NEAR-FIELD IMAGING OF SMALL PERTURBED OBSTACLES FOR ELASTIC
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ABSTRACT. Consider an elastically rigid obstacle which is buried in a homogeneous and isotropic
elastic background medium. The obstacle is illuminated by an arbitrary time-harmonic elastic in-
cident wave. This work is concerned with an inverse obstacle scattering problem for elastic waves,
which is to reconstruct the obstacle’s surface from the displacement field measured at a circle sur-
rounding it. The surface of the obstacle is assumed to be a small and smooth perturbation of a
disk. Based on the Helmholtz decomposition, the displacement field is split into its compressional
and shear parts. A coupled system of boundary value problems is derived for the decomposed scalar
potentials by using the transparent boundary conditions. Utilizing the method of the transformed
field expansion, we reduce the coupled system into to a successive sequence of one-dimensional two-
point boundary value problems which are solved in closed forms. The inverse problem is linearized
by dropping high order terms in the power series expansion and an explicit reconstruction formula is
obtained. Moreover, a simple nonlinear correction algorithm is proposed to improve the accuracy of
the reconstructions. Ample numerical examples show that the method is capable of reconstructing
the surface with subwavelength resolution.

1. INTRODUCTION

Wave imaging refers to the technology of determining geometrical or physical properties of an
object by using acoustic, electromagnetic, or elastic waves. It has significant applications in broad
scientific areas such as seismic tomography, non-destructive testing, and medical imaging. The
underlying mathematical problems are known as the inverse scattering problems, which have been
an active research area for decades.

This paper is concerned with near-field imaging of obstacles by using elastic waves. Here, near-
field indicates that the measurement is taken at a subwavelength distance from the object, while
far-field means that the measurement is taken at a distance which is comparable with or longer than
the wavelength. Due to the loss of high frequency information contained in the rapidly decaying wave
components, the achievable resolution by far-field imaging modalities is limited to about one half of
the wavelength, which is referred to as the Rayleigh criterion or the diffraction limit [11]. Near-field
imaging is an effective approach to breaking the limit and obtaining super-resolution [15]. We refer
to [4,9, 14, 16-18] on mathematical and numerical studies for far-field imaging of obstacles with
elastic waves. The linear sampling method was adopted in [13] for the reconstruction of obstacles
buried in a semi-infinite domain using elastic waves.

Recently, a novel approach has been developed to solve a class of inverse surface scattering prob-
lems for acoustic and electromagnetic waves, which include infinite rough surfaces [6, 7], diffraction
gratings [5, 8, 10], obstacles [20], and interior cavities [21]. The approach was also applied success-
fully in [23] to the inverse scattering of periodic surfaces for elastic waves. The goal of this work
is to investigate the method on solving the inverse obstacle scattering problem for elastic waves.
The new ingredients include convolution of Fourier coefficients and cylindrical functions. Due to
the coupling of pressure and shear wave components traveling at different speeds, the governing
Navier equation for elastic waves has a richer structure than the Helmholtz equation for acoustic
waves and Maxwell’s equations for electromagnetic waves, which makes the calculations much more
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sophisticated. Consequently, this paper is a nontrivial extension of the previous works because of
the new challenges.

Specifically, we consider a two-dimensional impenetrable obstacle, which is elastically rigid and
immersed in an unbounded, homogeneous, and isotropic elastic background medium. The surface of
the obstacle is assumed to be a small and smooth perturbation of a circle. The obstacle is illuminated
by an arbitrary time-harmonic elastic wave, which includes the commonly used plane waves, point
sources, or a combination of both types. The displacement field of the total wave is measured on a
circle near the surface. Using the Helmholtz decomposition, we split the displacement vector field
into its compressional and shear parts by introducing two scalar potential functions. Transparent
boundary conditions are derived for each part of the potential function through the Fourier series
expansion. A coupled system of boundary value problems is deduced for the decomposed scalar
potentials. Utilizing the transformed field expansion, which consists of a coordinate transformation,
power series expansion, and the Fourier series expansion, we reduce the two-dimensional boundary
value problem into a successive sequence of one-dimensional two-point boundary value problems,
which are solved in closed forms. By neglecting the high order terms in the power series expansion,
the inverse problem is linearized and formulated into an infinite dimensional linear system of equa-
tions relating the Fourier coefficients of the surface function and the data. An explicit reconstruction
formula is obtained by solving the truncated linear system. Moreover, a simple nonlinear correction
algorithm is developed to improve the accuracy of the reconstructions. The method requires a single
incident field at a fixed frequency. It is computationally efficient and delivers excellent reconstruc-
tions with subwavelength resolution. We refer to [1-3] for related inverse elastic scattering problems
and conductivity interface problems by using perturbation methods.

