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Abstract. Consider the scattering of a time-harmonic plane wave incident on
a two-scale heterogeneous medium, which consists of scatterers that are much
smaller than the wavelength and extended scatterers that are comparable to
the wavelength. In addition to the standard inverse obstacle scattering prob-
lem, i.e., to image the shape of extended scatterers as well as the location of
the point scatterers where strong multiple scattering are present, there are a
few other interesting issues such as imaging a target in a cluttered environment
without resolving the clutters, and increasing the effective aperture by utilizing
the multiple scattering between extended scatterers and point scatterers whose
location are known. Some preliminary computational study will be given in
this paper. To simulate the wave propagation in the heterogeneous medium
with both point and extended scatterers, a generalized Foldy–Lax formulation
and a physically based block Gauss–Seidel iterative method are used to solve
the two-scale multiple scattering problem. Based on the singular value decom-
position of the response matrix constructed from the far-field pattern, imaging
functions are designed to visualize the location of the point scatterers and the
shape of the extended obstacle scatterers. The method leads to a direct imag-
ing algorithm which is simple and efficient since no direct solver or iteration
is needed. The imaging functions are robust with respect to the measure-
ment noise. Numerical experiments are presented for uniformly and randomly

distributed point scatterers and multiple extended obstacle scatterers in both
two- and three-dimensional cases.

1. Introduction

Scattering problems are about how an inhomogeneous medium scatters an in-
cident wave field. The direct scattering problem is to determine the scattered field
from the incident field and the differential equation governing the wave motion; the
inverse scattering problem is to determine the nature of the inhomogeneity, such as
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Figure 1. Schematic of problem geometry. The scattered wave
ψ is generated from the incidence of a plane wave φinc on the het-
erogeneous medium consisting a group of point scatterers centered
at rj and an extended obstacle scatterer with possible multiple
disjoint components represented by the domain Dk with boundary
Γk.

location, geometry, and material property, from a knowledge of the scattered field.
These problems have played a fundamental role in diverse scientific areas such as
radar and sonar, geophysical exploration, medical imaging, near-field and nano-
optics. This work is devoted to an inverse scattering problem where the considered
scatterers are of two-scale nature: it consists of isotropic point scatterers and an
extended obstacle scatterer with possible multiple disjoint components. “Isotropic
point” refers that the scale of the scatterer is much smaller than the wavelength
of the incident field so that the scatterer can be represented by a source point
within it when scattering an incident wave; “extended” means that the scale of the
obstacle scatterer is comparable with the wavelength of the incident field. More
precisely, we consider the inverse scattering of a time-harmonic plane wave incident
on the heterogeneous medium, and intend to reconstruct an image of the shape
for the extended obstacle, represented by the boundary Γ of the domain D, and
the location of the point scatterers at rj from the far-field pattern of the scattered
wave, as seen in Figure 1. The major motivation is to image a target in a clut-
tered environment. Here the target is modeled by an impenetrable obstacle and the
cluttered environment is modeled by a set of isolated point scatterers surrounding
the obstacle. In this work, we think that there are two contributions to the field
of inverse scattering theory: (1) based on the generalized Foldy–Lax formulation,
the proposed imaging functions can simultaneously show the shape of the extended
obstacle scatterers and the location of the point scatterers; (2) computational study
of the interaction and separation between point scatterers and extended scatterers
in the imaging process.

The inverse scattering problem is challenging due to the inherently high non-
linearity and, more seriously from the point of view of numerical computations,
ill-posedness, i.e., small variations in the measured data can lead to large errors in
the reconstruction. A number of methods have been proposed for solving the inverse
scattering problem and they can be roughly categorized into two groups: nonlinear
optimization based iterative methods and imaging based direct methods. The for-
mer methods are usually more quantitative and attempt to recover the properties
or parameters as well as the geometry of the obstacle. On the other hand, they
are more computationally intensive since iterations that requires solving a sequence
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of direct and adjoint scattering problems are needed, see e.g., [18,19,30,35–37].
While the latter approaches are more qualitative and less computationally inten-
sive, which give a characterization and/or visualization of the geometry by design-
ing imaging functions which can highlight target boundary, see e.g., the MUSIC
algorithm [3,14,17,21,29,42,44], the linear sampling method [6,7,10,11], the
factorization method [31, 32], the probe or enclosure method [8, 15, 27, 28], and
the method of singular sources [40,41]. In [4,5], a hybrid approach of combining
the direct imaging method and the recursive linearization algorithm was used to
solve an inverse medium scattering problem; a direct imaging method was adopted
to generate an initial guess while the recursive linearization algorithm was applied
to updates the approximations. We refer to the monograph [33] for a survey of all
the non-iterative methods and the books [12,13] for comprehensive accounts of the
direct and inverse scattering problems.

