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Abstract
This paper is concerned with computational approaches and mathematical
analysis for solving inverse scattering problems in the frequency domain. The
problems arise in a diverse set of scientific areas with significant industrial,
medical, and military applications. In addition to nonlinearity, there are two
common difficulties associated with the inverse problems: ill-posedness and
limited resolution (diffraction limit). Due to the diffraction limit, for a given
frequency, only a low spatial frequency part of the desired parameter can be
observed from measurements in the far field. The main idea developed here is
that if the reconstruction is restricted to only the observable part, then the
inversion will become stable. The challenging task is how to design stable
numerical methods for solving these inverse scattering problems inspired by
the diffraction limit. Recently, novel recursive linearization based algorithms
have been presented in an attempt to answer the above question. These
methods require multi-frequency scattering data and proceed via a continua-
tion procedure with respect to the frequency from low to high. The objective
of this paper is to give a brief review of these methods, their error estimates,
and the related mathematical analysis. More attention is paid to the inverse
medium and inverse source problems. Numerical experiments are included to
illustrate the effectiveness of these methods.
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(Some figures may appear in colour only in the online journal)

1. Introduction

Scattering theory is concerned with the effect that a scatterer has on an incident field [87]. If
the total field is viewed as the sum of an incident field and a scattered field, the direct
scattering problems are to determine the scattered field from the incident field and the dif-
ferential equations governing the wave motion; the inverse scattering problems are to
determine the nature of the scatterer, such as location, geometry, or material property, from
knowledge of the scattered field [50, 53, 54, 89, 92]. These problems have played important
roles in diverse scientific areas such as radar and sonar (e.g., stealth aircraft design and
submarine detection), geophysical exploration (e.g., oil and gas exploration), medical imaging
(e.g., breast cancer detection), near-field optical microscopy (e.g., imaging of small scale
biological samples), and nano-optics (e.g., design and fabrication of nano-scale optical
elements).

In recent decades, the growth of computational capability and the development of fast
algorithms have transformed the methodology for scientific investigation and industrial
applications in the field of scattering theory. Reciprocally, the practical applications and
scientific developments have driven the need for more sophisticated mathematical models and
numerical algorithms to describe the scattering of complicated structures, and to accurately
compute acoustic and electromagnetic fields and thus to predict the performance of a given
structure, as well as to carry out optimal design of new structures. This paper is not intended
to be a general survey of the inverse scattering problems. It is designed to be an introduction
of the state of the art on computational approaches and mathematical analysis for solving the
inverse scattering problems with multi-frequencies.

Due to lack of stability, the inverse scattering problems are severely ill-posed at a fixed
frequency [70]. Small variations in the measured data can lead to large errors in the recon-
structions, unless appropriate regularization methods are used to recover the information
about the solution as stably as possible [63]. Interestingly, the Lipschitz stability results were
obtained in [33, 34, 97, 98] for the time-domain acoustic wave equation which is equivalent
to availability of the data corresponding to all frequencies. They motivate the intrinsic
advantage of making use of multi-frequency data to gain increased stability for the time-
harmonic scattering problems. According to the Heisenberg uncertainty principle, there is a
resolution limit to the sharpness of details that can be observed by conventional optical
microscopy, one half the wavelength, referred to as the diffraction limit [55, 56, 67, 100]. The
diffraction limit provides a limit on the accuracy of the reconstruction for a given wavelength.
To improve the resolution, it is desirable to use an incident field with a shorter wavelength or
a higher frequency to illuminate the scatterer. However, it presents challenging mathematical
and computational questions to realize this principle due to the nature of the underlying
inverse problems.

Computational methods can be classified into two categories for solving the inverse
scattering problems: nonlinear optimization based iterative methods
[1, 36, 48, 61, 73, 75, 84–86, 90, 91, 94] and imaging based direct methods
[37, 46, 47, 51, 52, 64, 68, 69, 76–80, 82, 83, 93]. The former are known as quantitative
methods, that aim at recovering unknown functions which represent the scatterer. Although
the methods are physically motivated with useful mathematical properties, they are compu-
tationally intensive since a sequence of direct and adjoint scattering problems need to be
solved at iterations. Recently, this computation obstacle seems to be resolved with the ever-
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increasing of computing powers and the development of fast algorithms. The latter are called
qualitative methods that attempt to visualize the scatterer by highlighting its boundary with
designed imaging functions. Attractively, no direct solvers are needed, but they are not as
accurate as those quantitative methods and might be time-consuming when evaluating the
imaging functions over the whole domain particularly for three-dimensional problems. In
addition, very little is known about the stability of the direct imaging methods.

The goal of this paper is to present the stable recursive linearization method (RLM) for
solving quantitatively the inverse scattering problems with increased resolution. Specifically,
we consider two representative examples among the inverse scattering problems: the non-
linear inverse medium problem (IMP) and the linear inverse source problem (ISP). The
method works equally well for many other inverse scattering problems such as the inverse
obstacle scattering problem [24, 95] and the inverse surface scattering problem [22, 49].
Using the scalar model of the two-dimensional Helmholtz equation, we describe how the
method proceeds via a continuation procedure with respect to the wavenumber for solving
both the IMP and the ISP. The RLM actually takes a much simpler version when applying to
the ISP since no linearization is needed. To validate the method mathematically, we show an
error estimate for the IMP and a stability result for the ISP. Numerical examples are also
reported to illustrate the effectiveness of the proposed method.

