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iteration at each step. Numerical results are presented to show that the method can effectively reconstruct the
shape of the grating profile. © 2013 Optical Society of America
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1. INTRODUCTION
Diffractive optics is an important technology in science and
engineering. One of its important applications is the design
and fabrication of optic elements with periodic structures,
often called diffraction gratings. The diffraction of time-
harmonic electromagnetic waves by some periodic material
can be reduced to a model problem of the two-dimensional
Helmholtz equation. We refer to the monographs [1,2] for
an introduction to the theory of electromagnetic diffraction
by periodic structures. Numerical methods for forward
problems can be found in [3–6].

A great deal of motivating applications are associated with
the determination of the nature of a periodic structure from a
measured diffracted field. For example, in the study of optimal
design problems in diffractive optics, it is intended to design a
grating structure that gives rise to some specified far-field
patterns [7–10]. Uniqueness results and stability estimates
for the inverse diffraction problem were obtained in [11–18].
Due to the nonlinearity and ill-posedness, it is challenging to
develop efficient and stable numerical methods to solve the
inverse diffraction problems. For an overview on inverse scat-
tering problems in general (nonperiodic) structures, we refer
to the book by Colton and Kress [19] and the references cited
therein.

In this work we restrict our attention to the two-
dimensional transverse electric (TE) case for perfectly con-
ducting gratings. A number of numerical methods have been
developed to solve these inverse problems. Within the range
of validity of Rayleigh’s hypothesis, Garcia and Nieto-
Vesperinas [20] considered a near-field optics method. Ito
and Reitich [21] proposed a high-order perturbation approach
based on the methods of variation of boundaries. In [22],
Arens and Kirsch applied the factorization method to scatter-
ing by a periodic surface. Iterative regularization methods
were developed by Hettlich in [23] based on the shape

derivatives with respect to the variations of the boundary.
By reformulating the original inverse scattering as an optimi-
zation problem, Bruckner and Elschner [24] gave a two-step
algorithm to reconstruct the grating profile. Elschner et al.

[25] proposed an algorithm for the recovery of a two-
dimensional periodic structure based on finite elements and
optimization techniques. Recently, Bao et al. [26] presented
an efficient continuation method to capture both the macro
and micro structures of the grating profiles with multiple
frequency data.

In applications, it is much harder to obtain data with accu-
rate phase information than to just measure the intensity of
the data. Therefore, it is often desirable to reconstruct the
grating profile from the phaseless diffracted field at a constant
height above the grating structure. However, little has been
studied on such a problem both mathematically and numeri-
cally. Recently, Bao et al. [27] presented a continuation meth-
od to deal with the phaseless measurements for an inverse
source problem. In this paper, we consider the problem of re-
covering a grating profile from the magnitude information of
the diffracted field measured at a constant height above the
grating structure. Following the idea in [27], we propose an
efficient continuation method to solve the nonlinear inverse
diffraction grating problem in a perfectly conducting struc-
ture. In order to recover both the macro information and
the micro information of the grating profiles, we use the multi-
ple frequency data in the algorithm, and the iterative steps are
obtained by a continuation method with respect to the wave-
number. With the starting point given by the output from the
previous step at a lower wavenumber, a new approximation to
the grating surface filtered at a higher frequency is updated by
a Landweber iteration. Our algorithm is based on the shape
derivative with respect to variations of the boundary. Numer-
ical results show that the continuation method cannot
determine the location of the grating structure, but it can

Bao et al. Vol. 30, No. 3 / March 2013 / J. Opt. Soc. Am. A 293

1084-7529/13/030293-07$15.00/0 © 2013 Optical Society of America



effectively reconstruct the grating shape from the phase-
less data.

The rest of this paper is outlined as follows. In Section 2, we
present the mathematical formulations of the forward and
inverse diffraction problems. Section 3 is devoted to the
continuation method for solving the inverse diffraction
problem, along with details of the implementation. Numerical
examples are presented in Section 4 to illustrate the
performance of the method. The paper is concluded with
some remarks in Section 5.