In this paper, we present a direct imaging method to simultaneously locate the
point scatterers and reconstruct the shape of the extended scatterers. Specifically,
we consider the inverse scattering problem of time-harmonic plane waves incident
on the heterogeneous medium from a range of incident directions in two- or three-
dimensional space. The far-field patterns of the scattered waves are recorded as
data at various observation directions from plane incident waves sending at differ-
ent directions of incidence. These measurements form the so-called response matrix
which can be regarded as a discrete version of the scattering operator. Based on
the singular value decomposition (SVD) of the response matrix, we design direct
imaging functions to show the location of the point scatterers and the shape of the
extended scatterers. The proposed direct imaging method is simple and efficient
since no direct solver or iteration is needed. It can handle both full and limited aper-
ture data. The imaging functions are robust with respect to the measurement noise.
The method is closely related to the direct imaging methods in [20–22] and more
recently in [23], where the medium was considered to be either point scatterers or
extended obstacle, i.e., the medium is of the same scale nature. Here we consider the
situation where both extended scatterers and a set of point scatterers with strong
multiple scattering among them are present. To simulate the wave propagation in
the heterogeneous medium with presence of both types of scatterers, it is required
to accurately solve the forward scattering problem where the multiple scattering
occurs among all the scatterers. We mention that the classic Foldy–Lax formula-
tion is efficient to solve the multiple scattering of scalar waves by a distribution of
small isotropic scatterers [16, 38], and boundary integral equation methods have
been considered as appropriate approaches for solving the scattering of acoustic
or electromagnetic waves by bounded obstacles [36, 37]. The generalized Foldy–
Lax formulations have been developed in [24–26] to solve the multiple scattering
problem when both the point scatterers and the extended obstacles are present.
We briefly introduce the generalized Foldy–Lax formulation in the context of the
inverse obstacle scattering and present a physically motivated block Gauss–Seidel
iterative method. The detailed discussion may be found in [25] on the uniqueness
and existence of the solution for the generalized Foldy–Lax formulation, as well as
the convergence analysis of the block Gauss–Seidel iterative method. We refer to
the proceedings [2] for an overview of mathematical and statistical methods for
scattering problems related imaging.
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The outline of the paper is as follows. In Section 2, the classical Foldy–Lax
formulation is briefly reviewed for the scattered field from the interaction among
a set of well-separated point scatterers; based on combined single- and double-
layer potential representations, a uniquely solvable boundary integral equation is
introduced for the obstacle scattering problem, where the scatterer is modeled as a
wavelength comparable or an extended sound-soft obstacle; a generalized Foldy–Lax
formulation is described for the multiple scattering problem involving both small-
scale point scatterers and extended scatterers; and a block Gauss–Seidel iterative
method is given to solve the coupled scattering system. Section 3 is devoted to the
derivation of the far-field patterns and the construction of the imaging functions for
three types of scatterers: point scatterers, extended obstacle scatterers, and mixed
scatterers with both point and extended scatterers. Numerical results are shown
in Section 4 for uniformly and randomly distributed point scatterers and multiple
extended obstacle scatterers in both two- and three-dimensional cases. The paper
is concluded with comments and directions for future work in Section 5.

2. Generalized Foldy–Lax formulation

In this section, we briefly introduce the original Foldy–Lax formulation for the
point scatterers; the boundary integral equation for the extended obstacle scattering
problem; the generalized Foldy–Lax formulation for the multiple scattering problem
involving both extended obstacle scatterers and a set of isotropic point scatterers;
and an efficient physically motivated block Gauss–Seidel algorithm for solving the
coupled scattering system.

2.1. Foldy–Lax formulation for point scatterers. We briefly introduce
the original Foldy–Lax formulation to model the scattering of isotropic point scat-
terers, which are named as delta-potentials in Rudnick and Ueberschär [43], and
Colin de Verdière[9]. We refer to the book by Martin [39] for detailed discussions
on the Foldy–Lax formulation.

Consider a collection of m separated isotropic point scatterers, which are repre-
sented by point sources located at r1, . . . , rm. Let φinc be the plane incident wave,
given explicitly

(2.1) φinc(r) = eiκr·d in R
μ,

where i is the imaginary unit, κ is the wavenumber, d ∈ Sμ−1 is the propagation
direction defined on the unit sphere, and the dimension μ = 2, 3. Clearly, the
incident field satisfies the Helmholtz equation in the free space

(2.2) Δφinc + κ2φinc = 0 in R
μ.

The total field is represented as the sum of the incident field and the scattered
field

(2.3) φ(r) = φinc(r) +

m∑
j=1

σjφjG(r, rj),

where σj is referred to as the scattering coefficient for the j-th point scatterer, φj is
the external field acting on the j-th point scatterer, and G is the free-space Green’s
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function given as

G(r, r′) =

⎧⎪⎪⎨⎪⎪⎩
i

4
H

(1)
0 (κ|r− r′|), for μ = 2,

1

4π

eiκ|r−r′|

|r− r′| , for μ = 3.

Here H
(1)
0 is the Hankel function of the first kind with order zero.

Evaluating (2.3) at ri and excluding the self-interaction yield a linear system
of algebraic equation for φj , j = 1, . . . ,m:

(2.4) φi −
m∑
j=1
j �=i

σjφjG(ri, rj) = φinc(ri),

which is known as the Foldy–Lax formulation. Once (2.4) is solved, the scattered
field can be computed as

(2.5) ψ(r) =
m∑
j=1

σjφjG(r, rj).

2.2. Boundary integral formulation for extended obstacle scatterers.
This section is concerned with a brief introduction to the method of the boundary
integral equation for solving the extended obstacle scattering problem. We refer
to the monograph by Colton and Kress [12] for a comprehensive account of the
boundary integral equation methods for solving the obstacle scattering problem.

We assume that the extended obstacle scatterer is represented by the domain
D with boundary Γ, which is the open complement of an unbounded domain of
class C2, i.e., scattering from more than one component is included in our analysis.

