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A novel approach is presented to solving the inverse diffractive grating problem in near-field optical imaging,
which is to reconstruct perfectly conducting grating surfaces with resolution beyond the diffraction limit. The
grating surface is assumed to be a small and smooth deformation of a plane surface. An analytical solution of
the direct grating problems is derived by using the method of transformed field expansion. Based on the
analytic solution, an explicit reconstruction formula is deduced for the inverse grating problem. The method
requires only a single incident field and is realized efficiently by using the fast Fourier transform. Numerical
results show that the method is simple, stable, and effective in reconstructing grating surfaces with super-
resolved resolution. © 2013 Optical Society of America

OCIS codes: (050.1950) Diffraction gratings; (290.3200) Inverse scattering.
http://dx.doi.org/10.1364/JOSAA.30.002473

1. INTRODUCTION
We consider the diffraction when a time-harmonic electro-
magnetic plane wave is incident on some periodic structure,
which is referred to as diffractive grating. Scattering theory in
periodic structures has many applications in micro-optics,
including the design and fabrication of optical elements such
as corrective lenses, antireflective interfaces, beam splitters,
and sensors. Depending on the direction and polarization of
the incident plane wave, the governing model for the diffrac-
tion of time-harmonic electromagnetic waves can be simpli-
fied from the full three-dimensional Maxwell equations to
two fundamental polarizations: the transverse electric (TE)
polarization and the transverse magnetic (TM) polarization.
In both polarizations, the scalar components of electromag-
netic waves satisfy the two-dimensional Helmholtz equation.
We refer to the monograph [1] for a good introduction to the
problems of electromagnetic diffraction.

Recently, the scattering problems in periodic structures
have received considerable attention in the applied math-
ematical community, and have been studied extensively on
both mathematical and numerical aspects. We refer to
Bao et al. [2] and the references therein for mathematical
studies of the existence and uniqueness of the diffractive
grating problems. Numerical methods can be found in
[3–5] for either boundary integral equation approaches or
variational approaches. A recent review can be found in
Bao et al. [6] on mathematical modeling and computational
methods.

The purpose of this paper is to develop an efficient numeri-
cal method for solving the inverse diffractive grating problem.
Specifically, the inverse problem is to reconstruct the grating
surface from a measured data field at a constant height above
the grating structure. The mathematical questions on unique-
ness and stability for the inverse problem have been studied

by many researchers, e.g., Kirsch [7], Bao [8], Ammari [9],
Hettlich and Kirsch [10], Bao and Friedman [11], Bao
and Zhou [12], Bao et al. [13], and Bruckner et al. [14], for
either the two-dimensional Helmholtz equation or the three-
dimensional Maxwell equations. Computationally, a number
of numerical methods have been developed for the
reconstruction of perfectly conducting grating surfaces in
the TE polarization, e.g., García and Nieto-Vesperinas [15],
Ito and Reitich [16], Arens and Kirsch [17], Hettlich [18],
Bruckner and Elschner [19], And Elschner et al. [20].
Recently, Bao et al. [21,22] presented an efficient continuation
method in order to capture fine structures of grating profiles
with multiple frequency data with or without phase informa-
tion. We refer to Dobson [23,24] and Elschner and Schmidt
[25,26] for related optimal design problems in diffractive
optics, which are to design grating structures to obtain
some specified diffraction patterns. Regardless of various
reconstruction methods, the resolution is limited to half the
wavelength, referred to as the Rayleigh criterion or the diffrac-
tion limit. It is a challenging task to achieve a stable
reconstruction with subwavelength resolution due to the non-
linearity and ill-posedness of the problem.

