇×Mm

n (θ, φ), (4.1)

which are the radiation solutions of the Maxwell equations in R3 \ {0}, i.e.,

∇×Mm
n (ρ, θ, φ) = iωNm

n (ρ, θ, φ), ∇×Nm
n (ρ, θ, φ) = −iωMm

n (ρ, θ, φ). (4.2)
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It can be verified from (4.1) that the vector wave functions satisfy

Mm
n (ρ, θ, φ) = h(1)n (ωρ)∇ΓX

m
n (θ, φ)× eρ (4.3)

and

Nm
n (ρ, θ, φ) =

√
n(n+ 1)

iωρ

(
h(1)n (ωρ) + ωρ(h(1)n )′(ωρ)

)
Xm

n (θ, φ)

+
n(n+ 1)

iωρ
h(1)n (ωρ)Y m

n (θ, φ)eρ. (4.4)

Simple calculation yields

eθ ×Mm
n (ρ,

π

2
, φ) = 0 for |m| ≤ n, m+ n = even, n ∈ N,

eθ ×Nm
n (ρ,

π

2
, φ) = 0 for |m| ≤ n, m+ n = odd, n ∈ N.

Therefore, in the domain R3
+ \ Ω, the solution of the scattered field Es(ρ, θ, φ), which satisfies the

perfectly electric conducting condition n× Es = 0 on Γg, i.e., eθ × Es(ρ, π
2
, φ) = 0, can be written

in the series expansion

Es(ρ, θ, φ) =
odd∑

|m|≤n

αm
n Nm

n (ρ, θ, φ) +
even∑
|m|≤n

βm
n Mm

n (ρ, θ, φ) (4.5)

with uniform convergence on compact subsets in R3
+ \ Ω. The corresponding scattered magnetic

field Hs is given by

Hs =
1

iω
∇× Es =

odd∑
|m|≤n

−αm
n Mm

n (ρ, θ, φ) +
even∑
|m|≤n

βm
n Nm

n (ρ, θ, φ). (4.6)

To deduce an explicit representation of the Calderon operator, we need to express Es
Γ+
R

= −eρ ×
(eρ × Es) and Hs × eρ on Γ+

R in terms of the coefficients αm
n and βm

n .
From the definition (4.3), it can be verified that

−eρ × (eρ ×Mm
n (ρ, θ, φ)) = −

√
n(n+ 1)h(1)n (ωρ)Ym

n (θ, φ),

−eρ × (eρ ×Nm
n (ρ, θ, φ)) =

√
n(n+ 1)

iωρ

(
h(1)n (ωρ) + ωρ(h(1)n )′(ωρ)

)
Xm

n (θ, φ),

and

eρ ×Mm
n (ρ, θ, φ) =

√
n(n+ 1)h(1)n (ωρ)Xm

n (θ, φ),

eρ ×Nm
n (ρ, θ, φ) =

√
n(n+ 1)

iωρ

(
h(1)n (ωρ) + ωρ(h(1)n )′(ωρ)

)
Ym

n (θ, φ).

Therefore the tangential component of the scattered electric field is

Es
Γ+
R
=

odd∑
|m|≤n

√
n(n+ 1)

iωR

(
h(1)n (ωR) + ωR(h(1)n )′(ωR)

)
αm
n Xm

n (θ, φ)

−
even∑
|m|≤n

√
n(n+ 1)h(1)n (ωR)βm

n Ym
n (θ, φ),
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and the tangential trace of the scattered magnetic field is

Hs × eρ =
odd∑

|m|≤n

√
n(n+ 1)h(1)n (ωR)αm

n Xm
n (θ, φ)

−
even∑
|m|≤n

√
n(n+ 1)

iωR

(
h(1)n (ωR) + ωR(h(1)n )′(ωR)

)
βm
n Ym

n (θ, φ).

Therefore we have the following explicit representation of the Calderon operator T : for any tan-
gential component of the electric field

u =
odd∑

|m|≤n

αm
n Xm

n +
even∑
|m|≤n

βm
n Ym

n ,

the tangential trace of the magnetic field is

Tu =
odd∑

|m|≤n

iωRαm
n

1 + z
(1)
n (ωR)

Xm
n +

even∑
|m|≤n

(1 + z
(1)
n (ωR))βm

n

iωR
Ym

n , (4.7)

where

z(1)n (t) =
t (h

(1)
n )′(t)

h
(1)
n (t)

.

Lemma 4.1. The Calderon operator T : TH
−1/2
0 (curl, Γ+

R) → TH−1/2(div, Γ+
R) is continuous, i.e.,

there exists a positive constant C such that

∥ Tu ∥TH−1/2(div,Γ+
R)≤ C ∥ u ∥

TH
−1/2
0 (curl,Γ+

R)

for any u ∈ TH
−1/2
0 (curl, Γ+

R).

Proof. For any u,v ∈ TH
−1/2
0 (curl, Γ+

R), they have the following expansion

u =
odd∑

|m|≤n

um1nX
m
n +

even∑
|m|≤n

um2nY
m
n and v =

odd∑
|m|≤n

vm1nX
m
n +

even∑
|m|≤n

vm2nY
m
n .

Following the definition of the Calderon operator (4.7), we have

Tu =
odd∑

|m|≤n

iωRum1n

1 + z
(1)
n (ωR)

Xm
n +

even∑
|m|≤n

(1 + z
(1)
n (ωR))um2n
iωR

Ym
n .

It follows from definition (3.23) that

∥ Tu ∥TH−1/2(div,Γ+
R)= sup

v∈TH
−1/2
0 (curl,Γ+

R)

⟨Tu,v⟩Γ+
R

∥ v ∥
TH

−1/2
0 (curl,Γ+

R)

.

To prove the lemma, it is required to estimate

⟨Tu,v⟩Γ+
R
=

odd∑
|m|≤n

iωR

1 + z
(1)
n (ωR)

um1n v̄
m
1n +

even∑
|m|≤n

(1 + z
(1)
n (ωR))

iωR
um2n v̄

m
2n.
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It follows from the Cauchy-Schwarz inequality that

⟨Tu,v⟩Γ+
R
≤

 odd∑
|m|≤n

√
1 + n(n+ 1)

|1 + z
(1)
n (ωR)|2

|ωR|2 |um1n|2 +
even∑
|m|≤n

|1 + z
(1)
n (ωR)|2√

1 + n(n+ 1)

|um2n|2

|ωR|2

1/2

×

 odd∑
|m|≤n

1√
1 + n(n+ 1)

|vm1n|2 +
even∑
|m|≤n

√
1 + n(n+ 1)|vm2n|2

1/2

.