Consider the Helmholtz equation

(2.6) Δφ+ κ2φ = 0 in R
μ \D,

along with the sound-soft boundary condition

(2.7) φ = 0 on Γ,

where φ is the total field and κ is the wavenumber.
The extended obstacle scatterer is illuminated by the plane incident wave given

in (2.1). The total field φ consists of the incident field φinc and the scattered field
ψ:

(2.8) φ = φinc + ψ.

It follows from (2.2) and (2.6)–(2.8) that the scattered field satisfies

(2.9) Δψ + κ2ψ = 0 in R
μ \D,

together with the boundary condition

(2.10) ψ = −φinc on Γ.

In addition, the scattered field is required to satisfy the Sommerfeld radiation con-
dition

(2.11) lim
ρ→∞

ρ
μ−1
2

(
∂ψ

∂ρ
− iκψ

)
= 0, ρ = |r|.
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Based on the Green’s representation theorem, it can be shown that the scattered
field has the integral representation in terms of the normal derivative of the total
field:

(2.12) ψ(r) = −
∫
Γ

G(r, r′)∂n′φ(r′)ds(r′), r ∈ R
μ \D,

where n is the unit outward normal on Γ and is assumed to be directed into the
exterior of D.

To compute the scattered field, it is required to determine ∂nφ on Γ. We adopt
the following uniquely solvable boundary integral equation:

(2.13)
1

2
∂nφ(r) +

∫
Γ

[∂nG(r, r′)− iηG(r, r′)] ∂n′φ(r′)ds(r′) = (∂n − iη)φinc(r),

where η is the coupling parameter. We refer to Kress [34] for an investigation on
the proper choice of the coupling parameter η with respect to the condition number
of the coefficient matrix for the integral equation.

Remark 2.1. If the extended obstacle scatterer is consisted of n disjoint com-
ponents, i.e., Γ = Γ1 ∪ · · · ∪ Γn, Γk ∩ Γk′ = ∅, k �= k′, then the boundary integral
equation (2.13) can be written as

(2.14)
1

2
ϕ(r) +

n∑
k=1

∫
Γk

[∂nG(r, r′)− iηG(r, r′)]ϕk(r
′)ds(r′) = (∂n − iη)φinc(r),

where ϕ(r) = ∂nφ(r) and ϕk(r) = ϕ(r)|r∈Γk
.

2.3. Generalized Foldy–Lax formulation. This section introduces the gen-
eralized Foldy–Lax formulation for the multiple scattering among the extended ob-
stacle scatterer and the group of point scatterers. The existence and uniqueness of
the solution for the formulation may be found in [25].

Viewing the external field acting on the point scatterers as point sources for
the extended obstacle scatterer, we consider the equation for the total field

(2.15) Δφ+ κ2φ = −
m∑
j=1

σjφjδ(r− rj) in R
μ \D,

along with the sound-soft boundary condition

(2.16) φ = 0 on Γ,

where φj is again the external field acting on the j-th point scatterer and δ is the
Dirac delta function. Subtracting the incident field from the total field, we may
obtain the equation for the scattered field

(2.17) Δψ + κ2ψ = −
m∑
j=1

σjφjδ(r− rj) in R
μ \D.

The scattered field is also required to satisfy the Sommerfeld radiation condition

(2.18) lim
ρ→∞

ρ
μ−1
2

(
∂ψ

∂ρ
− iκψ

)
= 0, ρ = |r|.

Similarly, it can be verified that the scattered field has the representation given
in terms of the normal derivative of the total field and the external fields acting on
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the point scatterers:

(2.19) ψ(r) =

m∑
j=1

σjφjG(r, rj)−
∫
Γ

G(r, r′)∂n′φ(r′)ds(r′), r ∈ R
μ \D.

Adding the incident field on both sides of (2.19) yields

(2.20) φ(r) = φinc(r) +

m∑
j=1

σjφjG(r, rj)−
∫
Γ

G(r, r′)∂n′φ(r′)ds(r′), r ∈ R
μ \D.

To compute the scattered field, it is required to compute ∂nφ and φj , j = 1, . . . ,m.
Evaluating (2.20) on both sides at ri and excluding the self-interaction for the

point scatterers give

(2.21) φi = φinc(ri) +

m∑
j=1
j �=i

σjφjG(ri, rj)−
∫
Γ

G(ri, r
′)∂n′φ(r′)ds(r′).

Using the jump relation for the single-layer and double-layer potentials and taking
the normal derivative, we may obtain a boundary integral equation on Γ:

1

2
∂nφ(r) = (∂n − iη)φinc(r) +

m∑
j=1

σjφj∂nG(r, rj)

−
∫
Γ

[∂nG(r, r′)− iηG(r, r′)] ∂n′φ(r′)ds(r′).(2.22)

The coupled scattering system (2.21) and (2.22) form the self-consistent generalized
Foldy–Lax formulation, which take full account of the multiple scattering among
the extended obstacle and the point scatterers.