By adopting a technique in near-field imaging [27], we
develop an efficient computational method for solving the in-
verse grating surface problem with a resolution beyond the
diffraction limit. For clarity, we shall concentrate on the
TE polarization since the discussion is analogous for
the TM polarization. The more complicated biperiodic diffrac-
tive grating problem will be considered as future work. The
grating surface is assumed to be a small and smooth deforma-
tion of a plane surface. The method begins with the trans-
formed field expansion to analytically derive the solution
for the direct problem; by neglecting higher-order terms in
power series expansion, the nonlinear inverse problem is
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linearized and an explicit reconstruction formula is deduced.
It requires only a single frequency data field from one incident
plane wave, and is realized by the fast Fourier transform.
Numerical results show that the method is simple, stable,
and effective in reconstructing grating surfaces with subwave-
length resolution. For transformed field expansion or the
related boundary perturbation method, we refer to Nicholls
and Reitich [28,29], Bruno and Reitich [30], Malcolm and Nich-
olls [31], and Li and Shen [32] for solving the direct diffraction
grating problem and the direct unbounded rough surface scat-
tering problem, respectively. A boundary perturbation method
may be found in Malcolm and Nicholls [33] for solving an
inverse scattering problem with a periodic surface. We refer
to Bao and Lin [34] and Bao and Li [35] for related work on
near-field imaging of locally perturbed and infinite rough sur-
faces, respectively.

The outline of this paper is as follows. The mathematical
model problem of the diffractive grating is introduced in
Section 2. Sections 3 and 4 present the transformed field
expansion and Fourier series expansion to deduce an analytic
solution for the direct problem. Section 5 is devoted to the
derivation of an explicit reconstruction formula for the in-
verse problem. Numerical examples are reported in Section 6.
The paper is concluded with some remarks and direction for
future work in Section 7.

2. MODEL PROBLEM
Let us first specify the problem geometry. As seen in Fig. 1, the
problem may be restricted to a single period of Λ in x due to
the periodicity of the grating surface. Let the grating surface in
one period be described by the curve

S � f�x; y� ∈ R2∶y � f �x�; 0 < x < Λg;

where f is a periodic function with period Λ and is assumed to
take the form

f �x� � εg�x�; g ∈ C2�R�:
Here ε is a sufficiently small positive constant. Let the space
above S be filled with a homogeneous medium with a positive
constant wavenumber κ.

Denote by

Ω � f�x; y� ∈ R2∶f �x� < y < h; 0 < x < Λg
the domain bounded below by S and bounded above by

Γ � f�x; y� ∈ R2∶y � h; 0 < x < Λg;

where h > 0 is a constant satisfying h > max0<x<Λ f �x� and is
denoted as the measurement distance.

Let an incoming plane wave uinc � ei�αx−βy� be incident
on the grating surface from above, where α � κ sin θ,
β � κ cos θ, and θ ∈ �−π∕2; π∕2� is the incident angle. For
normal incidence, i.e., θ � 0, we have α � 0 and β � κ. The
incident field reduces to uinc � e−iκy. For simplicity, we shall
focus on the normal incidence from now on since our method
requires only a single incident wave.

The diffraction of a time-harmonic electromagnetic wave in
the TE polarization can be modeled by the two-dimensional
Helmholtz equation:

Δu� κ2u � 0 in Ω: (1)

For a perfectly conducting grating, the total field u vanishes
on the grating surface:

u � 0 on S: (2)

Motivated by uniqueness, we shall seek the periodic
solution of u. Moreover, the diffracted field ud is required
to be a bounded outgoing wave in Ω. It follows from
Rayleigh’s expansion that u can be written as a sum of plane
waves:

u � uinc � ud � e−iκy �
X
n∈Z

Aneiαnx�iβny; (3)

for y > max0<x<Λ f �x�, where An is a complex number,

αn � n
�
2π
Λ

�
; βn �

�
�κ2 − α2n�1∕2 for κ > jαnj;
i�α2n − κ2�1∕2 for κ < jαnj:

For any given periodic function q�x� with period Λ, it has a
Fourier series expansion

q�x� �
X
n∈Z

qneiαnx; qn � 1
Λ

Z
Λ

0
q�x�e−iαnxdx:

We define a boundary operator

�Tq��x� �
X
n∈Z

iβnqneiαnx:

Using Eq. (3), we may derive a transparent boundary condi-
tion for the total field:

∂yu � Tu� ρ on Γ; (4)

where ρ � −2iκe−iκh.
This paper aims to study the inverse diffractive grating

problem, which is to reconstruct the grating surface function
f from the measurement of the total field u on Γ, given the
incident field uinc. In particular, we are interested in the
inverse problem in the near-field regime where the measure-
ment distance h is much smaller than the wavelength λ � 2π∕κ
of the incident wave.Fig. 1. Problem geometry.
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3. TRANSFORMED FIELD EXPANSION
The transformed field expansion method begins with the
changes of variables:

~x � x; ~y � h
�
y − f
h − f

�
;

which maps the domain Ω to the rectangle

D � f� ~x; ~y� ∈ R2∶0 < ~y < h; 0 < x < Λg:

Introduce a new functionw� ~x; ~y� � u�x; y� under the transfor-
mation. It can be verified, after tedious but straightforward
calculations from Eq. (1), that w, upon dropping the tilde,
satisfies the equation in D:

c1
∂2w
∂x2

� c2
∂2w
∂y2

� c3
∂2w
∂x∂y

� c4
∂w
∂y

� c1κ2w � 0; (5)

where

c1 � �h − f �2;
c2 � �f 0�h − y��2 � h2;

c3 � −2f 0�h − y��h − f �;
c4 � −�h − y�� f 00�h − f � � 2�f 0�2�:

The perfectly conducting condition (2) becomes

w�x; y� � 0 on y � 0: (6)

The transparent boundary condition (4) reduces to

∂yw �
�
1 −

f
h

�
�Tw� ρ� on y � h: (7)

Due to the small perturbation assumption, we may consider
a formal expansion of w in a power series of ε:

w�x; y; ε� �
X∞
k�0

wk�x; y�εk: (8)

Substituting f � εg into cj and inserting the power series
expansion (8) into Eqs. (5)–(7), we may derive the recursion
equation for wk:

∂2wk

∂x2
� ∂2wk

∂y2
� κ2wk � vk in D; (9)

where

vk �
2g
h
∂2wk−1

∂x2
� 2g0�h − y�

h
∂2wk−1

∂x∂y
� g00�h − y�

h
∂wk−1

∂y

� 2κ2g
h

wk−1 −
g2

h2
∂2wk−2

∂x2
−

�g0�2�h − y�2
h2

∂2wk−2

∂y2

−

2gg0�h − y�
h2

∂2wk−2

∂x∂y
� �2�g0�2 − gg00��h − y�

h2
∂wk−2

∂y

−

κ2g2

h2
wk−2; (10)

together with boundary conditions

wk�x; y� � 0 on y � 0 (11)

and

∂ywk − Twk � ρk on y � h; (12)

where

ρ0 � ρ; (13)

ρ1 � −

�
g
h

�
�Tw0 � ρ�; (14)

ρk � −

�
g
h

�
Twk−1: (15)

In Eqs. (9)–(15), the recursion equation of wk involves vk
and ρk. They only depend on the previous two terms wk−1

and wk−2, where w
−1 � w

−2 � 0. Thus, the scattering problem
(9)–(15) can indeed be solved in a recursive manner starting
from k � 0.

4. FOURIER SERIES EXPANSION
Since wk, vk, ρk are periodic functions in x with period Λ, they
have the following Fourier series expansions:

wk�x; y� �
X
n∈Z

w�n�
k �y�eiαnx;

vk�x; y� �
X
n∈Z

v�n�k �y�eiαnx;

ρk�x� �
X
n∈Z

ρ�n�k eiαnx:

Substituting these expansions into Eqs. (9)–(15), we obtain a
two-point boundary value problem for w�n�

k :

d2w�n�
k

dy2
� β2nw

�n�
k � v�n�k ; 0 < y < h; (16)

w�n�
k � 0 at y � 0; (17)

dw�n�
k

dy
− iβnw

�n�
k � ρ�n�k at y � h: (18)

Using Theorem B.1, we may obtain an explicit solution of
Eqs. (16)–(18).