It is proved in Kirsch and Monk [34] (cf., Lemma 3.1) that there exist positive constants C1 and
C2 such that

C1 n ≤ |1 + z(1)n (ωR)| ≤ C2 n for all n.

Thus, we have√
1 + n(n+ 1)

|1 + z
(1)
n (ωR)|2

|ωR|2 |um1n|2 =
1√

1 + n(n+ 1)

1 + n(n+ 1)

|1 + z
(1)
n (ωR)|2

|ωR|2|um1n|2

≤ C3
1√

1 + n(n+ 1)
|um1n|2

and

|1 + z
(1)
n (ωR)|2√

1 + n(n+ 1)

|um2n|2

|ωR|2
=
√
1 + n(n+ 1)

|1 + z
(1)
n (ωR)|2

1 + n(n+ 1)

|um2n|2

|ωR|2

≤ C4

√
1 + n(n+ 1) |um2n|2.

Combining above estimates yields

⟨Tu,v⟩Γ+
R
≤ C ∥ u ∥

TH
−1/2
0 (curl Γ+

R)
∥ v ∥

TH
−1/2
0 (curl Γ+

R)

where the constant C depends on ωR,C1, C2, C3, and C4.

Lemma 4.2. Let u be in TH
−1/2
0 (curl,Γ+

R). It holds Re ⟨Tu,u⟩Γ+
R
≥ 0. If Re ⟨Tu,u⟩Γ+

R
= 0, then

u = 0 on Γ+
R.

Proof. Be definitions, we obtain

⟨Tu,u⟩Γ+
R
=

odd∑
|m|≤n

iωR

1 + z
(1)
n (ωR)

|um1n|2 +
even∑
|m|≤n

1 + z
(1)
n (ωR)

iωR
|um2n|2.

Taking the real part of the above identity gives

Re ⟨Tu,u⟩Γ+
R
=

odd∑
|m|≤n

ωR Im z
(1)
n (ωR)

|1 + z
(1)
n (ωR)|2

|um1n|2 +
even∑
|m|≤n

Im z
(1)
n (ωR)

ωR
|um2n|2.

It is known (cf., Nédélec [45], Lemma 2.6.1) that

0 < Im z(1)n (ωR) ≤ ωR.

Thus
Re ⟨Tu,u⟩Γ+

R
≥ 0.

If Re ⟨Tu,u⟩Γ+
R
= 0 implies that um1n = um2n = 0, which yields u = 0 on Γ+

R.
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Lemma 4.3. There exist a positive constant C such that

Im⟨Tu,u⟩Γ+
R
≥ −C ∥ u ∥2

TH
−1/2
0 (Γ+

R)
,

for any u in TH
−1/2
0 (curl, Γ+

R).

Proof. For any u ∈ TH
−1/2
0 (curl, Γ+

R), it has the following expansion

u =
odd∑

|m|≤n

um1nX
m
n +

even∑
|m|≤n

um2nY
m
n .

Be definitions, we obtain

⟨Tu,u⟩Γ+
R
=

odd∑
|m|≤n

iωR

1 + z
(1)
n (ωR)

|um1n|2 +
even∑
|m|≤n

1 + z
(1)
n (ωR)

iωR
|um2n|2.

Taking the imaginary part of the above identity gives

Im ⟨Tu,u⟩Γ+
R
=

odd∑
|m|≤n

ωR (1 + Re z
(1)
n (ωR))

|1 + z
(1)
n (ωR)|2

|um1n|2 −
even∑
|m|≤n

1 + Re z
(1)
n (ωR)

ωR
|um2n|2.

It is known (cf., Nédélec [45], Lemma 2.6.1) that

−(n+ 1) ≤ Re z(1)n (ωR) ≤ −1.

Thus

Im ⟨Tu,u⟩Γ+
R
≥ ωR

odd∑
|m|≤n

(1 + Re z
(1)
n (ωR))

|1 + z
(1)
n (ωR)|2

|um1n|2 ≥ −ωR
odd∑

|m|≤n

n

|1 + z
(1)
n (ωR)|2

|um1n|2

≥ −C
odd∑

|m|≤n

1√
1 + n(n+ 1)

|um1n|2 ≥ −C ∥ u ∥2
TH

−1/2
0 (Γ+

R)
,

which completes the proof.

Lemma 4.4. There exists a positive constant C such that

|⟨T∇Γu,∇Γv⟩Γ+
R
| ≤ C ∥ u ∥H1(Ω) ∥ v ∥H1(Ω),

for any ∇Γu and ∇Γv in ∈ TH
−1/2
0 (curl, Γ+

R).

Proof. Following the expansion

u =
odd∑

|m|≤n

umnX
m
n and v =

odd∑
|m|≤n

vmn X
m
n ,

we have

∇Γu =
odd∑

|m|≤n

√
n(n+ 1)umn Xm

n and ∇Γv =
odd∑

|m|≤n

√
n(n+ 1) vmn Xm

n
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and

T∇Γu = iωR
odd∑

|m|≤n

√
n(n+ 1)

1 + z
(1)
n (ωR)

umn Xm
n .

By definition, we have

⟨T∇Γu,∇Γv⟩Γ+
R
= iωR

odd∑
|m|≤n

n(n+ 1)

1 + z
(1)
n (ωR)

umn v̄
m
n .

It follows from the Cauchy–Schwarz inequality that

|⟨T∇Γu,∇Γv⟩Γ+
R
| ≤ ωR

odd∑
|m|≤n

n(n+ 1)

|1 + z
(1)
n (ωR)|

|umn | |vmn |

≤ C

odd∑
|m|≤n

(1 + n(n+ 1))1/2|umn | |vmn |

≤ C ∥ u ∥H1/2(Γ+
R) ∥ v ∥H1/2(Γ+

R)≤ C ∥ u ∥H1(Ω) ∥ v ∥H1(Ω),

where the last inequality follows from the trace theorem of standard elliptic boundary value prob-
lems.