The outline of this paper is as follows. In section 2, the IMP is introduced; the variational
problem is studied for the direct scattering; an energy estimate is given to provide a criterion
for the weak scattering; the RLM is presented to solve the IMP. Section 3 is devoted to the
ISP. The results of uniqueness and stability are given; a simpler version of the RLM is
presented for solving the ISP. The paper is concluded with some general remarks and
directions for future research in section 4. Throughout the paper, a b stands for a Cb ,
where C is a positive constant, whose precise value is not required but should be always clear
from the context.

2. Inverse medium problem

In this section, we consider the IMP, which is to reconstruct the inhomogeneous medium
from the boundary measurement of the scattered field surrounding it.

Figure 1. The inverse medium problem geometry. A plane wave incf is incident on the
scatterer, which is represented by the function q with a compact support contained in
the ball B.

Inverse Problems 31 (2015) 093001 Topical Review

3



2.1. A model problem

As seen in figure 1, we consider the two-dimensional Helmholtz equation

q1 0 in , 2.12 2( ) ( )f k fD + + =

where f is the total field, 0k > is the wavenumber, and q r( ) is a real function known as the
scatterer representing the inhomogeneous medium. We assume that the scatterer has a
compact support contained in the ball B Rr r:2{ ∣ ∣ }= Î < with boundary

B Rr r:2{ ∣ ∣ }¶ = Î = , and satisfies q q q1 min max - < < ¥, where qmin and qmax
are two constants.

The scatterer is illuminated by a plane incident field

r e , 2.2r dinc i( ) ( )·f = k

where d r rcos , sin : 11 2( ) { ∣ ∣ } q q= Î = Î = is the incident direction and 0, 2( )q pÎ
is the incident angle. Evidently, the incident field satisfies

0 in . 2.3inc 2 inc 2 ( )f k fD + =

The total field f consists of the incident field incf and the scattered field ψ:

. 2.4inc ( )f f y= +

It follows from (2.1), (2.3) and (2.4) that the scattered field satisfies

q q1 in . 2.52 2 inc 2( ) ( )y k y k fD + + = -

The scattered field is required to satisfy the Sommerfeld radiation condition:

o r r ri as . 2.6r
1 2( ) ∣ ∣ ( )y ky¶ - = =  ¥-

Given the incident field incf , the direct problem is to determine the scattered field ψ for
the known scatterer q. Based on the Lax–Milgram theorem and the Fredholm alternative
theorem, the direct problem can be shown to have a unique weak solution for all wave-
numbers. An energy estimate is given for the scatterered field, which provides a criterion for
the weak scattering. Furthermore, properties on the continuity and Fréchet differentiability of
the nonlinear scattering map are examined. The IMP is to determine q from the boundary
measurement of the scattered field ψ on B¶ , for the given incident field incf .

The IMP arises naturally in diverse applications such as radar, sonar, geophysical
exploration, medical imaging, and nondestructive testing [50]. In addition to being highly
nonlinear, there are two other major difficulties associated with the inverse problem: the ill-
posedness (unstable with respect to measurement errors) and the presence of many local
minima (a common issue in minimizing nonlinear functions). A number of algorithms have
been proposed for numerical solutions of this inverse problem, e.g., [38–
42, 60, 66, 74, 99, 101, 102]. Classical iterative optimization methods offer fast local con-
vergence but often fail to compute the global minimizers because of multiple local minima.
Another issue is the ill-posedness, i.e., infinitesimal noise in the measured data may give rise
to a large error in the computed solution. It is well known that the ill-posedness of the inverse
scattering problem decreases as the frequency increases [3, 32]. However, at high frequencies,
the nonlinear equation becomes extremely oscillatory and possesses many more local minima.
A challenge for solving this problem is to develop a solution method that takes advantages of
the regularity of the problem for high frequencies without being undermined by local minima.

To overcome the difficulties, a RLM was proposed in [43–45] for solving the IMP of the
two-dimensional Helmholtz equation. Based on the Riccati equations for the scattering
matrices, the method requires full aperture data and needs to solve a sensitivity matrix

Inverse Problems 31 (2015) 093001 Topical Review

4



equation at each iteration. Due to the high computational cost, it is numerically difficult to
extend the method to the three-dimensional problems. Recently, we have developed new and
more efficient RLMs for solving the two-dimensional Helmholtz equation and the three-
dimensional Maxwell equations for both full and limited aperture data by direclty using the
differential equation formulation [14–17, 20, 21, 23, 28, 31]. In the case of a fixed frequency,
a novel RLM has also been developed by making use of the evanescent waves [18, 19]. Direct
imaging techniques have been explored to replace the weak scattering for generating the
initial guesses in [13, 24]. More recently, a hybrid method has been developed for solving the
IMP with a stochastic source by combining the RLM and the Wiener chaos expansion [12].
We refer readers to [30] for the mathematical analysis of the general RLMs for solving the
IMP with multi-frequency measurements.