Remark 2.2. If the extended obstacle scatterer is consisted of n multiple com-
ponents, then the generalized Foldy–Lax formulation can be written as the following
coupled system

φi = φinc(ri) +

m∑
j=1
j �=i

σjφjG(ri, rj)−
n∑

k=1

∫
Γk

G(ri, r
′)ϕk(r

′)ds(r′),(2.23)

1

2
ϕ(r) = (∂n − iη)φinc(r) +

m∑
j=1

σjφj∂nG(r, rj)

−
n∑

k=1

∫
Γk

[∂nG(r, r′)− iηG(r, r′)]ϕk(r
′)ds(r′),(2.24)

where ϕ(r) = ∂nφ(r) and ϕk(r) = ϕ(r)|r∈Γk
.

2.4. Block Gauss-Seidel iteration. We briefly describe an efficient physi-
cally motivated block Gauss–Seidel iterative method to solve the generalized Foldy–
Lax formulation (2.23)–(2.24). The convergence analysis may be found in [25].

A block Gauss–Seidel iterative algorithm proceeds as follows: Let
(
φ
(0)
1 , . . . ,

φ
(0)
m

)�
= (0, . . . , 0)� and ϕ

(0)
k (r) = 0 for k = 1, . . . , n, define

(
φ
(ν)
1 , . . . , φ

(ν)
m

)�
and
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ϕ
(ν)
k for ν ≥ 1 by the solutions of the following system of equations

(2.25) φ
(ν)
i −

m∑
j=1
j �=i

σjφ
(ν)
j G(ri, rj) = φinc(ri)−

n∑
k=1

∫
Γk

G(ri, r
′)ϕ

(ν−1)
k (r′)ds(r′)

and

1

2
ϕ
(ν)
k (r) +

∫
Γk

[∂nG(r, r′)− iηG(r, r′)]ϕ
(ν)
k (r′)ds(r′) = (∂n − iη)φinc(r)

+
m∑
j=1

σjφ
(ν)
j ∂nG(r, rj)−

k−1∑
j=1

∫
Γj

[∂nG(r, r′)− iηG(r, r′)]ϕ
(ν)
j (r′)ds(r′)

−
n∑

j=k+1

∫
Γj

[∂nG(r, r′)− iηG(r, r′)]ϕ
(ν−1)
j (r′)ds(r′),(2.26)

for k = 1, . . . , n.
As can be seen from the block Gauss–Seidel iterative algorithm, it is only

required to solve a linear system of algebraic equations and a boundary integral
equation for a single obstacle at each step of iteration.

3. Response matrix

In this section, we introduce the response matrix and design imaging functions
to characterize the location of the point scatterers and the geometry of the extended
obstacle scatterer. The imaging function as proposed in [23] is made of those
singular vectors corresponding to dominant singular values of the response matrix,
which is constructed from the far-field pattern of the scattered waves.

3.1. Far-field pattern. The far-field pattern of scattered wave plays a funda-
mental role in the inverse scattering theory due to the fact that it induces the impor-
tant geometrical and physical information, e.g., location, shape, and the impedance
of the boundary, on the scattering object. More specifically, given an incident field
with incident direction d, if ψ is the scattered field, then ψ has the asymptotic
behavior

(3.1) ψ(r,d) =
eiκ|r|

|r|μ−1
2

[
ψ∞(r̂,d) +O(|r|)−1

]
as |r| → ∞

uniformly in all directions r̂ = r/|r|, where the function ψ∞ is called as the far-field
pattern of the scattered field ψ, and r̂ ∈ Sμ−1 is known as the observation direction.

Recall the asymptotic behavior for the Hankel function for large arguments

H
(1)
0 (z) =

√
2

πz
ei(z−

π
4 )

[
1 +O(z−1)

]
and the following identity

|r− r′| =
√
|r|2 − 2r · r′ + |r′|2 = |r| − r̂ · r′ +O(|r|−1) as |r| → ∞.

Following (3.1) and (2.5), we obtain the far-field pattern of the scattered field for
the scattering problem of a set of m point scatterers:

(3.2) ψ∞,FL(r̂,d) = γ
m∑
j=1

σjφj(d)e
−iκr̂·rj ,
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where the constant γ is defined as

γ =

⎧⎪⎪⎨⎪⎪⎩
ei

π
4

√
8πκ

, for μ = 2,

1

4π
, for μ = 3.

It follows from the integral representation of the scattered field (2.12) and the
asymptotic expansion of Green’s function that the far-field pattern for the extended
obstacle scatterer is given by

(3.3) ψ∞,E(r̂,d) = −γ

∫
Γ

∂n′φ(r′;d)e−iκr̂·r′ds(r′).

Based on the integral equation representation (2.19) for the multiple scattering
problem and the asymptotic behavior for Green’s function, we may also obtain the
far-field pattern of the scattered field for the generalized Foldy–Lax formulation

(3.4) ψ∞,GFL(r̂,d) = γ

⎡⎣ m∑
j=1

σjφj(d)e
−iκr̂·rj −

∫
Γ

∂n′φ(r′;d)e−iκr̂·r′ds(r′)

⎤⎦ .

Remark 3.1. For the extended obstacle scatterer with n disjoint components,
the far-field patterns for the extended obstacle scatterer and the generalized Foldy–
Lax formulation can be written as

ψ∞,E(r̂,d) = −γ
n∑

k=1

∫
Γk

∂n′φ(r′;d)e−iκr̂·r′ds(r′).

and

ψ∞,GFL(r̂,d) = γ

⎡⎣ m∑
j=1

σjφj(d)e
−iκr̂·rj −

n∑
k=1

∫
Γk

∂n′φ(r′;d)e−iκr̂·r′ds(r′)

⎤⎦ .