Lemma 4.5. There exists a positive constant C such that

|⟨TuΓ+
R
,∇Γv⟩Γ+

R
| ≤ C ∥ v ∥H1(Ω) ∥ u ∥H(curl,Ω),

for any u in HS(curl, Ω) and ∇Γv in ∈ TH
−1/2
0 (curl, Γ+

R).

Proof. It follows from the expansions that

u =
odd∑

|m|≤n

um1nX
m
n +

even∑
|m|≤n

um2nY
m
n and ∇Γv =

odd∑
|m|≤n

√
n(n+ 1) vmn Xm

n

By definition

⟨TuΓ+
R
,∇Γv⟩Γ+

R
= iωR

odd∑
|m|≤n

√
n(n+ 1)

1 + z
(1)
n (ωR)

um1n v̄
m
n ,

which gives

|⟨TuΓ+
R
,∇Γv⟩Γ+

R
| ≤ C

odd∑
|m|≤n

|um1n| |vmn |

≤ C

 odd∑
|m|≤n

1√
1 + n(n+ 1)

|um1n|2
1/2 odd∑

|m|≤n

√
1 + n(n+ 1) |vmn |2

1/2

≤ C ∥ uΓ+
R
∥
TH

−1/2
0 (curl,Γ+

R)
∥ v ∥H1/2(Γ+

R) .

The proof is completed by applying the trace property and Lemma 3.3.
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Lemma 4.6. For any ∇Γu in TH
−1/2
0 (curl, Γ+

R), it holds that

Im ⟨T∇Γu,∇Γu⟩Γ+
R
≤ 0.

Proof. By definition, we have

⟨T∇Γu,∇Γu⟩Γ+
R
=

odd∑
|m|≤n

n(n+ 1)
iωR

1 + z
(1)
n (ωR)

|umn |2.

Taking the imaginary part gives and using −(n + 1) ≤ Rez
(1)
n ≤ −1 (cf. Nédélec [45], Lemma

2.6.1), we obtain

Im ⟨T∇Γu,∇Γu⟩Γ+
R
=

odd∑
|m|≤n

n(n+ 1)
ωR(1 + Rez

(1)
n (ωR))

|1 + z
(1)
n (ωR)|2

|umn |2 ≤ 0,

which completes the proof.

Using the Calderon operator, the following transparent boundary condition may be proposed
on the hemisphere Γ+

R:
T (EΓ+

R
− Einc

Γ+
R
) = (H−Hinc)× eρ,

which maps the tangential component of the scattered electric field to the tangential trace of the
scattered magnetic field. Equivalently, it can be written as

(∇× E)× eρ = iωTEΓ+
R
+ f , (4.8)

where
f = iω(Hinc × eρ − THinc).

5 Variational problem

In this section, we shall introduce the variational formulation for the overfilled cavity scattering
problem using the transparent boundary condition. Based on a Hodge decomposition, compact
embedding results, and the Fredholm alternative, the existence and uniqueness of the solution for
the model problem are established by a variational approach.

5.1 Uniqueness

We present a variational formulation of the Maxwell equations in the space HS(curl, Ω) and give a
proof of the uniqueness for the boundary value problem.

By eliminating the magnetic field from (2.1), we obtain the equation for the electric field:

∇× (µ−1∇× E)− ω2εE = 0 in Ω. (5.1)

Multiplying the complex conjugate of a test function w in HS(curl, Ω), integrating over Ω, and
using integration by parts, we arrive at the variational form for the scattering problem: find
E ∈ HS(curl, Ω) such that

a(E,w) = ⟨f ,w⟩Γ+
R

for all w ∈ HS(curl, Ω), (5.2)
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where the sesquilinear form

a(E,w) =

∫
Ω

µ−1(∇× E) · (∇× w̄)− ω2

∫
Ω

εE · w̄ − iω

∫
Γ+
R

TEΓ+
R
· w̄Γ+

R
, (5.3)

and
f = iω

(
Hinc × eρ − TEΓ+

R

)
.

The following uniqueness proof is based on a unique continuation result to Maxwell’s equations.
We refer to Eller, Isakov, Nakamura, and Tataru [28] for a proof of the unique continuation result.

Theorem 5.1. Assume that ε, µ ∈ C2(Ω). Then the variational problem (5.2) has at most one
solution.

Proof. It suffices to show that E = 0 in Ω if Einc = Hinc = 0. If E satisfies the homogeneous
variational problem in Ω, then∫

Ω

µ−1|∇ × E|2 − ω2

∫
Ω

ε|E|2 − iω

∫
Γ+
R

TEΓ+
R
· ĒΓ+

R
= 0.

Taking the imaginary part yields

ω2

∫
Ω

Im(ε)|E|2 + ωRe

∫
Γ+
R

TEΓ+
R
· ĒΓ+

R
= 0. (5.4)

It follows from Im ε ≥ 0 and Lemma 4.2 that E × eρ = 0 on Γ+
R, i.e., H × eρ = 0 on Γ+

R. Noting
the transparent boundary condition (4.8), we have (∇ × E) × eρ = 0 on Γ+

R. An application of
Holmgrens uniqueness theorem in Abbound and Nédélec [8] yields E = 0 in R3

+ \ Ω. By unique
continuation in [28], we get E = 0 in Ω.

Remark 5.1. From [28], the unique continuation holds for H1(Ω) solution of the Maxwell equa-
tions, which requires the regularity of the permittivity ε and permeability µ. When ε has a positive
imaginary part, i.e., Im ε > 0, the uniqueness result is obvious from (5.4) even for ε, µ ∈ L∞(Ω).

5.2 Hodge decomposition

We present a version of Hodge decomposition and a compactness lemma. The results are crucial
in the proof of our theorem on the existence. Let us begin with a technical lemma.

Lemma 5.1. Given h ∈ L2(Ω) and g ∈ H−1/2(Γ+
R), the boundary value problem

∇ · (ε∇u) = h in Ω, (5.5)

∂ρu =
i

ω
divΓT∇Γu+ g on Γ+

R, (5.6)

has a unique solution in H1
S(Ω) = {w ∈ H1(Ω) : w = 0 on S}.