In this section, for clarity of exposition, we present the RLM in the context of the IMP.
The applications of RLM to the three-dimensional Maxwellʼs equations and inverse surface
scattering problems impose additional challenging technical difficulties, but the main idea
remains the same. The method, obtained by a continuation procedure on the wavenumber,
requires multi-frequency scattering data. At each wavenumber, it determines a forward model
which produces the prescribed scattering data. At a low wavenumber, the scattered field is
weak. Consequently, the nonlinear equation becomes essentially linear, known as the Born
approximation. It first solves this nearly linear equation at the lowest frequency to obtain low-
frequency modes of the true scatterer. The approximation is then used to linearize the non-
linear equation at the next higher wavenumber to produce a better approximation which
contains more modes of the true scatterer. This process is continued until a sufficiently high
wavenumber where the dominant modes of the scatterer are essentially recovered. The
underlying physics which permits the successive recovery is the Heisenberg uncertainty
principle: it is increasingly difficult to determine features of the scatterer as its size becomes
decreasingly smaller than a half of a wavelength.

2.2. Variational problem

To describe the boundary value problem and derive its variational formulation, we introduce
some function spaces. Denote by L B2 ( ) and L B( )¥ the spaces of square integrable functions
and bounded functions in B, respectively. Let H Bs ( ) and H Bs ( )¶ be the standard Sobolev
spaces equipped with the norms s B,·  and s B,· ¶  . The dual space of H Bs ( )¶ is H Bs ( )¶-

with respect to the scalar product in L B2 ( )¶ defined by ,· · .
In the domain B2⧹ ¯ , the solution of (2.5) can be written under the polar coordinates as

follows:

r
H r

H R
, e , 2.7

n

n

n
n

n
1

1
i( )

( )
( )

ˆ ( )
( )

( )


åy q
k
k

y= q

Î

where Hn
1( ) is the Hankel function of the first kind with order n and

R2 , e d .n
n1

0

2
iˆ ( ) ( )òy p y q q=

p
q- -

Let H B H B: 1 2 1 2( ) ( )¶  ¶-B be the Dirichlet-to-Neumann (DtN) operator defined as
follows: for any H B1 2 ( )y Î ¶ ,

R
H R

H R
, e . 2.8

n

n

n
n

n
1

1
i( )( )

( )
( )

ˆ ( )
( )

( )


åy q k
k
k

y=
¢

q

Î
B
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Using the DtN operator, the solution in (2.7) satisfies the following transparent boundary
condition

Bon , 2.9n ( )y y¶ = ¶B

where n is the unit outward normal on B¶ .
To state the variational problem, we introduce the sesquilinear form

a H B H B: 1 1( ) ( ) ´ 

a qr r, d 1 d , , 2.10
B B

2( ) · ¯ ( ) ¯ ( )ò òy j y j k yj y j=   - + - B

where the bar denotes the complex conjugate. The direct problem (2.5), (2.9) is equivalent to
the following variational problem: find H B1( )y Î such that

a q H Br, d for all . 2.11
B

2 inc 1( ) ¯ ( ) ( )òy j k f j j= Î

For a given scatterer q and an incident field incf , we define the map q, ,inc( )f kF by
q, ,inc( )y f k= F , where ψ is the solution of the variational problem (2.11) at the wave-

number κ. It is easily seen that the map q, ,inc( )f kF is linear with respect to incf but is
nonlinear with respect to q. Hence, we may denote q, ,inc( )f kF by q, inc( )k fF .

Concerning the map q,( )kF , we have the following regularity results, which include the
well-posedness of the variational problem (2.11) and energy estimates for the solution. All the
proofs may be given by following step by step in [18]. Hence we omit them here.

Theorem 2.1. There exists a small 0mink > depending on qmax such that if mink k , the
variational problem (2.11) has a unique weak solution in H B1( ) and q,( )kF is a bounded
linear operator from L B2 ( ) to H B1( ) satisfying

q, .B B
inc

1,
2 inc

0,( ) k f k f   F

The energy estimate in theorem 2.1 provides a criterion for the weak scattering: the scattered
field ψ is weak for a sufficiently small wavenumber κ.

For a general wavenumber 0k > , the well-posedness of the variational problem (2.11)
follows from the Fredholm alternative. However, the constant depends on the wavenumber
and q q,min max in the energy estimate.

Theorem 2.2. The variational problem (2.11) has a unique weak solution for all 0k > and
q,( )kF is a linear bounded operator from L B2 ( ) to H B1( ) satisfying

q, .B B
inc

1,
inc

0,( ) k f f   F

LetT be the trace operator for the boundary B¶ . By the trace theorem,T is a bounded linear
operator from H B1( ) onto H B1 2 ( )¶ . We can now define the scattering map

q q, ,( ) ( ◦ )( )k k=S T F .

Next we consider the Fréchet differentiability of the scattering operator. Recall that
q,( )kS is nonlinear with respect to q. Formally, by using the first-order perturbation theory,

we may obtain the linearized scattering problem (2.5), (2.9) with respect to a reference
scatterer q:
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q q B

B

1 in ,

on ,
2.12

n

2 2 inc( )( ) ( )
⎪

⎪

⎧
⎨
⎩

dy k dy k d f y

dy dy

D + + = - +

¶ = ¶B

where q, inc( )y k f= F .
Define the formal linearization q,( )kL of q,( )kF by q q, , inc( )( )dy k d f= L , where

dy is the solution to the linearized problem (2.12). It can be shown that the linear operator
q,( )kL is bounded and continuous, and is the Fréchet derivative of the nonlinear operator
q,( )kF . Hence, we may obtain the Fréchet differentiability of the scattering operator
q,( )kS , which is useful for us to present the RLM.