These far-field patterns will be recorded as measurement and used to construct
the response matrices for the imaging functions.

3.2. Imaging functions. Consider an array of transmitters that can send out
plane incident waves and record the far-field pattern of the scattered waves. Assume
that we have a set of incident plane waves with incident directions d1, . . . ,dN

and the far-field patterns are recorded at observation direction r̂1, . . . , r̂M . These
measurement of the far-field patterns form an M ×N response matrix P with each
entry given by

(3.5) Pij = ψ∞(r̂i,dj),

where the far-field pattern ψ∞ represents any one of the far-field patterns for (3.2),
(3.3), or (3.4). The response matrix can be regarded as a discrete version of the
scattering operator.

Here we give some physical interpretation of the response matrix to motivate
the construction of our imaging functions. First, from the observation point of
view, the scattered far field pattern can be viewed as the superposition of far
field pattern of point scatterers distributed (with the total field φ as the weight
function) at locations where scattering occurs, i.e., at the point scatterers as well
as at the boundary of extended scatterers based on equation (3.4). Although this
interpretation sounds similar to Born approximation, which simply replaces the
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total field in (3.4) by the incidence field, here we try not to assume or use explicit
quantitative knowledge of the total field in the direct imaging algorithm. In the
discrete setting,

Pij = ψ∞(r̂i,dj)

= γ

[
m∑

k=1

σkφk(dj)e
−iκr̂i·rk −

∫
Γ

∂n′φ(r′;dj)e
−iκr̂i·r′ds(r′)

]
,

which means the column space of the response matrix is a subspace of the space
spanned by the illumination vectors with respect to the observation array/directions

gr(r) = (e−iκr·r̂1 , . . . , e−iκr·r̂M )�, r ∈ {r1, . . . , rm} ∪ Γ.

If we introduce far field pattern of the Green’s function G∞(r̂, r), which is the
far field pattern of the scattered wave due to a point source at r with presence of
both point and extended scatterers that can be defined by a generalized Foldy–Lax
formulation similar to the one we defined for the total field (2.21) and (2.22). Then
we can rewrite far field pattern for the scattered field for an incident wave eiκr·d as

(3.6) ψ∞,GFL(r̂,d) =
m∑

k=1

G∞(r̂, rk)e
iκrk·d −

∫
Γ

∂n′G∞(r̂, r′)eiκr
′·dds(r′).

From the incident point of view, we can view the far field pattern as superposition
of scattered wave excited at point scatterers and extended scatterer boundary by
incident wave eiκr·d, although we do not know the weight function G∞. In the
discrete setting,

Pij = ψ∞(r̂i,dj)

=

m∑
k=1

G∞(r̂i, rk)e
iκrk·dj −

∫
Γ

∂n′G∞(r̂i, r
′)eiκr

′·djds(r′),

which means the row space of the response matrix is a subspace of the space spanned
by the illumination vectors with respect to the incident directions

gt(r) = (eiκr·d1 , . . . , eiκr·dN )�, r ∈ {r1, . . . , rm} ∪ Γ.

In general, the knowledge of the incident wave and/or observation point gives a
good clue on the form of illumination vector one should use to approximate the row
and/or column space of the response matrix. How well the column or the row space
can approximate the space of gr(r) or gt(r) respectively for r ∈ {r1, . . . , rm} ∪ Γ
depends on the wavenumber κ , the sampling of incident directions d1, . . . ,dN

and the far-field observation directions r̂1, . . . , r̂M , and the geometry. For discrete
point scatterers whose number is fewer than min(M,N), the two spaces are the
same. In general, for a point r ∈ {r1, . . . , rm} ∪ Γ that is well illuminated by the
incident waves and well observed by the receiver array, gr(r) and gt(r) have a strong
signature in the column space and row space respectively. Highly concave part of
the obstacle boundary often can not be well illuminated or observed.

Now we turn the imaging problem into finding the location where scattering
happens as the following. The motivation is: at each point r in the imaging domain,
how well gr(r) and gt(r) are approximated by the significant component of column
and row space of the response matrix respectively. First, compute the singular
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value decomposition (SVD) of the response matrix (3.5).

P =

min(M,N)∑
k=1

λkukv
�
k ,

where uk and vk are the unit left and right singular vectors, and λk are the singular
values of P . This matrix factorization turns imaging passive targets into imaging
active sources with respect to the receiver and transmitter array since uk and vk

form the orthogonal basis for the column and row spaces respectively with λk being
the signal strength. The following quantity measures projections in each pair of left
and right singular vectors uk and vk:

(3.7) Ik(r) =
[
ĝ�
r (r) · uk

] [
ĝ
�
t (r) · vk

]
,

where the ĝt and ĝr are the normalized illumination vectors with respect to the
transmitter and the receiver, given explicitly as

ĝr(r) =
1√
M

(eiκr·r̂1 , . . . , eiκr·r̂M )� and ĝt(r) =
1√
N

(eiκr·d1 , . . . , eiκr·dN )�.