The outline of the paper is as follows. In section 2, the model problem is formulated, transparent
boundary conditions are presented, and a coupled system of boundary value problems is formulated.
In section 3, the transformed field expansion is introduced and the boundary value problems are
solved analytically. Section 4 is devoted to the derivation of the reconstruction formula and a
nonlinear correction algorithm. Numerical experiments are reported in section 5. The paper is
concluded in section 6 with general remarks and directions for future research.

2. PROBLEM FORMULATION

In this section, we introduce the mathematical model problem for elastic scattering by impene-
trable obstacles.

2.1. Model problem. Consider a two-dimensional elastically rigid obstacle. Let the obstacle’s
surface be described by the curve (in the polar coordinates)

Ff = {(Tve) = a+f(0)’ RS [0’277]}7

where a > 0 is a constant and f is a periodic function in C? ([0,27]) such that a + £(#) > 0 for all
0 € ]0,27]. We assume that f takes the form

f(8) =eg(0), (2.1)
where ¢ > 0 is a sufficiently small constant and is called the surface deformation parameter. Suppose
that the infinite exterior domain

Qp ={(r,0) :r>a+ f(0), 60,27}
is occupied by a homogeneous and isotropic elastic medium with a unit mass density. Let
Ly={(r,0) :r=05, 0 €l0,2n]}
be a circle surrounding the obstacle, where b = a +h  with h > maxye(g 2 f(f). Denote by
Q={(r,0):a+ f(0) <r<b, 0€]0,2n]}
the bounded domain enclosed by I'y and I',.
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Let the obstacle be illuminated by a time-harmonic incident wave u;, with time dependence e,
where w > 0 is the angular frequency. We consider the most general incident wave which is only

required to satisfy the two-dimensional homogeneous Navier equation:
(A" +w?) uy =0 in Qy, (2.2)

where A* = pA 4+ (A4 p)VV-, X and p are the two Lamé constants satisfying p > 0 and A+ p > 0.
For instance, the incident field can be a plane wave, a radiating wave generated by a point source, or
a combination of multiple plane waves and /or multiple point sources. It can consist of compressional
wave, shear wave, or a mixture of both types of waves.

The displacement vector field of the total wave u = [ug, us] satisfies the same Navier equation:

(A*+w?)u=0 inQy. (2.3)
Since the obstacle is elastically rigid, it holds the homogeneous Dirichlet boundary condition:
u=0 only.

Given the time-harmonic incident field wu;,, the direct problem is to determine the displacement
field w in Qf for a known scattering surface I'y. This paper is focused on the inverse problem: to
reconstruct the scattering surface I'y from the measurement of the displacement field on I',. In
particular, we are interested in the inverse problem in the near-field regime where the measurement
distance h = b — a is much shorter than the wavelength.

2.2. Transparent boundary conditions. To reduce the problem from the unbounded domain
to the bounded domain €2, we introduce a transparent boundary condition on I',.

The total field w may be decomposed into the incident field w;, and the scattered field ug, i.e.,
U = Uiy + Uge. Subtracting (2.2) from (2.3) yields the Navier equation for the scattered field:

(A* +w?) ue =0 in Q. (2.4)
We introduce the Helmholtz decomposition for the scattered field
Use = Ve + curl g, (2'5)

where ¢y, and 1. are the compressional and shear scalar potential functions, respectively, and the
vector curl operator is defined as curlv = [9,v, —0,v] for any scalar function v.
Substituting (2.5) into (2.4) yields