Theorem 2.3. The scattering operator q,( )kS is Fréchet differentiable with respect to q
and its Fréchet derivative is

q q, , .( ) ( ◦ )( )k k¢ =S T L

The proof may be found in [18]. We refer to [10] and [4] for the regularity and stability
analysis of the scattering operator for the two-dimensional Helmholtz equation and the three-
dimensional Maxwell equation, respectively.

2.3. Born approximation

To initialize the RLM, an initial guess is needed and derived from the Born approximation.
Rewriting (2.5) as

q . 2.132 2 inc( ) ( )y k y k f yD + = - +

It follows from the energy estimate in theorem (2.1) that the scattered field ψ is weak for
sufficiently small wavenumber. Dropping the scattered field in the right-hand side of (2.13),
we consider the Born approximation:

q B

B

in ,

on .
2.14B B

B Bn

2 2 inc

( )
⎧⎨⎩

y k y k f
y y

D + = -
¶ = ¶B

It is shown in [12] that there exists a small 0mink > such that if mink k it holds the
following error estimate for the Born approximation of the scattered field:

,B B B1,
4 inc

0,y y k f-   

which implies that By is a good approximation to the scattered field ψ for sufficiently small κ.
If the scattering data ψ is available for the full aperture on the whole B¶ , the field By of

(2.14), as a good approximation to ψ, can be viewed as a known quantity on B¶ . The plane
waves turn out to be useful to obtain an initial guess.

Consider an auxiliary function

r e , 2.15r pinc i( ) ( )·y = k

where p cos , sin , 0, 21( ) [ )b b b p= Î Î . Obviously, the auxiliary function represents
propagating plane waves and satisfies the Helmholtz equation

0 in .inc 2 inc 2y k yD + =
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Multiplying (2.14) by incy and integrating in B on both sides, we have

qr r rd d d .
B

B
B

B
B

inc 2 inc 2 inc incò ò òy y k y y k f yD + = -

Integration by parts yields

qr rd d .
B

B B
B

n n
inc inc 2 inc inc( )ò òy y y y k f y¶ - ¶ = -

¶

Using the DtN operator (2.9), we may obtain a linear integral equation for the scatterer q:

q srd d ,
B B

B Bn
inc inc 2 inc inc( )ò òf y k y y y y= ¶ --

¶
B

where the right-hand side of the above equation is known since By is available on B¶ . Noting
(2.2) and (2.15), we obtain

q sr re d d ,
B B

B B
r d p

n
i 2 inc inc( )( ) ·( )ò òk y y y y= ¶ -k + -

¶
B

which gives the Fourier transform of q:

q sd . 2.16
B

B n B
2 inc inc( )ˆ ( ) ( )òx k y y y y= ¶ --

¶
B

Here d p( )x k= + satisfies 2∣ ∣ x k. Thus only the low Fourier modes of q̂ ( )x in the ball
: 2{ ∣ ∣ }x x k can be determined since κ is small for the Born approximation. The scattering

data with the higher wavenumber must be used in order to recover more Fourier modes of the
true scatterer.

2.4. Recursive linearization

Let 0mink > be the constant defined in theorem 2.1 and maxk be a constant which is much
larger than mink . Assume that the scattering data ψ is available over a range of wavenumbers

,min max[ ]k k kÎ , which may be divided into N Nmin 0 1 1 maxk k k k k k= < < < < =- .
We now describe a procedure that recursively determines a better approximation qj at the
wavenumber jk k= for j N1, 2 ,...,= with N1 2k k k< < < in a increasing manner.

Suppose now that an approximation of the scatterer qj 1- has been recovered at the
wavenumber j 1k - . We wish to determine qj, or equivalently, to determine the perturbation

q q q . 2.17j j j 1 ( )d = - -

For the recovered scatterer qj 1- , we solve at the wavenumber jk the direct problem

q q B

B

1 in ,

on .
2.18j j j j j j

j jn

2
1

2
1

inc( ) ( )
⎪
⎪

⎧
⎨
⎩

y k y k f

y y

D + + = -

¶ = ¶
- -

B

For the scatterer qj, we have

q q B

B

1 in ,

on .
2.19

j j j j j j j j

j j j jn

2 2 inc( )( ) ( )
( ) ( )

( )
⎧
⎨⎪
⎩⎪

y dy k y dy k f

y dy y dy

D + + + + = -

¶ + = + ¶B

Subtracting (2.18) from (2.19) and omitting the second-order smallness in qjd and jdy , we
obtain
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q q B