Theorem 4.1. The two-point boundary value problem

(16)–(18) has a unique solution, which is given by

w�n�
k �y� � K �n�

1 �y�ρ�n�k −

Z
h

0
K �n�

2 �y; z�v�n�k �z�dz; (19)

where

K �n�
1 �y� � eiβnh

2iβn
�eiβny − e−iβny� (20)
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and

K �n�
2 �y; z� �

8<
:

eiβny
2iβn

�eiβnz − e−iβnz�; z < y;

eiβnz
2iβn

�eiβny − e−iβny�; z > y:
(21)

It follows from Theorem 4.1 that the power series (8) along
with the solution representation (19) gives an analytic solu-
tion of the direct grating problem (5)–(7).

5. RECONSTRUCTION FORMULA
Assume that the noisy data take the form

uδ�x; h� � u�x; h� � O�δ�; (22)

where u�x; h� is the noise-free data and δ represents the
noise level.

Using Eq. (8), we have

w�x; y� � w0�x; y� � εw1�x; y� � O�ε2�: (23)

Evaluating Eq. (23) at y � h, and noting w�x; h� � u�x; h� and
wδ�x; h� � uδ�x; h�, we have

wδ�x; h� � w0�x; h� � εw1�x; h� � O�ε2� � O�δ�: (24)

Rearranging Eq. (24) yields

εw1�x; h� � �wδ�x; h� −w0�x; h�� � O�ε2� � O�δ�; (25)

which is the basis of our inversion formula. Here the two
parameters ε and δ indicate the ill-posed nature of the inverse
problem; the larger the two parameters ε and δ are, the severer
the ill-posedness of the inverse problem is. Neglecting the
terms of ε2 and δ in Eq. (25) yields

εw1�x; h� � wδ�x; h� −w0�x; h�; (26)

which actually linearizes the inverse problem and may lead
to an explicit inversion formula for the linearized inverse
problem.

Based on Eq. (26), we next shall derive the analytical sol-
ution for the leading term w0, deduce an equation relating w1

and the scattering surface function f , and obtain an explicit
inversion formula.

Recalling Eqs. (10) and (13), we have

v0 � 0; ρ0 � −2iκe−iκh;

whose Fourier coefficients are

v�n�0 � 0; ρ�n�0 �
�
−2iκe−iκh; n � 0;

0; n ≠ 0:

Using Eq. (19) and noting β0 � β, we get

w�n�
0 �y� � K �n�

1 �y�ρ�n�0 � eiκh

2iκ
�eiκy − e−iκy�ρ�n�0

�
�
e−iκy − eiκy; n � 0;

0; n ≠ 0;

which yields

w0�x; y� �
X
n∈Z

w�n�
0 �y�eiαnx � e−iκy − eiκy: (27)

Recalling Eqs. (14) and (12), we obtain

ρ1�x� � −

�
g
h

�
∂yw0�x; h� � 2iκh−1 cos�κh�g�x�;

whose Fourier coefficients are given by

ρ�n�1 � 2iκh−1 cos�κh�gn;

where gn is the Fourier coefficient of g�x�.
It follows from Eq. (10) that we have

v1�x; y� �
2g
h
∂2w0

∂x2
� 2g0�h − y�

h
∂2w0

∂x∂y

� g00�h − y�
h

∂w0

∂y
� 2κ2g

h
w0:

Substituting w0 into the above equation yields

v1 � −2iκh−1�h − y� cos�κy�g00�x� − 4iκ2h−1 sin�κy�g�x�;

whose Fourier coefficient is

v�n�1 � �−4iκ2h−1 sin�κy� � 2iκh−1�h − y�α2n cos�κy��gn:

Following Eq. (19), we get

w�n�
1 �y� � K �n�

1 �y�ρ�n�1 −

Z
h

0
K �n�

2 �y; z�v�n�1 �z�dz: (28)