2. FORWARD AND INVERSE PROBLEMS
In this section, we outline the mathematical modeling of the
diffraction grating. Throughout, we assume that the
grating profile is a periodic function of the variable x with
period 2π. Thus the problem can be restricted into a
single period in x. Let the profile of the diffraction grating
in one period be described by the curve

Γf � f�x; y� ∈ R2∶y � f �x�; 0 < x < 2πg;

where f is a periodic function of period 2π. Suppose that the
domain

Ωf � f�x; y� ∈ R2∶y > f �x�; 0 < x < 2πg

is filled with a homogeneous medium with a positive constant
wavenumber κ. Let the plane wave

uinc � ei�αx−βy�

be incident on the grating surface Γf from the top, where
α � κ sin θ, β � κ cos θ, and θ ∈ �−π∕2; π∕2� is the angle of
incidence. For n ∈ Z, let αn � α� n, and denote

βn �
� ���������������

κ2 − α2n
p

; for κ > jαnj;
i

���������������
α2n − κ2

p
; for κ < jαnj:

We further exclude resonances by assuming that κ ≠ jαnj
for all n ∈ Z.

The forward diffracting problem in the TE mode by the
perfectly conducting grating is to find the diffracted field u
such that

Δu� κ2u � 0; in Ωf ; (1)

u� uinc � 0; on Γf : (2)

Motivated by a uniqueness consideration, we seek the
quasi-periodic solution; i.e., u�x; y�e−iαx is a periodic function
in xwith period 2π. Moreover, the diffracted field u is required
to satisfy an outgoing wave condition, which leads to the
following Rayleigh expansion:

u �
X
n∈Z

Aneiαnx�iβny; y > max
x∈�0;2π�

f �x�; (3)

with the Rayleigh coefficients An ∈ C. Since βn is real for
at most a finite number of indices, we see that only a finite
number of plane waves in the expansion (3) propagate into

the far field, whereas the remaining terms represent the
evanescent waves that exponentially decay with respect to
y and jnj.

An inverse diffraction problem for the perfectly conducting
grating can be formulated as follows: given the incident wave
uinc, the problem is to determine the profile y � f �x� from the
measurements of the diffracted field at a straight line segment:

Γ0 � f�x; y0� ∈ R2∶x ∈ �0; 2π�; y0 > max
x∈�0;2π�

f �x�g;

i.e., the near-field data u�x; y0�.
For a fixed incident field uinc, we define a forward scatter-

ing operator K∶C2��0; 2π�� → L2��0; 2π�� by

K�f � � u�x; y0�: (4)

It is shown by Kirsch [28] that the operator K is Fréchet
differentiable and its Fréchet derivative can be characterized
by a quasi-periodic solution u0 of the Helmholtz equation.

Theorem 2.1. The operator K is Fréchet differentiable and
its domain derivative

K0
f �h� � u0�x; y0�

at f in direction h is given by the quasi-periodic solution of the
boundary value problem

Δu0 � κ2u0 � 0 in Ωf ;

u0 � −
h�������������������

1� �f 0�2
p ∂nu on Γf ;

where n is the unit normal vector at Γf directed into Ωf .
Our goal in this paper is to study an inverse problem of the

profile reconstruction from the phaseless data: given the inci-
dent wave uinc, the problem is to determine the profile y �
f �x� from the measurements of the phaseless diffracted field
at Γ0, i.e., the near-field data ju�x; y0�j2.

Define an operator F that maps the grating profile function
f �x� to the near-field phaseless data:

F �f � � ju�x; y0�j2 � K�f �K̄�f �; (5)

where the operator K is defined in Eq. (4) and the bar denotes
the complex conjugate. The inverse problem can be formu-
lated as follows: given the incident wave uinc, the problem
is to determine the periodic function y � f �x� such that

F �f � � ju�x; y0�j2: (6)

Next we investigate some properties of the forward scatter-
ing operator F .

Theorem 2.2. Assume h, g ∈ C2��0; 2π��. The operator F �f �
is Fréchet differentiable and its domain derivative can be re-
presented by

F 0
f �h� � 2Re�K̄�f �K0

f �h�� � 2Re�ū�x; y0�u0�x; y0��

at f in direction h.
Proof. It follows from the well-known regularity results (cf.

[29]) that the solutions uf�h � K�f � h�, uf � K�f �, and u0 �
K0

f �h� are all in C1��0; 2π�� since f and h are both in C2��0; 2π��.
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By Theorem 2.1 (cf. [28]), we have

K�f � h� � K�f � �K0
f �h� �Rf �h�; (7)

where Rf �h� ∈ C1��0; 2π�� with Rf �h� � o�‖h‖1;∞�.
Using Eqs. (5) and (7), we have from simple calculations

that

F �f � h� � K�f � h�K̄�f � h�
� �K�f � �K0

f �h� �Rf �h���K̄�f � � K̄0
f �h� � R̄f �h��

� F �f � � 2Re�K̄�f �K0
f �h�� � jK0

f �h�j2 � jRf �h�j2

� 2Re�Rf �h��K̄�f � � K̄0
f �h���:

Due to the Fréchet differentiability of K�f �, the domain
derivative K0

f is a bounded linear operator and it holds
K0

f �h� � O�‖h‖1;∞�.
Combining the above estimates, we deduce that

K�f � h� � K�f � � 2Re�K̄�f �K0
f �h�� � o�‖h‖1;∞�;

which proves the theorem.
To compute the updates in the Landweber iterations,

we need to consider the adjoint operator of F 0
f �h�. Recall

βn ≠ 0; the free-space quasi-periodic Green’s function is

G�x; y; s; t� � i
2π

X
n∈Z

1
βn

exp�iαn�x − s� � iβnjy − tj�:

For any real function g ∈ L2��0; 2π��, we define an auxiliary
function

wi
g�s; t� �

Z
2π

0
G�x; y0; s; t�ū�x; y0�g�x�dx; t ≠ y0;

where u�x; y0� is the diffracted field on Γ0.
Theorem 2.3. Given a real function g ∈ L2��0; 2π��, the

adjoint operator of F 0
f is given by

�F 0
f ��g � −2Re�∂nu�x; f �x���∂nwi

g�x; f �x�� � ∂nwg�x; f �x����;

where u is the solution of the diffracted problem and wg is
the quasi-periodic solution of the following boundary value
problem:

Δwg � κ2wg � 0 in Ωf ;

wg �wi
g � 0 on Γf :

Proof. It follows from the integral representation theorem
for the Helmholtz equation and the quasi-periodic Rayleigh
expansion of u0 that we have

u0�x; y0� �
Z
Γf

�u0�s; t�∂nG�x; y0; s; t� − ∂nu0�s; t�G�x; y0; s; t��dS:

By Theorem 2.2, we get

hF 0
f �h�;gi�

Z
2π

0
2Re�ū�x;y0�u0�x;y0��g�x�dx

�2Re
Z

2π

0
ū�x;y0�g�x�

Z
Γf

�u0�s;t�∂nG�x;y0;s;t�

−∂nu0�s;t�G�x;y0;s;t��dSdx

�2Re
Z
Γf

u0�s;t�
Z

2π

0
ū�x;y0�∂nG�x;y0;s;t�g�x�dxdS

−2Re
Z
Γf

∂nu0�s;t�
Z

2π

0
ū�x;y0�G�x;y0;s;t�g�x�dxdS

�2Re
Z
Γf

u0�s;t�∂nwi
g�s;t�dS

−2Re
Z
Γf

∂nu0�s;t�wi
g�s;t�dS

�2Re
Z
Γf

u0�s;t�∂nwi
g�s;t�dS

�2Re
Z
Γf

∂nu0�s;t�wg�s;t�dS;

where the boundary condition for wg is used in the last equal-
ity. Because u0 and wg are quasi-periodic solutions of the
Helmholtz equation, we may apply the Green’s theorem and
the Rayleigh expansions of u0 and wg to obtain

Z
Γf

�u0∂nwg − ∂nu0wg�dS � 0:

It follows from the boundary condition of u0 that

hh; �F 0
f ��gi � hF 0

f h; gi

� 2Re
Z
Γf

u0�s; t��∂nwi
g�s; t� � ∂nwg�s; t��dS

� −2
Z

2π

0
h�x�Re�∂nu�x; f �x��

× �∂nwi
g�x; f �x�� � ∂nwg�x; f �x����dx;

which completes the proof.

3. RECONSTRUCTION ALGORITHM
In this section, we present a continuation algorithm to recon-
struct the grating profile. Implicitly, let Kκ and F κ denote the
operators K and F at the wavenumber κ, respectively. By
Theorem 2.2, the Fréchet derivative of F κ�f � is

F 0
κ;f � 2Re K̄κ�f �K0

κ;f ; (8)

where K0
κ;f is the Fréchet derivative of the operator Kκ . Here

the subscript f is introduced to denote that the Fréchet deri-
vatives are linear operators depending on f at the fixed κ.