B

1 in ,

on .
2.20j j j j j j j

j jn

2 2 inc( ) ( ) ( )
⎪
⎪

⎧
⎨
⎩

dy k dy k d f y

dy dy

D + + = - +

¶ = ¶B

For the scatterer qj and the incident field incf , we have from (2.19) that

q , ,j j j j
inc( )k f y dy= +F

Recall the scattering map

q q, , .j j j j
inc inc( ) ( ◦ )( )k f k f=S T F

By the definition of the trace operator, we have

q , .j j j j B
inc ( )( ) ∣k f y dy= + ¶S

Let q ,j j1( )k¢ -S be the Fréchet derivative of q ,j j( )kS and denote the residual operator

q , .j j j B1( ) ∣k dy=- ¶R

It follows from theorem 2.3 that

q q q, , . 2.21j j j j j j B1 1( ) ( ) ∣ ( )k d k dy¢ = =- - ¶S R

We apply the Landweber iteration (see, [63]) to the above equation and obtain

q q , , 2.22j j j1( )( ) ◦ ( ) ( )*d a k= ¢ -S R

where 0a > is a positive relaxation parameter and ( )*¢S is the adjoint operator of ¢S .
We consider the following adjoint problem to efficiently compute q ,j j1(( ) ◦ )( )* k¢ -S R :

q B

q B

1 0 in ,

, on ,
2.23j j j

j j j jn

2

1

( )
( )

( )
⎪

⎪

⎧
⎨
⎩ *

j k j

j j k

D + + =

¶ - = ¶-B R

where *B is the adjoint operator of B and is defined by

R
H R

H R
R, e , 2 , e d .

n

n

n
n

n
n

n
1

1
i 1

0

2
i( )( )

¯ ( )
¯ ( )

ˆ ˆ ( ) ( )
( )

( )*


òåy q k
k

k
y y p y q q= =

¢
q

p
q

Î

- -B

Multiplying (2.20) with the complex conjugate of jj and integrating over B on both sides,
we obtain

q qr r rd 1 d d .
B

j j j
B

j j j j
B

j j j
2 2 inc( ) ( )¯ ¯ ¯ò ò òdy j k dy j k d f y jD + + = - +

It follows from Greenʼs formula and the adjoint problem (2.23) that we have

q r q r, d d .
B

j j j j
B

j j j1
2 inc( )¯ ( ) ¯ò òdy k k d f y j= +

¶
-R

It follows from (2.21) that

q q q q r, , , d ,j j j j j j
B

j j j1 1
2 inc( )( ) ( ) ¯òk d k k d f y j¢ = +- -S R

which implies

q q qr r, d d .
B

j j j j
B

j j j1
2 inc( ) ( )( ) ◦ ( ) ¯*ò òd k k d f y j¢ = +-S R
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Since it hold for any qjd , we have after combining (2.22) that

q . 2.24j j j j
2 inc( )¯ ¯ ( )d ak f y j= +

Thus for each iteration, we solve one direct problem (2.18) and one adjoint problem
(2.23). Since the adjoint problem has a variational form similar to that of the direct problem,
we need to compute essentially two direct problems at each step. Once the correction qjd is
available, qj is updated by q qj j1 d+- . The procedure is repeated for j N1 ,..., .=

2.5. Error estimate

At the wavenumber κ, consider the objective functional

q q s q r
1

2
, d

2
d ,

B B

2 2( ) ∣ ( ) ∣ ∣ ∣ ò òk y
g

= - + 
¶

S

where ψ is the scattering data on B¶ at the wavenumber κ and 0g > is the regularization
parameter. Clearly, the objective functional consists of the cost functional and the
regularization functional. The inverse medium scattering problem can formulated into the
minimization problem:

qmin .( )

The regularization term filters high frequency oscillations and stabilizes the minimization
problem. The regularization parameter γ fixes the resolution. Here we take a usual L2

regularization for an example by assuming a smooth scatterer function q. A total variation
type regularization may be considered if q is a piecewise constant function.

To minimize the objective functional by a gradient method, it is required to compute the
Fréchet derivative of the cost and regularization functionals. Denote the residual

q q, ,( ) ( )k k y= -R S . A simple calculation yields the derivative of the objective func-
tional at q:

q q q q q s q q

q q q q q

q q q q

r

r

r r

Re , , d d ,

Re , , , d ,

Re , d d . 2.25

B B

B

B B
( )( )

( ) ( ) ¯ ( )

( ) ( )

◦ ( ) ( )*

 ò ò
ò

ò ò

d k d k g d

k d k d g

d k d g

¢ = ¢ + D

= ¢ + D

= ¢ + D

¶
S R

S R

S R

Similarly, we may consider the following adjoint problem to efficiently compute
R q, j(( ) ◦ )( )* k¢S :

q B

q B

1 0 in ,

, on .n

2 ( )
( )

⎧⎨⎩ *
j k j
j j k

D + + =
¶ - = ¶B R

Repeating the same step in the previous section, we derive that

q, , 2.262 inc( ) ( )( ) ◦ ( ) ¯ ¯ ( )* k k f y j¢ = +S R

where q,( )y k= S is the solution of the direct problem with the scatterer q at the
wavenumber κ.

Combining (2.25) and (2.26) yields the Fréchet derivative of the objective functional:

q qRe . 2.272 inc( )( ) ¯ ¯ ( )⎡⎣ ⎤⎦ k f y j g¢ = + + D
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Comparing (2.24) with (2.27), we derive the same Fréchet derivative from two different
points of view: one is derived via operator equations and another is based on the optimization
approach.

The following is the main result of the error estimate of the RLM for solving the inverse
medium scattering problem. The proof may be found in [30].