Since the data are measured at Γ, we evaluate Eq. (28) at
y � h and obtain

w�n�
1 �h� � K �n�

1 �h�ρ�n�1 −

Z
h

0
K �n�

2 �h; z�v�n�1 �z�dz: (29)

Using the expressions of ρ�n�1 and v�n�1 , and substituting
Eqs. (19)–(21) into Eq. (29), yields

w�n�
1 �h� � κeiβnh

βnh
�eiβnh − e−iβnh� cos�κh�gn

� κeiβnh

βnh

Z
h

0
�eiβnz − e−iβnz�

× �2κ sin�κz� − α2n�h − z� cos�κz��gndz: (30)

Using integration by parts and the identity α2n � β2n � κ2,
we have

Z
h

0
�eiβnz − e−iβnz� sin�κz�dz � iβn

α2n
�eiβnh � e−iβnh� sin�κh�

−

κ

α2n
�eiβnh − e−iβnh� cos�κh�

and
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Z
h

0
�eiβnz − e−iβnz��h − z� cos�κz�dz

� −

�κ2 � β2n�
α4n

�eiβnh − e−iβnh� cos�κh� � 2iκβn
α4n

× �eiβnh � e−iβnh� sin�κh� − 2iβnh
α2n

:

Substituting the above two identities into Eq. (30), we
obtain

w�n�
1 �h� � 2iκeiβnhgn: (31)

Note f � εg and thus f n � εgn, where f n is the Fourier
coefficient of f . Combining Eqs. (26) and (31), we deduce

f n � −

i
2κ

�w�n�
δ �h� −w�n�

0 �h��e−iβnh; (32)

where w�n�
δ �h� is the Fourier coefficient of the noise data

wδ�x; h� and

w�n�
0 �h� �

�
e−iκh − eiκh; n � 0;

0; n ≠ 0:

It follows from the definition of βn and Eq. (32) that it is well-
posed to reconstruct those Fourier coefficients f n with
jαnj < κ, since the small variations of the measured data will
not be amplified and lead to large errors in the reconstruction,
but the resolution of the reconstructed function f is restricted
by the given wavenumber κ. In contrast, it is severely ill-posed
to reconstruct those Fourier coefficients f n with jαnj > κ,
since the small variations in the data will be exponentially
enlarged and lead to huge errors in the reconstruction, but
they contribute to the super resolution of the reconstructed
function f .

To obtain a stable and super-resolved reconstruction,
we may adopt a regularization to suppress the exponential
growth of the reconstruction errors. Besides, we may use
as small an h as possible, i.e., measure the data at the distance
that is as close as possible to the grating surface, which is
exactly the idea of near-field optics.

Following [34], we consider the spectral cut-off regulariza-
tion. Define the signal-to-noise ratio (SNR) by

SNR � minfε−2; δ−1g:

For fixed h, the cut-off frequency ω is chosen in such a way
that

e�ω
2
−κ2�1∕2h � SNR;

which implies that the spatial frequency will be cut-off for
those below the noise level. More explicitly, we have

ω

κ
�

�
1�

�
log SNR

κh

�
2
�
1∕2

; (33)

which indicates ω > κ as long as SNR > 0 and super resolu-
tion may be achieved.

Taking into account the frequency cut-off, we may have a
regularized inversion formulation for Eq. (32):

f n � −

i
2κ

�w�n�
δ �h� −w�n�

0 �h��e−iβnhχ �−ω;ω�; (34)

where the characteristic function

χ �−ω;ω��αn� �
�
1 for jαnj ≤ ω;
0 for jαnj > ω:

Once f n are computed, the grating surface function can be
approximated by

f �x� ≈
X
jαnj≤ω

f neiαnx: (35)

Hence, only two fast Fourier transforms are needed to recon-
struct the grating surface function: one is done for the data to

obtain w�n�
δ �h�, and another is done to obtain the approxi-

mated function f .