Proof. We examine the weak form of the boundary value problem. Multiplying the complex con-
jugate of the test function v on both sides of (5.5) and integrating over Ω, we have∫

Ω

∇ · (ε∇u) · v̄ =

∫
Ω

h v̄ for all v ∈ H1
S(Ω).
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Integration by parts gives after using the boundary condition (5.6) that∫
Ω

ε∇u · ∇v̄ − i

ω

∫
Γ+
R

(divΓT∇Γu) v̄ =

∫
Γ+
R

g v̄ −
∫
Ω

h v̄.

It follows from the divergence theorem on the boundary that∫
Ω

ε∇u · ∇v̄ + i

ω

∫
Γ+
R

T∇Γu · ∇Γv̄ =

∫
Γ+
R

g v̄ −
∫
Ω

h v̄.

Denote a sesquilinear form

b(u, v) =

∫
Ω

ε∇u · ∇v̄ + i

ω

∫
Γ+
R

T∇Γu · ∇Γv̄.

The variational problem takes the form: find u ∈ H1
S(Ω), such that

b(u, v) =

∫
Γ+
R

g v̄ −
∫
Ω

h v̄ for all v ∈ H1
S(Ω).

From the Cauchy–Schwarz inequality and Lemma 4.4 we have

|b(u, v)| ≤C1 ∥ ∇u ∥(L2(Ω))3 ∥ ∇v ∥(L2(Ω))3 +C2 ∥ u ∥H1(Ω) ∥ v ∥H1(Ω)

≤ C ∥ u ∥H1(Ω) ∥ v ∥H1(Ω) .

Next is to prove the coercivity. Using Lemma 4.6 gives

Re b(u, u) =

∫
Ω

Re(ε)|∇u|2 − 1

ω
Im

∫
Γ+
R

T∇Γu · ∇Γū ≥
∫
Ω

Re(ε)|∇u|2.

By Poincaré’s inequality, we obtain

|b(u, u)| ≥ Re b(u, u) ≥ C ∥ u ∥2H1(Ω) for allu ∈ H1
S(Ω).

The proof is completed by a direct application of the Lax–Milgram lemma.

Before giving a compact imbedding result, we introduce a Hodge decomposition of HS(curl,Ω)
by using the spaces

H = {u ∈ HS(curl,Ω) : ∇ · (εu) = 0 in Ω, u · eρ =
i

ω
divΓTuΓ+

R
on Γ+

R}

and
H⊥ = {u : u = ∇u, u ∈ H1

S(Ω)}.

Lemma 5.2. The spaces H and H⊥ are closed subspaces of HS(curl, Ω), which is the direct sum
of the spaces H and H⊥, i.e.,

HS(curl, Ω) = H⊕H⊥.

Proof. Take un = ∇un ∈ H⊥, and it follows from un → u in HS(curl,Ω) that

∥ un − u ∥2H(curl,Ω) =∥ un − u ∥2(L2(Ω))3 + ∥ ∇ × un −∇× u ∥2(L2(Ω))3

=∥ ∇un − u ∥2(L2(Ω))3 + ∥ ∇ × u ∥2(L2(Ω))3→ 0 as n→ ∞.
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The closedness of H⊥ follows from ∥ ∇ × u ∥(L2(Ω))3= 0.
Equivalently, the subspace H can be represented as

H = {u ∈ HS(curl,Ω) :

∫
Ω

εu · ∇v̄ − i

ω

∫
Γ+
R

divΓTuΓ+
R
v̄ = 0 for all v ∈ H1

S(Ω)}.

For fixed v ∈ H1
S(Ω), define the linear functional:

f(u) =

∫
Ω

εu · ∇v − i

ω

∫
Γ+
R

divΓTuΓ+
R
v̄

=

∫
Ω

εu · ∇v + i

ω

∫
Γ+
R

TuΓ+
R
· ∇Γv̄.

Applying the Cauchy–Schwarz inequality and Lemma 4.5 yield

|f(u)| ≤ C ∥ v ∥H1(Ω)∥ u ∥H(curl,Ω),

which gives
|f(u)| ≤ C ∥ u ∥H(curl,Ω) .

Let un ∈ H, and un → u in HS(curl,Ω). We have

|f(u)| = |f(u− un) + f(un)| = |f(u− un)| ≤ C ∥ u− un ∥H(curl,Ω)→ 0 as n→ ∞,

which implies u ∈ H, and thus the closedness of the space H.
For any u ∈ HS(curl,Ω), define u ∈ H1

S(Ω) by the solution of

a(∇u,∇v) = a(u,∇v) for all v ∈ H1
S(Ω),

which gives in differential form

∇ · (ε∇u) = ∇ · (εu) in Ω

∂ρu =
i

ω
divΓT∇Γu+ g on Γ+

R,

where

g = u · eρ −
i

ω
divΓT∇ΓuΓ+

R
.

Following Lemma 5.1, there exists a unique solution u in H1
S(Ω).

Denote
v := u−∇u.

Then
a(v,∇v) = 0 for all v ∈ H1

S(Ω).

By noting the sesquilinear form of a, integration by parts yields∫
Ω

∇ · (εv)v̄ −
∫
Γ+
R

(
v · eρ −

i

ω
divΓTvΓ+

R

)
v̄ = 0 for all v ∈ H1

S(Ω),

which gives that v ∈ H. Finally, we show that H∩H⊥ consists of the trivial function only. Indeed,
if u = ∇u ∈ H ∩H⊥, then

∇ · (ε∇u) = 0 in Ω,

∂ρu =
i

ω
divΓT∇Γu on Γ+

R,

which implies that u = ∇u = 0 from Lemma 5.1.
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Lemma 5.3. The space H is compactly embedded into the space (L2(Ω))3.

Proof. Consider a bounded set of function {un}∞n=1 ⊂ H. Each function un ∈ H can be extended
to all of R3

+ ∪ Ω by solving the exterior Maxwell equation

∇× (∇× vn)− ω2vn = 0 in R3
+ \ Ω,

eρ × vn = eρ × un on Γ+
R,

n× vn = 0 on Γg,

together with the Silver–Müller radiation condition at infinity. The function wn defined by

wn =

{
un in Ω,
vn in R3

+ \ Ω,

is in Hloc(curl, R3
+ \ Ω) since the tangential components are continuous across Γ+

R. Furthermore,
since un ∈ H, we have the constraint that

un · eρ =
i

ω
divΓTunΓ+

R
on Γ+

R.