This quantity removes the phase ambiguity of the SVD of the response matrix too.
The two dot product terms in (3.7) is phase matching with respect to the receiver
array and the transmitter array respectively. The product of these two terms is
just a summation of the two phase matching. If further superposed in frequency, it
becomes travel time matching with respect to the two arrays, which is the Kirchhoff
migration used in geophysics context. Furthermore, it can be easily shown that∣∣∣∣∣∣

min(M,N)∑
k=1

Ik(r)

∣∣∣∣∣∣ ≤ 1.

Define
λmax = max

1≤k≤min(M,N)
{λk} and ηk = λk/λmax.

The first imaging function is defined as

(3.8) I1(r) =
min(M,N)∑

k=1

ηkIk(r),

where the singular values play the role of the weights and thus the regularization
in the imaging function. As we mention, if further superposed in frequency, it
becomes the Kirchhoff migration in geophysics context which matches the travel
time between each pair of transmitter and receiver.

The second imaging function is defined as

(3.9) I2(r) =
K∑

k=1

Ik(r),

where the truncation number K ≤ min(M,N) is a threshold of the number of
significant singular vectors. For m point scatterers, then K = m. In general,
for extended obstacles, K may depend on the size of the obstacle and physical
resolution of the array, which depends on the wavenumber κ, aperture and array
setup. The truncation number K can also be used as a regularization parameter
that is determined by the noise level [20,46]. We refer to Ammari et al. [1,3] for
stability and resolution analysis for these imaging functionals.
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We define the following transformed imaging functions, which seem to produce
better visualization results.

(3.10) Ĩi(r) = [1− Ii(r)]−1
, i = 1, 2.

In Section 4, all these imaging functions are demonstrated and compared for
imaging the point and extended obstacle scatterers. They essentially produce the

similar quality of imaging results; while the imaging function Ĩi displays a little
better visualization effect.

Since we transform the inverse scattering problem into an active source problem
with respect to both transmitter and receiver arrays using the SVD of the response
matrix, we avoid the need to estimate the total field quantitatively which becomes a
nonlinear and nonlocal problem in terms of the location and shape of the scatterers.
However, consequent issues related to this formulation are:

(1) Poor illumination due to partial illumination or occlusion, may cause the
total field weak at certain locations. Similarly, scattering at certain loca-
tions may not be measured due to partial observation aperture. Imaging
resolution at these locations will be compromised as we will see from some
of the tests below.

(2) Multiple scattering information, which is implicitly embedded in the total
field, is not used if one uses homogeneous Green’s function as the illumi-
nation vector.

4. Numerical experiments

In this section, we present numerical examples for the inverse scattering prob-
lem, which contains both point scatterers and extended obstacle scatterers. As
discussed in Section 3.2, the response matrix is based on the far-field pattern of
the scattered field with row index corresponding to the observation direction r̂ and
column index corresponding to the incident direction d. To test the stability and
robustness of the method, the response matrix is perturbed by multiplicative noise
as

P noise
ij = aRePij + i b ImPij ,

where a and b are uniformly distributed random numbers in [1 − c, 1 + c] with
c = 20%. In the computation of the imaging functions, we use those singular
vectors corresponding to singular values greater than some threshold which gives
robustness to noise. As we mentioned before this threshold is the only parameter
here which plays the role of physical regularization that depends on the physical
setup such as used frequency, desired resolution, size of the obstacle and/or number
of point scatterers, as well as signal noise ratio. On the other hand, the threshold
is not very sensitive and can take a range of values that render very similar results.
In all of the following examples, the wavenumber κ is taken to be 4π, i.e., the
wavelength is taken to be λ = 2π/κ = 0.5.

Example 1. This is a 2D example. The incident and observation directions
can be represented by the incident angle αinc and the observation angle αobs, re-
spectively, i.e., d = (cosαinc, sinαinc) ∈ S1 and r̂ = (cosαobs, sinαobs) ∈ S1.
First, we consider the far-field pattern with full aperture data, i.e., incident angle
αinc ∈ [0, 2π] and observation angle αobs ∈ [0, 2π]. The size of the response matrix
is 120 × 120, i.e., the intervals for the incident angle and observation angle are
equally subdivided into 120 subintervals. In this example, we consider an extended
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Figure 2. An extended obstacle scatterer with two disjoint com-
ponents: one is a circle-shaped scatterer and another is kite-shaped
scatterer in Example 1.

0 20 40 60 80 100 120
0

5

10

15

20

25

30

Figure 3. The singular value plot of the response matrix for the
extended obstacle scatterers in Example 1.

obstacle scatterer with two disjoint components: one is a circle-shaped extended
scatterer with the parametric representation given by

r1(t) = (cos t− 1.25, sin t), 0 ≤ t ≤ 2π;

and another is a kite-shaped extended scatterer with the parametric representation
given by

r2(t) = (cos t+ 0.65 cos 2t+ 0.6, 1.5 sin t), 0 ≤ t ≤ 2π,

as seen in Figure 2. The separation distance between these two components is only
about one wavelength, which makes it hard to distinguish these two components
for the imaging, especially for the concave part of the kite-shaped scatterer and the
adjacent part of the circle-shaped scatterer.