6. NUMERICAL EXPERIMENTS
Here we present two numerical examples to illustrate the
effectiveness of our method. As a constant height configu-
ration, the near-field data u�x; h� are simulated by solving
the direct grating problem using the finite element method
with a perfectly matched layer. The wavenumber is taken as
κ � 2π, which corresponds to the wavelength λ � 1. The
grating period is Λ � 1, i.e., Λ � λ. In all the figures, the
plots are rescaled with respect to the wavelength λ. Due
to the unstructured triangular meshes, the wave field data
u�x; h� are not equally spaced with respect to x. We con-
struct a curve u�x; h� by using the natural cubic spline
interpolation formula based on the computed discrete data
u�x; h�. The curve u�x; h� is evaluated at equally spaced
points xj , j � 0; 1;…; 512, in the interval [0,1], and is used
as our synthetic scattering data. For the stability test, some
relative random noise is added to the data; i.e., the near-
field measurement is updated with

uδ�x; h� � u�x; h��1� δ rand�;

where rand represents a normally distributed random num-
ber in �−1; 1�.

Example 1. The exact grating surface is given by
f �x� � εg�x�, where

g�x� � 0.5 sin�2πx� � 0.5 sin�6πx�:

This is a simple example since the grating profile function
g only contains a couple of low Fourier modes. We examine
the dependence of reconstruction results on the parameters
h and ε. Figure 2 plots the reconstructed surfaces (dashed
lines) against the exact surfaces (solid lines). First we fix
ε � 0.01, δ � 0.01 and consider the reconstructions using
two different measurement distances h. Figures 2(a) and
2(b) plot the reconstructed surfaces by using h � 0.1λ and
h � 0.2λ, respectively. It is clear that smaller h in Fig. 2(a)
gives better reconstruction than larger h in Fig. 2(b) does.
In particular, the fine features of the grating surface are
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completely recovered and the subwavelength resolution is
achieved when using h � 0.1λ in Fig. 2(a). This is attributed
to the fact that larger cut-off frequency ω may be used in
the reconstruction when the measurement distance h is
smaller. Next we fix h � 0.1λ, δ � 0.01 and consider recon-
structions for two different ε. Figures 2(a) and 2(c) show
the reconstruction surfaces by using ε � 0.01 and ε � 0.1, re-
spectively. Evidently, smaller ε in Fig. 2(a) yields a better

result than larger ε in Fig. 2(c) does. The reason is that smaller
ε gives more accurate approxiation of the linearized model to
the original nonlinear model problem. Finally we consider a
higher level of noise δ. Figure 1(d) plots the reconstructed gra-
ting surface by using h � 0.1λ, ε � 0.01, δ � 0.05. Comparing
Figs. 1(a) and 1(d), we can still stably reconstruct the shape of
the exact surface with 5% noise, though the result is not as
good as that with 1% noise.
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Fig. 2. Example 1: finite Fourier grating; the exact surface (solid
line) is plotted against the reconstructed surface (dashed line) using
different h, ε, δ. (a) h � 0.1λ, ε � 0.01, δ � 0.01; (b) h � 0.2λ, ε � 0.01,
δ � 0.01; (c) h � 0.1λ, ε � 0.1, δ � 0.01; and (d) h � 0.1λ, ε � 0.01,
δ � 0.05.
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Fig. 3. Example 2: infinite Fourier grating; the exact surface (solid
line) is plotted against the reconstructed surface (dashed line)
using different h, ε, δ. (a) h � 0.02λ, ε � 0.01, δ � 0.01; (b) h � 0.1λ,
ε � 0.01, δ � 0.01; (c) h � 0.11λ, ε � 0.1, δ � 0.01; and (d) h � 0.02λ,
ε � 0.01, δ � 0.05.
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Example 2. The exact grating surface is given by
f �x� � εg�x�, where

g�x� � 0.5ecos�4πx� � 0.4ecos�6πx� − 1.5:

This is a harder example as the grating profile function g has
infinite Fourier modes. It is expected that higher cut-off fre-
quency ω is desirable and thus even smaller h is necessary in
order to capture all the surface features. Similarly, we inves-
tigate the effects of h and ε on the reconstructions. For fixed
ε � 0.01, Figs. 3(a) and 3(b) show the reconstructed surfaces
by using h � 0.02λ and h � 0.1λ, respectively. In Fig. 3(b), the
reconstruction is unable to capture the oscillatory middle part
of the exact grating surface by using h � 0.1λ, which is enough
for the grating surface in Example 1. In contrast, all the
detailed features are reconstructed in Fig. 3(a) when using
h � 0.02λ, because larger ω is indeed allowed to be taken.
Next we compare the results by using different ε. In Fig. 3(a),
the measurement distance h � 0.02λ, and the maximum value
of the grating surface is approximately 0.01λ. So the measure-
ment is taken at the place that is roughly 0.01λ away from the
grating structure. In Fig. 3(c), the deformation parameter
ε � 0.1, and the maximum value of the grating surface is about
0.1λ. Thus the data are measured at h � 0.11λ in order to have
the same measurement distance to the grating structure as
that in Fig. 3(a). Again, it can be seen from Figs. 3(a) and 3(c)
that smaller ε yields better reconstruction than larger ε due
to the approximation error in the linearization procedure.
Figure 1(d) plots the reconstructed result by using a higher
level of noise δ � 0.05 and shows that the method is stable
and can yield good results even for data with a higher level
of noise.

7. CONCLUSION
We have presented a simple, stable, and effective computa-
tional method for solving the inverse diffractive grating sur-
face problem and achieved subwavelength resolution. Using
the transformed field expansion, we deduced an analytic sol-
ution for the direct problem. By dropping higher-order terms
in power series, we linearized the nonlinear inverse problem
and obtained an explicit reconstruction formula, which was
implemented by using the fast Fourier transform. We consid-
ered two examples—one of which has finite Fourier modes,
and the other has infinite Fourier modes—and investigated
how the parameters influence the reconstructions. The results
show that super resolution may be achieved by using a small
measurement distance. The method works very well for the
model problems arising from the near-field optical imaging
where the structures are in the size of the subwavelength
region. As for future work, we are to extend the proposed
method to biperiodic structures, where the full three-
dimensional Maxwell equations should be considered, and
will report the results elsewhere.

APPENDIX A: INTEGRATION SOLUTION
METHOD
For self-containedness, the integrated solution method is
briefly introduced to solve a two-point boundary value prob-
lem. We refer to Zhang [36] for details of the integrated
solutions of the ordinary differential equation system and
two-point boundary value problems.

Consider the two-point boundary value problem

u0�y� �M�y�u�y� � f�y�; (A.1)

A0u�y�jy�0 � r0; (A.2)

B1u�y�jy�h � s1; (A.3)

where f�y� ∈ Cm are m-dimensional vector fields, r0 ∈ Cm1

and s1 ∈ Cm2 are given m1- and m2-dimensional vector fields,
respectively, M�y� ∈ Cm×m is an m ×m matrix, and A0 ∈
Cm1×m and B1 ∈ Cm2×m are full rank matrices with
m1 �m2 � m, i.e., rank A0 � m1 and rankB1 � m2.

Let Φ�y� be the fundamental matrix of the system:

Φ0�y� �M�y�Φ�y� � 0; (A.4)

Φ�0� � Im; (A.5)

where Im is the m ×m identity matrix.
Theorem A.1. The two-point boundary value problem

(A.1)–(A.3) has a unique solution if and only if

det
�

A0

B1Φ�h�
�
≠ 0: (A.6)

Let the pair of functions fA�y�; r�y�g and fB�y�; s�y�g be
the integrated solutions of the problems (A.1)–(A.2) and
(A.1)–(A.3), respectively; then there exist D0�A; y� ∈ Cm1×m1

and D1�B; y� ∈ Cm2×m2 such that

A0 � AM � D0A; A�0� � A0; (A.7)

r0 � Af � D0r; r�0� � r0; (A.8)

and

B0 � BM � D1B; B�h� � B1; (A.9)

s0 � Bf � D1s; s�h� � s1: (A.10)