It follows from the continuity of the tangential components that

TunΓ+
R
= TvnΓ+

R
=

i

ω
(∇× vn)× eρ.

Using the identity
divΓ((∇× vn)× eρ) = (∇× (∇× vn)) · eρ

and Maxwell’s equations, we obtain

i

ω
divΓTvnΓ+

R
= vn · eρ,

which yields
un · eρ = vn · eρ on Γ+

R.

Therefore, the normal component of wn is also continuous and this extended function has a well-
defined divergence. The divergence free conditions inside Ω and in the complement of R3

+ \Ω show
that ∇ · (εwn) = 0 in R3

+ ∪ Ω.
Now we choose a cutoff function χ ∈ C∞

0 (R3
+ ∪ Ω) such that χ = 1 in Ω. We can apply the

general compactness result (cf., Theorem 4.7 in Monk [44]) to the sequence {χwn} and extract a
subsequence converging strongly in (L2(Ω))3, which completes the proof.

The compact embedding results are similar in spirit to the one used for solving the grating
problem by Ammari and Bao [2] and the cavity problem by Ammari, Bao, and Wood [7]. We refer
to Weber [51] for a compact embedding result on bounded domain. The next result verifies that we
have indeed removed the null-space of the curl from H and is referred to as Friedriches inequality,
showing that the curl-curl sesquilinear form is coercive on H.

Lemma 5.4. There exists a positive constant C such that

∥ u ∥(L2(Ω))3≤ C ∥ ∇ × u ∥(L2(Ω))3

for all u ∈ H.
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Proof. Suppose that u ∈ H and ∇× u = 0. Since u is curl free, there is a function u ∈ H1
S(Ω)

such that u = ∇u. Hence u ∈ H⊥. It follows from Lemma 5.2 that u = 0.
Assume that the estimate is false. For any n, there exists un ∈ H with ∥ un ∥H(curl,Ω)= 1 such

that

∥ ∇ × un ∥(L2(Ω))3<
1

n
∥ un ∥(L2(Ω))3 .

We have ∇× un → 0 as n→ ∞. Since un ⇀ u ∈ H, we have∫
Ω

∇× un · ∇ × v̄ +

∫
Ω

un · v̄ →
∫
Ω

∇× u · ∇ × v̄ +

∫
Ω

u · v̄ for all v ∈ H. (5.7)

Using Lemma 5.3, there is a subsequence unj
such that unj

→ u in (L2(Ω))3 as nj → ∞. It follows
from (5.7) by noting ∇× unj

→ 0 in (L2(Ω))3 as nj → ∞ that∫
Ω

∇× u · ∇ × v̄ = 0 for all v ∈ H,

which implies ∇× u = 0. Hence u = 0, which is a contradiction. �

5.3 Existence

We investigate the well-posedness of the variational problem by examining the sesquilinear form.
It is clear that the sesquilinear form a is not coercive in HS(curl, Ω). We will use the argument of
Fredholm alternative since the Lax-Milgram lemma does not apply.

Theorem 5.2. The variational problem (5.2) has a unique weak solution in HS(curl, Ω) given by
E = u+∇u, where u ∈ H, u ∈ H1

S(Ω).

Proof. Using the Hodge decomposition, we take E = u +∇u and F = v +∇v for any v ∈ H, v ∈
H1

S(Ω). Observe that for u ∈ H and v ∈ H1
S(Ω), we have

a(u,∇v) = −ω2

∫
Ω

εu · ∇v̄ − iω

∫
Γ+
R

TuΓ · ∇Γv̄

= ω2

∫
Ω

v̄∇ · (εu)− ω2

∫
Γ+
R

v̄ (u · eρ) + iω

∫
Γ+
R

v̄ divΓTuΓ+
R

= ω2

∫
Ω

v̄∇ · (εu)− ω2

∫
Γ+
R

v̄

(
u · eρ −

i

ω
divΓTuΓ+

R

)
= 0.

The variational equation (5.2) can be decomposed into the form

a(u,v) + a(∇u,v) + a(∇u,∇v) = ⟨f ,v⟩Γ+
R
+ ⟨f ,∇v⟩Γ+

R
for all v ∈ H, v ∈ H1

S(Ω). (5.8)

First, we determine u ∈ H1
S(Ω) by the solution of

a(∇u,∇v) = ⟨f ,∇v⟩Γ+
R

for all v ∈ H1
S(Ω),

which gives explicitly

−ω2

∫
Ω

ε∇u · ∇v̄ − iω

∫
Γ+
R

T∇Γu · ∇Γv̄ =

∫
Γ

f · ∇Γ+
R
v̄ for all v ∈ H1

S(Ω).

26



Integration by parts yields

ω2

∫
Ω

v̄∇ · (ε∇u)− ω2

∫
Γ+
R

v̄ (∇Γu · eρ) + iω

∫
Γ+
R

v̄ divΓT∇Γu

= −
∫
Γ+
R

v̄ divΓf for all v ∈ H1
S(Ω),

which is equivalent to the boundary value problem: find u ∈ HS(Ω) such that

∇ · (ε∇u) = 0 in Ω,

∂ρu =
i

ω
divΓT∇Γu+

1

ω2
divΓf on Γ+

R.

By Lemma 5.1, it has a unique solution in H1
S(Ω).

The variational problem (5.8) can be formulated: find u ∈ H such that

a(u,v) = ⟨f ,v⟩Γ+
R
− a(∇u,v) for all v ∈ H. (5.9)

The continuity of the sesquilinear form a follows from the Cauchy–Schwarz inequality, Lemma 4.1,
and Lemma 3.3:

|a(u,v)| ≤ C1 ∥ u ∥H(curl,Ω)∥ v ∥H(curl,Ω) +C2 ∥ TuΓ+
R
∥TH−1/2(div,Γ+

R)∥ vΓ+
R
∥
TH

−1/2
0 (curl,Γ+

R)

≤ C1 ∥ u ∥H(curl,Ω)∥ v ∥H(curl,Ω) +C2 ∥ uΓ+
R
∥
TH

−1/2
0 (curl,Γ+

R)
∥ vΓ+

R
∥
TH

−1/2
0 (curl,Γ+

R)

≤ C ∥ u ∥H(curl,Ω)∥ v ∥H(curl,Ω) .