Next we describe how the continuation method proceeds
along with the wavenumber to reconstruct the grating profile.
Assume that at κ � κm, the reconstructed grating profile
function is f m�x�. At a higher wavenumber κ � κm�1, the for-
ward map F κm�1

�f � can be approximated at the previously
reconstructed grating profile function f m:
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F κm�1
�f � ≈ F κm�1

�f m� � F 0
κm�1;f m

�f − f m�: (9)

Note that F κm�1
�f � is the measured intensity data ju�x; y0�j2

of the diffracted field at the wavenumber κm�1. We denote the
residual by Rm�1 � F κm�1

�f � − F κm�1
�f m�. Let δf � f − f m;

then the formula can be rewritten as the following linearized
equation:

F 0
κm�1;f m

δf � Rm�1: (10)

An application of the Landweber regularization method to
solve the linearized equation yields

δf � τ�F 0
κm�1;f m

��Rm�1;

where �F 0
κm�1;f m

�� is the adjoint operator of F 0
κm�1 ;f m

and τ is a
relaxation parameter. Therefore, the reconstruction at κ �
κm�1 is updated by setting

f m�1 � f m � δf : (11)

The above description is for general function f �x�. Since the
grating profile f �x� is a periodic function of period 2π, we can
choose trigonometric polynomials as a finite-dimensional
basis, i.e.,

f �x� ≈ c0 �
XM
m�1

�c2m−1 cos�mx� � c2m sin�mx��: (12)

Clearly, it is desirable to determine all the Fourier coeffi-
cients c0; c1; c2;…c2M−1; c2M in order to reconstruct an ap-
proximated grating profile. For the convenience of the
description of the algorithm, we decompose the sum in
Eq. (12) into low-frequency and high-frequency parts:

f �x� ≈ c0 �
XN
m�1

�c2m−1 cos�mx� � c2m sin�mx��

�
XM

m�N�1

�c2m−1 cos�mx� � c2m sin�mx��; (13)

where N < M is some nonnegative integer.
Specifically, the reconstruction algorithm from intensity

with multifrequency data is summarized as the following three
steps:

Step 1. Initialization. Choose a nonnegative integer N
according to specific problems. Given an initial value for
the wavenumber κ0, we choose an initial guess c0 � f 0 with
cj � 0, j � 1; 2;…; 2N � 2k0, where k0 is taken to be the lar-
gest integer that is smaller or equal to the wavenumber κ0.
Step 2. Update the reconstructed grating profile function at
wavenumber κ by linearization. Denote Ck � �c0; c1;…;
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Fig. 1. (Color online) Evolution of the reconstructions in Example 1. Left column from top to bottom: reconstructions at κ � 1, reconstructions at
κ � 3. Right column from top to bottom: reconstructions at κ � 2, reconstructions at κ � 4.
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c2�N�k�−1; c2�N�k��⊤, where k is taken to be the largest integer
that is smaller than or equal to the wavenumber κ. Note that
some entries in Ck have been obtained at the previous wave-
number. Set initial vectorC�0�

k � Ck. For n � 0; 1;… , solve the
forward problem

Δun � κ2un � 0 in Ωf �n�k
;

un � ei�αx−βf
�n�
k �x�� � 0 on Γf �n�k

;

by the integral equation method [23]. We get a solution
un�x; y� and its normal derivative ∂nun on Γf �n�k

. Here
f �n�k �x� � ΦkC

�n�
k , where the row vector

Φk � �1; cos x; sin x;…; cos��N � k�x�; sin��N � k�x��:

Thus we have

Kκ�f �n�k � � un�x; y0�;

F κ�f �n�k � � jun�x; y0�j2:

The residual is

R�n� � F κ�f � − F κ�f �n�k �;

where F κ�f � is the measured data on Γ0 at the wavenumber κ.
We consider the Landweber iteration

f �n�1�
k � f �n�k � τκ�F 0

κ;f �n�k

��R�n�; (14)

where τκ is a relaxation parameter. Since f 0k�x� and f 00k�x�
are required in the integral equation method, we solve the
equation

ΦkC
�n�
k � f �n�k

to obtain C�n�
k . A stopping rule for the iteration (14) is set as

follows: the loop stops when

‖C�n�1�
k − C�n�

k ‖ > ‖C�n�
k − C�n−1�

k ‖: (15)

The resulting solution represents the Fourier coefficients of
f �x� corresponding to the frequencies not exceeding N � k.
Step 3. March along the wavenumber. Increase the wave-
number κ to a new value ~κ > κ and seek a new approximation
to the profile function f �x� by the Fourier series

f ~k�x� � ~c0 �
XN�~k

m�1

�~c2m−1 cos�mx� � ~c2m sin�mx��
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Fig. 2. (Color online) Evolution of the reconstructions in Example 2. Left column from top to bottom: reconstructions at κ � 1, reconstructions at
κ � 2. Right column from top to bottom: reconstructions at κ � 3, reconstructions at κ � 4.
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and determine the coefficients ~cj , j � 0; 1;…; 2�N � ~k�, where
~k is again the largest integer smaller than or equal to the wave-
number ~κ. Specifically, we repeat Step 2 with the previous
approximation to f �x� as our starting point:

~cj �
�
cj; for j ≤ 2�N � k�;
0; for j > 2�N � k�;

where the coefficients cj come from Step 2. The resulting so-
lution in this step represents the Fourier coefficients of f �x�
corresponding to the frequencies not exceedingN � ~k. Repeat
Step 3 until a prescribed frequency is reached.