Figure 3 plots the singular value pattern of the response matrix from the far-
field pattern ψ∞,E by using the boundary integral equation for the extended obstacle
scatterers. Figure 4 shows, from top to bottom and from left to right, the imaging of

the two isolated extended obstacle scatterers by using imaging functions I1, I2, Ĩ1,
and Ĩ2, respectively. It can be seen from the imaging results that all the four
imaging functions essentially produce similar results, and the two modified imaging

functions Ĩi displays a little better result from the visualization point of view. From

now on, we will use the imaging function Ĩ2 to present the imaging results instead
of showing the results from all the imaging functions.
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Figure 4. Imaging of the extended obstacle scatterers by using
the boundary integral equation in Example 1. (top left) imaging
result by I1; (top right) imaging result by I2; (bottom left) imaging

result by Ĩ1; (bottom right) imaging result by Ĩ2.

Next we show the imaging results from the far-field pattern with limited aper-
ture data and demonstrate that the proposed imaging method can also handle the
missing data case. We consider so-called limited back-scattered aperture data with
incident angle αinc ∈ [−π/2, π/2] and observation angle αobs ∈ [−π/2, π/2], and
limited forward-scattered aperture data with incident angle αinc ∈ [−π/2, π/2] and
observation angle αobs ∈ [π/2, 3π/2]. The size of the response matrix is still the
same as the full aperture case 120×120, i.e., the intervals for the incident angle and
observation angle are also equally subdivided into 120 subintervals. Figure 5 shows
the singular value distribution of the response matrices for the far-field pattern by
using back-scattered limited aperture data and forward-scattered limited aperture
data. Based on the singular value distributions, we can make the following two
observations: (i) the extended scatterers is not a superposition of point scatterers,
i.e., each singular vector does not corresponds to a point on the boundary; (ii) the
response matrix obtained from full aperture data contains more leading singular
values and hence more information than that from limited aperture data. Figure
6 shows the imaging of the two obstacle scatterers by using back-scattered limited
aperture data and forward-scattered limited aperture data. Evidently, comparing
4 with 6, the full aperture data produces a much better result than those using
limited aperture data. The back-scattered limited aperture data yields a blurred
profile for the two extended obstacle scatterers. Using Born approximation, one
can see that back-scattered data contains mainly low frequency information of the
shape. The forward-scattered limited aperture gives a clear image of the convex
arc part of the circle-shaped obstacle, which is illuminated best by the array of
transducers.

Example 2. This example has the same two extended obstacles as Example.
Besides, the extended obstacles are surrounded by a set of 100 randomly distributed
point scatterers in an annulus with radii bounded below by 3 and above by 4, as
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Figure 5. The singular value plot of the response matrices for
the extended obstacle scatterers in Example 1. (left) limited back-
scattered aperture data; (right) limited forward-scattered aperture
data.
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Figure 6. Imaging of the extended obstacle scatterers by using
the boundary integral equation in Example 1. (left) limited back-
scattered aperture data; (right) limited forward-scattered aperture
data.
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Figure 7. A set of one hundred of randomly distributed point
scatterers in the annulus with radii bounded blow by 3 and above
by 4, and an extended obstacle scatterer with two disjoint compo-
nents: one is a circle-shaped scatterer and another is kite-shaped
scatterer in Example 2.

seen in Figure 7. The scattering coefficient σj is taken as a random number from
the interval (0, 1) for j = 1, . . . , 100. We consider the full aperture data and the
size of the response matrix is 120× 120.
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Figure 8. The singular value plot of the response matrix for the
point and extended obstacle scatterers in Example 2.
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Figure 9. Imaging of the point and extended obstacle scatterers

by using the generalized Foldy–Lax formulation by Ĩ2 in Example
2.

Figure 8 plots the singular value pattern of the response matrix from the far-
field pattern ψ∞,GFL by using the generalized Foldy–Lax formulation for the mixed
point and extended scatterers. Figure 9 shows the imaging of the 100 randomly dis-
tributed point scatterers and two scatterers by using full aperture data and imaging

function Ĩ2. The imaging highlights not only the profile of the two extended scat-
terers but also the location of the point scatterers. Since the scattering coefficients
are randomly chosen from the interval (0, 1), they may not be all strong scatterers,
which explains some point scatterers are clearly located but some are not so clearly
spotted.

To investigate how each far-field pattern contributes to the overall imaging,
Figure 10 shows the imaging results based on the projection method of the far-field
patterns. The method of the projection is given in Appendix, which describes how
to project the column space of the response matrix PGFL out of the column spaces
spanned by the columns of the response matrices of PFL and PE. Figure 10 shows,
from left to right, the imaging results by using the response matrix P1, P2, and P3,
respectively. The left figure in Figure 10 looks like the one in Figure 4 since the 100
point scatterers are taken from the overall imaging in Figure 9. The middle figure
in Figure 9 shows the imaging for the 100 randomly distributed point scatterers by
taking out the contribution of the extended scatterers from the response matrix.
The right figure in Figure 10 shows the imaging result arising from the multiple
interaction between the point scatterers and the extended obstacle scatterers.

Example 3. This example is a three-dimensional case. The incident and
observation directions can be represented by the incident angles αinc and βinc and
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Figure 10. Imaging of the point and extended obstacle scatterers
by using different far-field patterns in Example 2. (left) imaging
from the response matrix P1; (middle) imaging from the response
matrix P2; (right) imaging from the response matrix P3.
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Figure 11. A set of twenty equally spaced point scatterers on
a circle with radius 2 on the xy-plane and two spherical obstacle
scatterers with centers at (−1.0, 0.0, 0.0) and (1.0, 0.0, 0.0) and the
same radius of 0.5 in Example 3.

the observation angles αobs and βobs, i.e.,

d = (cosαinc sin βinc, sinαinc sinβinc, cosβinc) ∈ S
2,

r̂ = (cosαobs sin βobs, sinαobs sin βobs, cosβobs) ∈ S
2.