Taking the real part of the sesquilinear form a yields

Re a(u,u) =

∫
Ω

µ−1|∇ × u|2 − ω2

∫
Ω

Re(ε)|u|2 + ωIm⟨TuΓ+
R
,uΓ+

R
⟩Γ+

R
.

It follows from Lemma 3.4 for sufficiently small η and Lemma 4.3 that

Re a(u,u) ≥ C1 ∥ u ∥2H(curl,Ω) −C2 ∥ u ∥2(L2(Ω))3 −C3 ∥ uΓ+
R
∥2
TH

−1/2
0 (Γ+

R)

≥ C1 ∥ u ∥2H(curl,Ω) −C2 ∥ u ∥2(L2(Ω))3 .

Noting the compact imbedding of H into (L2(Ω))3 from Lemma 5.3, the proof is complete by a
direct application of the Fredholm alternative.

The existence of the solution follows from the Fredholm alternative and uniqueness result The-
orem 5.1, which completes the prove of the well-posedness of the variational problem (5.2).

Since the variational problem (5.2) attains a unique weak solution inH(curl,Ω), then the general
theory in Babuška and Aziz [9] implies that there exists a constant γ2 such that the following inf-sup
condition holds:

sup
0̸=v∈H(curl,Ω)

|a(u,v)|
∥ v ∥H(curl,Ω)

≥ γ2 ∥ u ∥H(curl,Ω) for allu ∈ HS(curl,Ω). (5.10)
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Figure 2: The PML problem geometry

6 The PML problem

In this section, we introduce the variational formulation for the cavity scattering using the PML
technique. The goal is to prove the existence and uniqueness of the solution to the PML problem,
and derive an error estimate between the solution to the PML problem and the solution to the
original scattering problem.

6.1 PML formulation

Now we turn to the introduction of absorbing PML layer. The domain Ω is surrounded with a
PML layer in R3

+ \ Ω. Figure 2 shows the geometry of the PML problem. The specially designed
model medium in the PML layer should basically be chosen so that either the wave never reaches
its external boundary or the amplitude of the reflected wave is so small that it does not essentially
contaminate the solution in Ω. Following the general idea in designing PML absorbing layer in
Teixeira and Chew [46], we introduce the PML by a change of variables

ρ→ ρ̂+ i

∫ ρ̂

0

s(τ)dτ, (6.1)

where s(τ) is a continuous function satisfying s(τ) ≥ 0 and s(τ) = 0 for 0 ≤ τ ≤ R. In the
Cartesian coordinates, the change of variables is equivalent to

x → x̂ = (ρ̂ sin θ cosφ, ρ̂ sin θ sinφ, ρ̂ cos θ).

It is clear that s(τ) = 0, ρ = ρ̂, and x̂ = x for 0 ≤ ρ̂ ≤ R.
Let Q = (eρ, eθ, eφ) be a 3× 3 matrix composed of eρ, eθ, and eφ. The Maxwell equations for

the PML medium in the Cartesian coordinates can be written as

∇x̂ × EPML = iωµ̂HPML, ∇x̂ ×HPML = −iωε̂EPML, (6.2)

where

ε̂ = Q̂ε, µ̂ = Q̂µ, Q̂ = Q diag
[
(ρ/ρ̂)2/(1 + is(ρ̂)), (1 + is(ρ̂)), (1 + is(ρ̂))

]
Q⊤. (6.3)

In practical computation, the PML medium is truncated by a perfect conductor boundary
condition on Γ+

R̂
= {ρ̂ = R̂} for some R̂ > R. Denote the region bounded by Γ+

R̂
and the cavity
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wall S as Ω̂. The scattering problem with a truncated PML takes the form: Find (ÊPML, ĤPML)
such that

∇x̂ × ÊPML = iωµ̂ĤPML, ∇x̂ × ĤPML = −iε̂ÊPML, in Ω̂ (6.4)

with boundary conditions

eρ̂ × ÊPML = eρ̂ × Eb on Γ+

R̂
,

n× ÊPML = 0 on S.

The goal of this section is to estimate the error between (ÊPML, ĤPML) and (E,H).

6.2 Transparent boundary condition for the PML problem

Note that the expressions (4.5) and (4.6) form a class of solutions for the Maxwell equations, and
if we replace the first kind of spherical Hankel functions in (4.5) and (4.6) with the second kind of
spherical Hankel functions, then we get another class of solutions for the Maxwell equations. Let

R̃ = R̂ + i

∫ R̂

0

s(τ)dτ.

By choosing properly a linear combination of the two classes of solutions, we get the following
solution for the electric field

Es,PML =
odd∑

|m|≤n

αm
n

iωρ

(
h
(1)
n (ωρ)(1 + z

(1)
n (ωρ))

h
(1)
n (ωR̃)(1 + z

(1)
n (ωR̃))

− h
(2)
n (ωρ)(1 + z

(2)
n (ωρ))

h
(2)
n (ωR̃)(1 + z

(2)
n (ωR̃))

)
∇ΓX

m
n

+
odd∑

|m|≤n

αm
n

iωρ

(
n(n+ 1)h

(1)
n (ωρ)

h
(1)
n (ωR̃)(1 + z

(1)
n (ωR̃))

− n(n+ 1)h
(2)
n (ωρ)

h
(2)
n (ωR̃)(1 + z

(2)
n (ωR̃))

)
Xm

n eρ

+
even∑
|m|≤n

βm
n

(
h
(1)
n (ωρ)

h
(1)
n (ωR̃)

− h
(2)
n (ωρ)

h
(2)
n (ωR̃)

)
∇ΓX

m
n × eρ

and the magnetic field

Hs,PML =
odd∑

|m|≤n

−αm
n

(
h
(1)
n (ωρ)

h
(1)
n (ωR̃)(1 + z

(1)
n (ωR̃))

− h
(2)
n (ωρ)

h
(2)
n (ωR̃)(1 + z

(2)
n (ωR̃))

)
∇ΓX

m
n × eρ

+
even∑
|m|≤n

βm
n

iωρ

(
h
(1)
n (ωρ)(1 + z

(1)
n (ωρ))

h
(1)
n (ωR̃)

− h
(2)
n (ωρ)(1 + z

(2)
n (ωρ))

h
(2)
n (ωR̃)

)
∇ΓX

m
n

+
even∑
|m|≤n

βm
n

iωρ

(
n(n+ 1)h

(1)
n (ωρ)

h
(1)
n (ωR̃)

− n(n+ 1)h
(2)
n (ωρ)

h
(2)
n (ωR̃)

)
Xm

n eρ,

where h
(2)
n (t) is the spherical Hankel function of the second kind of order n and

z(2)n (t) =
t (h

(2)
n )′(t)

h
(2)
n (t)

.