Theorem 2.4. Assume that the scattering data ( )y k is available for ,min max[ ]k k kÎ . Let
j N j N, 0, 1 ,...,j min max min( )k k k k= + - = and q j˜( )k is a qj-minimum norm solution,

i.e., among all solutions of q, j j( ) ( )k y k=S , q j˜( )k minimizes the distant to qj for
j N0   . There exist positive constants γ and N0 such that if

q q ,B0 0 0,˜( ) k g- 

then it holds for all N N0 that

q q N .N N B0,
1 2 1˜( ) k g- - - 

According to theorem 2.4, if the error of the initial guess at lowest wavenumber mink is of the
order of γ (small positive regularization parameter), the algorithm converges linearly to the
observable part of the true scatterer q max˜( )k . The convergence result may be interpreted as
follows: if a good estimate of the first few Fourier modes of the scatterer at mink is available,
then the algorithm will provide a good approximation of the observable part q max˜( )k of the
scatterer at a computational cost which is proportional to 1 2g- . The derivation of the error
between the true scatterer q and its observable part q max˜( )k is strongly linked to the
uniqueness, and particularly the stability of the inverse problem with increased wavenumber,
which is open and remains for future work.

2.6. Numerical experiments

The scattering data is obtained by the numerical solution of the direct problem, which is
implemented by using the finite element method with the perfectly matched layer technique.
We present an example to illustrate the performance of the method.

Let

q x y x x x y, 0.3 1 e 0.2 e 0.03ex y x y x y2 1 3 5 12 2 2 2 2 2( )˜( ) ( ) ( ) ( )= - - - - -- - + - - - + -

Figure 2. The inverse medium scattering problem: (left) exact scatterer; (right)
reconstructed scatterer.
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and reconstruct a scatterer defined by

q x y q x y, 3 , 3( ) ˜( )=

inside the unit ball B r r: 12{ ∣ ∣ }= Î < , see figure 2 (left) for the surface plot of the exact
scatterer function in the domain B. Eleven equally spaced wavenumbers are used in the
construction, starting from the lowest wavenumber 0.5mink p= (corresponding to the
wavelength 4.0l = ) and ending at the highest wavenumber 4.0maxk p= (corresponding to
the wavelength 0.5l = ). Denote by 7 0.5max min( )k k k pD = - = the step size of the
wavenumber; then the seven equally spaced wavenumbers are j j, 0 ,..., 7j mink k k= + D = .
The number of incident fields is taken as 20, which accounts for 20 Landweber iterations at
each wavenumber. The relaxation parameter α is 0.01. The relative L B2 ( ) error of
reconstruction is listed in table 1 at eight wavenumbers; the error decreases from 9.49 10 1´ -

to 1.41 10 2´ - as the wavenumber increases from 0.50k p= to 4.07k p= . The
reconstructed scatterer function is plotted in figure 2 (right), which is almost identical to
the exact scatterer function from the plot. A cross-section reconstruction of the scatterer at
x = 0 is shown against the exact scatterer at four different wavenumbers in figure 3.The
convergence of the method is clearly shown as the wavenumber is increased.

To test the stability of the method, we reconstruct the scatterer with noisy data. Some
relative random noise is added to the data, i.e., the scattering data takes

Figure 3. The reconstructed scatterer (dashed line) is plotted against the exact scatterer
(solid line) for the cross-section x = 0.
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1 rand .B B∣ ≔ ( ) ∣y s y+¶ ¶

Here rand stands for uniformly distributed random numbers in 1, 1[ ]- and σ is the noise
level parameter. Five tests are made here corresponding to the noise level added to the
scattering data to 1%, 3%, 5%, 7%, 9%s = . The relative L B2 ( ) error are listed in table 2,
which shows that the method is stable with respect to the noise.

3. Inverse source problem

In this section, we consider the ISP that determines the unknown current density function
from measurements of the radiated fields at multiple wavenumbers.

3.1. A model problem

Consider the two-dimensional Helmholtz equation

f in , 3.12 2 ( )y k yD + =

where κ is the wavenumber, ψ is the radiated scalar field, and the source current density
function f r( ) is assumed to have a compact support contained in B Rrr :2{ ∣ ∣ } = Î .
The radiated field ψ satisfies the Sommerfeld radiation condition:

o r r ri as . 3.2r
1 2( ) ∣ ∣ ( )y ky¶ - = =  ¥-

Since ψ depends on the wavenumber κ, we sometimes employ r,( )y k in place of r( )y to
emphasize the dependence on the wavenumber κ.

Similarly, in the domain B2⧹ ¯ , the solution of (3.1) has a series expansion (2.7) in the
polar coordinates. Using the DtN operator (2.8), the solution of (3.1) satisfies the transparent
boundary condition

Bon , 3.3n ( )y y¶ = ¶B

where n is the unit outward normal on B¶ .
Given the source density function f, the direct problem is to determine the radiated field

ψ. The ISP is to determine the source function f from the boundary measurement of the
radiated field on the boundary B¶ , i.e., r,( )y kT , for all 0,( ¯ ]k kÎ , where T is the trace
operator and 0k̄ > is a given constant.

Table 1. Relative L B2 ( ) error of reconstruction at different wavenumbers.