Next, we discuss some practical implementation issues.
The above algorithm requires the numerical solutions of
two forward diffraction grating problems: solve one forward
problem for un and ∂nun with the obtained profile function
f �n�k ; solve another forward problem for wg to obtain the up-
dates. Since un and wg are quasi-periodic solutions of the
same Helmholtz equation, they can be obtained by the integral
equation method [23,30]. In our algorithm, the Landweber
iteration should be stopped after finite steps according to
the stopping criterion described in Step 2. The choice of N
relies on the a priori information about the grating profile.
If f has finitely many Fourier modes, a small N can avoid

unnecessary computation. If f contains infinitely many Four-
ier modes, each iteration can obtain more information with a
larger N at lower wavenumbers.

4. NUMERICAL EXPERIMENTS
In this section, some results of numerical experiments are pre-
sented to illustrate the performance of our method. We con-
sider three gratings, and all of the near-field measurements
ju�x; y0�j2 are simulated by solving the direct problem with
added noise, i.e.,

ju�x; y0�j2 :� ju�x; y0�j2�1� σ rand�; (16)

where “rand” represents normally distributed random num-
bers in �−1; 1� and σ is the noise level. In each example, we
choose three different initial guesses and draw the reconstruc-
tions from them in the same figure. The maximum number of
the Landweber iterations and the noise level σ are taken as 30
and 0.05, respectively.

Example 1. The first grating profile is given by

f �x� � 1.0� 0.2 cos x� 0.2 cos 2x;

which is illuminated by an incident plane wave with incident
direction θ � −π∕3. Intensity data at 100 equidistant points on
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Fig. 3. (Color online) Evolution of the reconstructions in Example 3. Left column from top to bottom: reconstructions at κ � 1, reconstructions at
κ � 2, and reconstructions at κ � 3. Right column from top to bottom: reconstructions at κ � 4, reconstructions at κ � 5, and reconstructions at
κ � 6.
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the line y0 � 1.7 were computed by the integral equation
method and then adding distributed random noise. Since
the profile function only contains a few Fourier modes, we
choose N � 0. Figure 1 shows the reconstructions by the
Landweber iteration method with τκ � 0.05∕κ. Here the initial
guesses are chosen as f 0 � 0.8, 1.0, and 1.2, respectively.

Example 2. The second grating profile is given by

f �x� � 1.7� 0.06ecos�2x� � 0.05ecos�3x�;

which is not in the finite-dimensional subspace of trigono-
metric polynomials where we seek reconstructions. The dif-
fractive field is measured at y0 � 2.2, and the initial guess
is f 0 � 1.8, 1.85, and 1.9, respectively. The incident angle
θ � π∕4, N � 4, and τκ � 0.05∕κ. The numerical results are
shown in Fig. 2.

Example 3. The third grating profile is a binary grating

f �x� �
(
1.5; for x ∈

�
π
2 ;

3π
2

�
;

1.0; otherwise:

The intensity of the diffractive field is measured at the line
y0 � 1.8, and relaxation parameter τκ � 0.02∕κ. The initial
guess is taken as f 0 � 1.2, 1.3, and 1.4, respectively. The
incident angle θ � π∕4. Since the profile function contains in-
finitely many Fourier modes, we choose N � 8 in our experi-
ments. The graphs of this tested profile and the reconstructed
profiles with different wavenumbers are shown in Fig. 3.

From these examples, we observe that the proposed algo-
rithm can effectively recover the shape of the grating profiles,
but cannot accurately locate the position of the grating pro-
files unless a good initial guess of c0 is available. The reason
may be insufficient knowledge of the diffracted field, e.g.,
phase information of the data is missing.

5. CONCLUSION
In this paper, an efficient continuation method is proposed for
reconstructing the diffraction grating profile from the inten-
sity of the diffraction waves measured at a constant height
above the grating structure. The induced nonlinear problem
is linearized by a continuation method and then a Landweber
iteration is applied at each step. At each iteration, two forward
diffraction grating problems need to be solved. Although the
numerical results are sensitive to initial guesses, the algorithm
can effectively determine the shape of the grating profiles.
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