Furthermore, it can be verified that

eρ̂ × Es,PML = 0 on Γ+

R̂
.
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Simple calculation yields the tangential component of the electric field is

Es,PML

Γ+
R

=
odd∑

|m|≤n

αm
n

iωR

(
h
(1)
n (ωR)(1 + z

(1)
n (ωR))

h
(1)
n (ωR̃)(1 + z

(1)
n (ωR̃))

− h
(2)
n (ωR)(1 + z

(2)
n (ωR))

h
(2)
n (ωR̃)(1 + z

(2)
n (ωR̃))

)
∇ΓX

m
n

+
even∑
|m|≤n

βm
n

(
h
(1)
n (ωρ)

h
(1)
n (ωR̃)

− h
(2)
n (ωρ)

h
(2)
n (ωR̃)

)
∇ΓX

m
n × eρ

and the tangential trace of the magnetic field is

Hs,PML × eρ =
odd∑

|m|≤n

αm
n

(
h
(1)
n (ωR)

h
(1)
n (ωR̃)(1 + z

(1)
n (ωR̃))

− h
(2)
n (ωR)

h
(2)
n (ωR̃)(1 + z

(2)
n (ωR̃))

)
∇ΓX

m
n

+
even∑
|m|≤n

βm
n

iωR

(
h
(1)
n (ωR)(1 + z

(1)
n (ωR))

h
(1)
n (ωR̃)

− h
(2)
n (ωR)(1 + z

(2)
n (ωR))

h
(2)
n (ωR̃)

)
∇ΓX

m
n × eρ.

Thus we obtain an explicit representation for the PML Calderon operator TPML: for any tangential
component of the electric field

u =
odd∑

|m|≤n

αm
n Xm

n +
even∑
|m|≤n

βm
n Ym

n ,

the tangential trace of the magnetic field is

TPMLu =
odd∑

|m|≤n

iωRαm
n

(
r1n
t1n

)
Xm

n +
even∑
|m|≤n

βm
n

iωR

(
r2n
t2n

)
Ym

n , (6.5)

where

r1n =h(1)n (ωR)h(2)n (ωR̃)(1 + z(2)n (ωR̃))− h(2)n (ωR)h(1)n (ωR̃)(1 + z(1)n (ωR̃)),

t1n =h(1)n (ωR)(1 + z(1)n (ωR))h(2)n (ωR̃)(1 + z(2)n (ωR̃))

− h(1)n (ωR)(1 + z(1)n (ωR))h(2)n (ωR̃)(1 + z(2)n (ωR̃)),

r2n =h(1)n (ωR)h(2)n (ωR̃)(1 + z(1)n (ωR̃))− h(1)n (ωR̃)h(2)n (ωR)(1 + z(2)n (ωR)),

t2n =h(1)n (ωR)h(2)n (ωR̃)− h(1)n (ωR̃)h(2)n (ωR).

Using the Calderon operator for the PML problem, we may propose the following transparent
boundary condition:

TPML(ÊPML
Γ+
R

− Eb
Γ+
R
) = (ĤPML −Hb)× eρ on Γ+

R, (6.6)

which maps the tangential components of the scattered electric fields to the tangential trace of the
scattered magnetic field.

6.3 Convergence of the PML solution

We shall prove the existence and uniqueness of the solution of the PML problem and derive an
error estimate between ÊPML and E, the solution of the original cavity scattering problem in Ω.
To achieve this goal, we first find an equivalent formulation in the domain Ω.
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We obtain the equation for the electric field after eliminating the magnetic field

∇× (µ−1∇× ÊPML)− ω2εÊPML = 0 in Ω. (6.7)

Multiplying the complex conjugate of a test function F in HS(curl, Ω), integrating over Ω, and
using integration by parts, we arrive at the variational form for the PML problem: Find ÊPML ∈
H0(curl, Ω) such that

aPML(ÊPML,F) = ⟨fPML,F⟩Γ+
R

for all F ∈ H0(curl, Ω), (6.8)

where the sesquilinear form

aPML(u,v) =

∫
Ω

µ−1∇× u · ∇ × v̄ − ω2

∫
Ω

εu · v̄ − iω

∫
Γ+
R

TPMLuΓ+
R
· v̄Γ+

R
, (6.9)

the linear functional

⟨fPML,v⟩Γ+
R
= iω

∫
Γ+
R

(Hb × eρ − TPMLEb
Γ+
R
) · v̄Γ+

R
, (6.10)

and
fPML = iω(Hb × eρ − TPMLEb

Γ+
R
).

By using the representation of T and TPML, we have

(TPML − T )u =
odd∑

|m|≤n

ξnα
m
n Xm

n +
even∑
|m|≤n

ζnβ
m
n Ym

n (6.11)

where

ξn =
iωR(z

(2)
n (ωR)− z

(1)
n (ωR))(1 + z

(1)
n (ωR))−2h

(2)
n (ωR)(h

(1)
n (ωR))−1

h
(2)
n (ωR̃)(1 + z

(2)
n (ωR̃))

h
(1)
n (ωR̃)(1 + z

(1)
n (ωR̃))

− h
(2)
n (ωR)(1 + z

(2)
n (ωR))

h
(1)
n (ωR)(1 + z

(1)
n (ωR))

(6.12)

and

ζn =
(iωR)−1(z

(1)
n (ωR)− z

(2)
n (ωR))h

(2)
n (ωR)(h

(1)
n (ωR))−1

h
(2)
n (ωR̃)(h

(1)
n (ωR̃))−1 − h

(2)
n (ωR)(h

(1)
n (ωR))−1

. (6.13)

Therefore it is essential to derive upper bounds for ξn and ζn in order to estimate the error between
T and TPML.