In this example, we only show the results for full aperture data, where αinc ∈
[0, 2π], βinc ∈ [0, π] and αobs ∈ [0, 2π], βobs ∈ [0, π], since the results for limited
aperture data are analogous to the comparison between the full and the limited
aperture data for the two-dimensional case. The size of the response matrix is
800×800, i.e., the intervals for the angles αinc and αobs are equally subdivided into
40, and the angles βinc and βobs are equally subdivided into 20.

In this example, we consider a group of twenty equally distributed point scatter-
ers on a circle with radius 2 on the xy-plane, as seen in Figure 11. The scattering
coefficients σj is chosen to be all equal, i.e., σj = 1.0, j = 1, . . . , 20. The cen-
ters of two spherical obstacle scatterers with the same radius of 0.5 are located at
(−1.0, 0.0, 0.0) and (1.0, 0.0, 0.0).

Figure 12 plots the singular value distribution of the response matrix of the
scattered field for the point and two spherical obstacle scatterers. Figures 13 shows
the imaging result for the point and two spherical obstacle scatterers on the planes
defined by z = 0, y = 0, and x = 1, respectively. As we can see, the imaging results
accurately locate the point scatterers and plot the profiles of the two spherical
extended scatterers.
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Figure 12. The singular value plots of the response matrix for
the scattered field in Example 3.
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Figure 13. Imaging of the point and two spherical obstacle scat-
terers by using the Foldy–Lax formulation in Example 3. (left)
slice z = 0; (middle) slice y = 0; (right) slice x = 1.

5. Conclusion

We use a direct imaging method to study the inverse scattering problem which
contains multiple scattering between point scatterers and extended scatterers. The
method is simple and efficient since no direct solver or iteration is needed, and can
handle full and limited synthetic aperture data. The motivation of the problem
formulation is to simulate the wave propagation and image a target in a cluttered
environment, where small particles are modeled as point scatterers. A generalized
Foldy–Lax formulation is used to resolve the multiple scattering between the small
scale point scatterers and the extended obstacle scatterers. The direct imaging
method uses the singular value decomposition of the response matrix from the far-
field pattern with physically based regularization and/or thresholding to visualize
the location of strong scattering. The imaging functions are robust and stable with
respect to the measurement noise. In future work, we will investigate the extended
obstacle scatterers with different boundary conditions, such as sound hard and
mixed type of sound soft and sound hard, and the three-dimensional electromagnetic
wave propagation which is governed by Maxwell’s equations.

Appendix A. Orthogonal projection of response matrix

Let v1, . . . ,vk be a family of orthonormal vectors in Cn, and let

V = span(v1, . . . ,vk).
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Obviously, the vectors v1, . . . ,vk form an orthonormal basis for the k-dimensional
subspace V of Cn. Given a vector u ∈ Cn, we next describe how to find the
projection of the vector u onto the subspace V , i.e., to find a vector w ∈ V such
that u−w ⊥ V for all vectors in V .

Construct a n× k matrix A by using the vectors v1, . . . ,vk as the columns

A = [v1 · · ·vk].

To find the project w onto the subspace V is equivalent to the following equation

AH(u−w) = 0,

which is equivalent to

(A.1) AHu = AHw.

Here H denotes the complex conjugate of the transpose. Meanwhile, since the
projection w is on the subspace V , the vector w can be written as the linear
combination of the vectors v1, . . . ,vk:

w = x1v1 + x2v2 + · · ·+ xkvk = Ax,

where x = (x1 . . . xk)
� is a k-dimensional column vector. Hence (A.1) can be

written as

AHu = AHAx.

Noticing AHA = Ik×k since v1, . . . ,vk are orthonormal. The above equation gives

x = AHu,

which yields the projection

w = AAHu.

Let Q = AAH. The matrix Q is called the projection matrix for the subspace V .
Define the response matrix

Pij = ψ∞(r̂i,dj),

where ψ∞ is the far-field pattern, ri is the observation direction vector, and dj is
the incident direction vector. For convenience, we introduce three response matrices
PFL, PE, and PGFL, which stand for the response matrix for the point scatterers,
extended obstacle, and mixed scatterers with both point scatterers and extended
obstacle, respectively.

Next we describe how to project the columns of the response matrix PGFL out
of the response matrix PFL and/or the response matrix PE. We can do the SVD
for PFL and PE, and pick the set of leading left singular vectors u1, . . . ,um and
v1, . . . ,vn from the SVD of PFL and PE, respectively. Using these orthonormal
vectors, we can construct

AFL = (u1 . . .um)

and

AE = (v1 . . .vn).

Then we can construct the project matrices

QFL = AFLA
H
FL

and

QE = AEA
H
E .
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Finally we can study the projection of the response matrix PGFL:

P1 = PGFL −QEPGFL = (I −QE)PGFL,(A.2)

P2 = PGFL −QFLPGFL = (I −QFL)PGFL,(A.3)

P3 = PGFL −QEPGFL −QFLPGFL = (I −QE −QFL)PGFL.(A.4)

The direct imaging function can be construct from the SVD of P1, P2, and P3.
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