κ 0k 1k 2k 3k

e2 9.49 10 1´ - 7.86 10 1´ - 4.91 10 1´ - 2.52 10 1´ -

κ 4k 5k 6k 7k

e2 1.23 10 1´ - 5.49 10 2´ - 2.53 10 2´ - 1.41 10 2´ -

Table 2. Relative L B2 ( ) error of reconstruction with noisy data.

σ 1% 3% 5% 7% 9%

e2 1.44 10 2´ - 1.56 10 2´ - 1.80 10 2´ - 2.16 10 2´ - 2.55 10 2´ -
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The ISP has many significant applications in biomedical engineering and antenna
synthesis. In medical application it is desired to use the measurement of the radiated elec-
tromagnetic field on the surface of the human brain to infer the abnormalities inside the brain
[57]. In antenna synthesis, the ISP is to reconstruct the unknown current distribution along a
linear antenna which produces the desired radiated field [7]. The problem also arises naturally
in identification of pollutant in the environment [81].

The mathematical studies of the ISP for electromagnetism date back to [35], where the
uniqueness of the problem was investigated at a fixed frequency. It is now well known that a
source with an extended support cannot be uniquely determined from surface measurements
at a fixed frequency due to the existence of infinitely many non-radiating fields
[2, 58, 59, 65, 71, 72]. Therefore, in order to obtain a unique solution to the problem,
additional constraints need to be imposed on the source. A usual choice is to find the source
with a minimum energy norm. However, the difference between the minimum energy
solution and the original source function could be significant. Another difficulty of the ISP at
fixed frequency is brought by its inherited instability. This is due to exponential decay of the
singular eigenvalues of the forward operator [25–27, 62]. For the special cases of recon-
struction for point sources, we refer the readers to [5, 8, 9, 96] for studies of the unique
identifiability and stability of the problem. If the source consists of dipoles only, numerical
reconstruction based on algebraic formulations can be applied. More recently, an inverse
random source scattering problem has been studied in [11, 57, 88], where the current source
density function is modeled as a random function.

The use of the multiple frequency data for the ISP provides an approach to circumvent
the difficulties of non-uniqueness and instability presented at a fixed frequency [29, 62].
Indeed, the results of uniqueness and stability can be established for the case of multiple
frequency measurements. It can be shown that the inverse problem is uniquely solvable and is
Lipschitz stable when the highest wavenumber exceeds a certain real number. The theoretical
results shed a light on the stability estimate for more challenging nonlinear problems such as
the IMP discussed in section 2. Computationally, we present a continuation procedure along
the wavenumbers for solving the ISP. The method has the same spirit as the RLM, although
the linearization step is not needed since the ISP is a linear problem.

3.2. Uniqueness and stability

Let 2x Î such that 0,∣ ∣ ( ¯ ]x k k= Î . Multiplying (3.1) by e ri ·x- and integrating over B, we
obtain

f r n re , i , ,
B

r
n

i [ ]ˆ ( ) ( ) · ( )·òx y k x y k= ¶ +x

¶

-

which implies from the boundary condition (3.3) that

f n re i , .
B

riˆ ( ) ( · ) ( )·òx x y k= +x

¶

- B

It is evident from the above formula that by collecting the measurements r,( )y k on a
band of wavenumber in 0,( ¯ ]k , the Fourier transform of f on the frequency interval 0,( ¯ ]k
can be reconstructed directly. In addition, the following result indicates that this amount of
information is sufficient to determine the source function f uniquely.

Theorem 3.1. Let jk be a set of real numbers with an accumulation point. Then the
measurements r,j( )y k on B¶ determine uniquely the source function f.
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The next result is concerned with the stability estimates of the multi-frequency ISP. The
readers are referred to [25] for the details of the proof.

Theorem 3.2. Let f C B1( )Î with a compact support in B, and assume that

1L B L Bn 0, 0,1 1( ) ( )[ ] [ ]¯ ¯ y ky= ¶ + <k k´ ¶ ´ ¶   

and

f M,C B1( )  

where M is a strictly positive constant. The following statements hold:

(i) If 14¯ k +- , then

f M1 1
1 1

,C B

3
2

0

¯ ¯( ) ⎜ ⎟ ⎜ ⎟
⎡
⎣
⎢⎢

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎤
⎦
⎥⎥

k k
+ + + 

(ii) If 14¯ k < +- , then

f M1 1
1 1 1 1

ln
.C B

1
2

1
6

1
6

0

¯ ¯ ¯ ( )
( ) ⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎡

⎣

⎢⎢⎢
⎛
⎝

⎞
⎠

⎛
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⎠

⎞
⎠
⎟⎟

⎤

⎦

⎥⎥⎥ 


k k k
+ + +

-
 

The result in theorem 3.2 shows clearly that if the source function f is compactly sup-
ported in B and the measurement r,( )y k is taken for 0,( ¯ ]k kÎ with a noise ò, then the
recovery of f is linearly and logarithmic stable with respect to the noise for large and small k̄,
respectively. These theoritical stability results confirm the physical expectations on increasing
the resolution by taking multi-frequency data.