Let

η =

∫ R̂

R

s(τ)dτ and a = min

{
1

2
,
ωR

5

}
. (6.14)

Suppose

η ≥ max

{
7R

5
, R̂,

17

ω

}
. (6.15)

The following lemma plays a key role in the subsequent analysis and the proof can be found in Bao
and Wu [13] for solving an obstacle scattering problem.

Lemma 6.1. Under the assumption (6.15), the following estimates holds for all n ∈ N:

ω|ξn| ≤
M√

1 + n(n+ 1)
and ω|ζn| ≤M

√
1 + n(n+ 1), (6.16)

where

M =
4ωa−1max{(ωR)2(3ωR + 3/2)2, 1}
eωη[2−(aη/R)−2+(aη/R)−4/19] − 10

.
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Lemma 6.2. For any u and v in HS(curl,Ω), it holds∣∣∣ω ∫
Γ+
R

(
TPML − T

)
uΓ+

R
· vΓ+

R

∣∣∣
≤M ∥ uΓ+

R
∥
TH

−1/2
0 (curl,Γ+

R)
∥ vΓ+

R
∥
TH

−1/2
0 (curl,Γ+

R)
.

Proof. For any u,v ∈ HS(curl, Ω), it follows from Lemma 3.3 that uΓ+
R
,vΓ+

R
∈ TH −1/2(curl, Γ+

R),
which have the expansion

uΓ+
R
=

odd∑
|m|≤n

u1nX
m
n +

even∑
|m|≤n

u2nY
m
n and vΓ+

R
=

odd∑
|m|≤n

v1nX
m
n +

even∑
|m|≤n

v2nY
m
n .

It follows from the definition of T and TPML, the orthogonality of the basis functions, and the
estimates for ξn and ζn in (6.16) that∣∣∣ω ∫

Γ+
R

(
TPML − T

)
uΓ+

R
· vΓ+

R

∣∣∣ = ω
∣∣∣ odd∑
|m|≤n

ξnu
m
1nv̄

m
1n +

even∑
|m|≤n

ζnu
m
2nv̄

m
2n

∣∣∣
≤M

 odd∑
|m|≤n

√
1 + n(n+ 1)|u1n| |v1n|+

even∑
|m|≤n

1√
1 + n(n+ 1)

|u2n| |v2n|

 .
The proof is completed by the Cauchy–Schwarz inequality and the definition of the norm for
TH

−1/2
0 (curl, Γ+

R).

Theorem 6.1. Let γ1 and γ2 be the costants in Lemma 3.3 and inf-sup condition (5.10), respec-
tively. Suppose Mγ21 < γ2. Then the PML problem (6.8) has a unique solution ÊPML. Moreover,
it has the error estimate

∥ ÊPML − E ∥Ω:= sup
0̸=F∈HS(curl,Ω)

|a(ÊPML − E,F)|
∥ F ∥H(curl,Ω)

≤ γ1M ∥ ÊPML
Γ+
R

− Eb
Γ+
R
∥TH −1/2(curl,Γ+

R) . (6.17)

Proof. To prove the existence of a unique solution of the PML problem, it suffices to show the
coercivity for the sesquilinear form aPML : HS(curl,Ω) × HS(curl,Ω) → C defined in (6.9). Due
to Lemma 3.3 and Lemma 6.2 and the assumption Mγ21 < γ2, it is clear that for any u and v in
HS(curl,Ω)

|aPML(u,v)| ≥ |a(u,v)| −
∣∣∣ω ∫

Γ+
R

(
TPML − T

)
uΓ+

R
· vΓ+

R

∣∣∣
≥ |a(u,v)| −Mγ21 ∥ u ∥H(curl,Ω)∥ v ∥H(curl,Ω)

≥ (γ2 −Mγ21) ∥ u ∥H(curl,Ω)∥ v ∥H(curl,Ω) .

It remains to prove the estimate (6.17). By (5.2)–(5.3) and (6.8)–(6.9), we conclude that

a(ÊPML − E,F) = −iω

∫
Γ+
R

(TPML − T )Eb
Γ+
R
· F̄Γ+

R
+ aPML(EPML,F)− a(EPML,F)

= iω

∫
Γ1

(TPML − T )(ÊPML
Γ+
R

− Eb
Γ+
R
) · F̄Γ+

R

for any F ∈ HS(curl,Ω). The proof is complete after using Lemmas 6.2 and 3.3.
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The constant η is known as the PML parameter. Here, we examine the structure of the constant
M which controls the modeling error between the solution of the PML problem and that of the
original scattering problem. Obviously, the constant M approaches zero exponentially as the PML
parameter η goes to infinity. From the definition (6.14), η may be calculated by the medium
property s(τ), which is usually taken as a power function

s(τ) = δ

(
θ −R

R̂−R

)m

for τ ≥ R, m ≥ 1.

Thus we have
η = δ(R̂−R)/(m+ 1).

It is evident that the PML approximation error is reduced by either enlarging the medium parameter
δ or increasing the layer thickness R̂−R.

7 Concluding remarks

In this paper we have proposed a variational formulation for the overfilled electromagnetic scattering
problem for Maxwell’s equations and studied the use of the PML to truncate the scattering problem
into a bounded domain. The scattering problem is reduced to a boundary value problem by using
a transparent boundary condition on a hemisphere enclosing the inhomogeneous cavity. We have
shown the uniqueness and existence of the weak solution for the variational problem. Under some
proper assumptions on the PML medium parameter, it is shown that the truncated PML problem
attains a unique solution in HS(curl,Ω). An explicit error estimate between the solution of the
original scattering problem and that of the truncated PML problem in the computational domain
is obtained. The error estimate implies particularly that the PML solution converges exponentially
to the original scattering solution by increasing either the PML medium parameter or the PML
layer thickness. Computationally, the variational approach reported here leads naturally to a class
of finite element methods. Analysis and computation of an adaptive finite edge element method
with a posterior error estimate for the scattering problem will be studied and reported elsewhere.
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