Theorem A.2. If the two-point boundary value problem

(A.1)–(A.3) has a unique solution, then the matrix

�
A�y�
B�y�

�
∈ Cm×m

is nonsingular.
Theorem A.3. The two-point boundary value problem

(A.1)–(A.3) is equivalent to the linear system

�
A�y�
B�y�

�
u�y� �

�
r�y�
s�y�

�
: (A.11)
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APPENDIX B: TWO-POINT BOUNDARY
VALUE PROBLEM
In this section, we discuss the integration method for solving a
two-point boundary value problem in detail. Consider the
second-order boundary value problem

u00 � η2u � f ; 0 < y < h; (B.1)

u � 0 at y � 0; (B.2)

u0
− iηu � g at y � h: (B.3)

Let v1 � u and v2 � u0. The second-order boundary value
problem (B.1)–(B.3) can be equivalently formulated into a
first-order two-point boundary value problem:

v0 �Mv � f; (B.4)

A0v�0� � 0; (B.5)

B1v�h� � g; (B.6)

where

v �
� v1
v2

�
; f �

� 0
f

�
; M �

� 0 −1

η2 0

�
;

A0 � �10�; B1 � �−iη1�:

Theorem B.1. The two-point boundary value problem

(B.1)–(B.3) has a unique solution given by

u�y� � K1�y�g −
Z

h

0
K2�y; z�f �z�dz; (B.7)

where

K1�y� �
eiηh

2iη
�eiηy − e−iηy�

and

K2�y; z� �
8<
:

eiηy
2iη �eiηz − e−iηz�; z < y;

eiηz
2iη �eiηy − e−iηy�; z > y:

Proof. Since M is a nonsingular matrix, there exists a non-
singular matrix Q such that

Q−1MQ � N;

where

N �
�
−iη 0
0 iη

�
; Q �

�
1 1
iη −iη

�
;

Q−1 � 1
2iη

�
iη 1
iη −1

�
:

A simple calculation yields that the fundamental matrix of
(A.4)–(A.5) is

Φ�y� � Q
�
eiηy

e−iηy

�
Q−1;

which gives

det
�

A0

B1Φ�h�
�
�
���� 1 0
−iηe−iηh e−iηh

���� � e−iηh ≠ 0:

It follows from Theorem A.1 that the two-point boundary
value problem (B.4)–(B.6) and thus (B.1)–(B.3) has a unique
solution.

Let fA�y�; r�y�g and fB�y�; s�y�g be the integrated solutions
of problems (B.4), (B.5) and (B.4), (B.6), respectively. Taking

D0 � iη; D1 � −iη;

we obtain from Eqs. (A.7)–(A.10) that the integrated solutions
satisfy

A0 � AM � iηA; A�0� � A0; (B.8)

r0 � Af � iηr; r�0� � 0; (B.9)

and

B0 � BM − iηB; B�h� � B1; (B.10)

s0 � Bf − iηs; s�h� � g: (B.11)

Upon solving the above initial value problem, we obtain the
integrated solutions

A � �A1; A2� �
1
2iη

�iη�1� e2iηy�; 1 − e2iηy�; (B.12)

B � �B1; B2� � �−iη; 1�; (B.13)

r �
Z

y

0
eiη�y−z�A2�z�f �z�dz; (B.14)

s � eiη�h−y�g −
Z

h

y
eiη�z−y�f �z�dz: (B.15)

It follows from Theorem A.3 that the two-point boundary
value problem (B.4)–(B.6) is equivalent to the linear system

�
A1 A2

B1 B2

��
u
u0

�
�

�
r
s

�
:
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An application of Gram’s rule yields

u � rB2 − sA2

A1B2 − B1A2
: (B.16)

A simple calculation yields

A1B2 − B1A2 � 1:

Substituting Eqs. (B.12)–(B.15) into Eq. (B.16), we de-
duce Eq. (B.7).
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