3.3. Numerical experiments

It is assumed that the radiating fields ψ is measured over a range of wavenumbers
,min max[ ]k k kÎ on B¶ . Let ( )kS be the forward scattering operator which maps the source

function ȷ to the measurement ψ such that f( )y k= S . Similar to the inverse medium
scattering, the numerical algorithm for ISP divides the wavenumber interval by setting

N Nmin 0 1 1 maxk k k k k k= < < < < =- , and adopts a continuation procedure along the
wavenumber by recursively obtaining an approximation fj at the wavenumber jk k= for
j N0, 1, 2 ,...,= . We note that the ISP is linear, hence the linearization procedure as in the
inverse medium scattering is not required. Instead, a straightforward Landweber iteration can
applied as a regularization scheme at each fixed wavenumber. More precisely, suppose that an
approximation of the source fj 1- has been recovered at the wavenumber j 1k - , the steepest
descent direction fjd is chosen such that

f f ,j j j j j 1( )( ) ( )*d k y k= - -S S

where j( )* kS is the adjoint operator of j( )kS , and jy denotes the radiating field at jk . The
reconstruction at jk is updated by the formula f f fj j j j1 a d= +- , where ja is a suitable step
length. This downhill process is done iteratively at jk k= until the solution fj reaches the
admissible accuracy.
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Although the uniqueness and stability results are established for the homogeneous
medium, the numerical method, i.e., the continuation method, works for the inhomogeneous
medium. In the numerical example below, we take the scatterer function as the example q
defined in section 2.6.

To demonstrate the effectiveness of the numerical method, let us consider a nonsmooth
current density source function

f x y
q x y r

r
r

,
4 , 4 for 0.7
0.5 for 0.7 0.9

0.0 for 0.9
( )

˜( ) ∣ ∣
∣ ∣

∣ ∣

⎧
⎨⎪
⎩⎪

 =
<

-
>

inside the unit ball B r r: 1{ ∣ ∣ }= Î < . The exact source function is plotted in figure 4
(left). By starting at 1.0mink = , we adopt the above continuation algorithm with equally
spaced wavenumbers 1.0kD = , and stop at 61.0maxk = . Only one Landweber iteration is
applied at each fixed wavenumber jk . The step length parameter is taken as j j

2a k= . The final
reconstructed source is shown in figure 4 (right). It can be observed that the reconstructed
solution captures both the macro structures and the small scales of the source, and the source
function is accurately reconstructed with multiple frequency data. To demonstrate the
convergence of the method, figure 5 plots the evolution of the reconstructed solutions at
various wavenumbers.

4. Discussions and future works

The inverse scattering problems are studied in the present paper for the acoustic wave pro-
pagation in two dimensions. In order to overcome the instability of the problems at a fixed
frequency, the stable multi-frequency data based RLM is introduced. It is proceeded by
recursively solving the direct and adjoint problems at higher wavenumbers, not only a better
approximation but also a finer resolution can be achieved. The method is shown mathema-
tically and numerically for being stable and effective to solve the inverse scattering problems
with increased resolution. In particular, the stability estimate of the ISP indicates that it is
linear to recover the source function with respect to the noise for large wavenumbers.
However, it is completely open for the stability estimate of the nonlinear IMP and remains the
subject matter of much ongoing research. In the extreme case of all frequencies, the relevant
estimates have been obtained in [33, 34].

Figure 4. The inverse source scattering problem: (left) exact current density source
function; (right) reconstructed current density source function.
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We point out some future directions along the line of this research. It is challenging to
solve the inverse scattering problems with incomplete or phaseless data. These problems
become even more ill-posed without full information of the data. Some preliminary work has
been done in [20] for solving the inverse diffraction grating problem with phaseless data. The
present paper only addresses the deterministic inverse scattering problems, i.e., the scatterer
and the current density source are all represented by deterministic functions. It is worthwhile
to investigate the stochastic inverse scattering problems, which refer to the inverse scattering

Figure 5. The reconstructed current density source function (dashed line) is plotted
against the exact current density source function (solid line) for the cross-section x = 0.
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problems involving uncertainties. Compared to deterministic counterparts, stochastic inverse
scattering problems have substantially more difficulties on top of the existing hurdles due to
the randomness and uncertainties. The scatterer function q and the source function f should be
modeled as random functions for the inverse random medium scattering problem and the
inverse source scattering problem, respectively. Initial effort has been made for solving
inverse random source scattering problem of the one-dimensional Helmholtz equation
[11, 88]. It is not clear how to extend the method to the higher dimensional Helmholtz
equation and Maxwell equations. It is of a broad interest to consider the more challenging
inverse random medium scattering problem. The medium is no longer deterministic and its
randomness and uncertainty have to be modeled as well. Another significant problem is the
imaging of objects with a shape that has multiple scales. For a multi-scale surface localized on
a ground plane, a continuation procedure is proposed in [23] to reconstruct the large scale
features at low frequencies and capture small scales of the surface at higher frequencies. A
promising technique is to combine the RLM and near-field imaging methods to obtain the full
image of the multiple scale objects in an efficient way. It is a hot and challenging topic on
super resolution in inverse scattering problems [6]. The research of inverse scattering pro-
blems lies at the interface of mathematics, physics, engineering, and materials sciences. It will
contribute towards better understandings of the complex physical and mathematical problems
in scattering theory of optics and electromagnetics. We hope to be able to report the progress
on these aspects elsewhere in the future.
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