\Y [(A + ZM)AQSSC + W2¢sc] + curl [MA’IJZ)SC + W27;Z)sc] =0.
The above equation is fulfilled if ¢y, and 1. satisfy the homogeneous Helmholtz equations:
(A+52) e =0, (A+K2) e =0, (2.6)

where £, = w/v/A+ 2p and kg = w/ /i are the compressional and shear wavenumbers, respectively.
Since ¢ and g are periodic functions in 6 with period 2w, the solutions of (2.6) admit the
Fourier series expansions:

Guc(r,0) =D o ()™, huc(r,0) =D P (1), r >, (2.7)
nez neL
Substituting (2.7) into (2.6) and noting A = 9, + 10, + r =20y yields the Bessel equations:
[0y + 7720, + (k2 — n2r72)] 68 (r) = 0,
[0 4+ 7710, + (k2 — n2r=2)] 9 (r) = 0.

The scattered fields are assumed to consist of only outgoing waves. Hence the solutions of (2.8) can
be written as

(2.8)

oW (r) = anHM (kpr), ¥ (r) = B H® (ksr), (2.9)

where ay,, 5, € C, and Hy(Ll) is the Hankel function of the first kind with order n.
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Plugging (2.9) into (2.7) yields
Gsc(r,0) = > o HD (kpr)e™, he(r,0) = D BuH (s7)e™, v >b. (2.10)
neL ne”L
Taking the partial derivatives with respect to r on both sides of (2.10) and evaluating at r = b yields
T¢SC b 0 Zﬁpan )eine’ 7‘¢SC b 0 Z’fsﬁnH(l (K/s ) 1n9 (211)
neL ne”L

Evaluating (2.10) at r = b and comparing with (2.11), we derive the transparent boundary conditions
for the scattered potentials on I'p:

(ar - %) (bsc = 07 (ar - %) wsc = 07 (212)
where the boundary operators .7}, and .7 are defined by
T = Z vé")v(”)em@, Tev = Z APy ein? (2.13)
neL neL

Here v(™ are the Fourier coefficients of v and
/
V) = b HD (1) [ HE (1ipb), A = s HEY (1b) /HED (1b).
Similarly, we can apply the Helmholtz decomposition on the incident field:
Uin = Vi + curl ¢y,

where ¢, and 1y, also satisfy the Helmholtz equations (2.6). Since ¢, and vy, are periodic functions
with period 27, they admit the Fourier series expansions:

On(r,0) = X ez [l B (pr) + ol HP (1) | 7,
(2.14)
winm 0) = Lcz |83 B (rar) + B HE (k)| €7,

where a an ,ﬁn , n are coefficients that can be determined once the incident field is specified,

and HT(L ) is the Hankel function of the second kind with order n.
Combining (2.14) and (2.13), we get

O = ) b = > {alDrp B (1) + 0P, P (1,0)

neL
7(”) [a(l)H(l)(/{ b) + oz,(f)H,(?)(/{pb)} } en?,

/ .
=3 oy [HP sypb) = B (1) HP () / HD (0) | €7

neL
= |2l () HD ()| 7 = 3 [a2W (6)/HD (sph)| € on T,
neL neL

where W is the Wronskian of Hr(Ll) and Hr(?) defined by

() HP(2) ;
W(z) = / :-(4—>. (2.15)

2V () B (2) m
Denote
pp=> [ag)w(b) JHD (rpb) | €70, ps=3" [57(12)W(b) / H,(})(msb)} (ind (2.16)
nez nez

It can be verified that
(87‘ - %) ¢in = Pp> (ar - <7s) Tz)in = pPs On I‘b- (217)
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Let the total wave u admit the following Helmholtz decomposition:
u = V¢ + curl. (2.18)

Adding (2.12) and (2.17) yields the transparent boundary conditions for the scalar potentials of ¢
and :

O — Tp)$=pps (O — T)h=ps onTy, (2.19)

Next we restate the boundary condition on I'y in the polar coordinate. It is easy to verify the
differentiation rules:

Oy = (cos0)0, — 1 (sin0)0p, 0, = (sin0)d, + 1" (cos 0)0p. (2.20)
Substituting (2.20) to (2.18) and noting uw = 0 on I'y yields

uy = [(cos0)9, — r~(sin6)dy| ¢ + [(sin6)d, + r~'(cos)dy| ¥ =0, (2.21)
ug = [(sin0)9, +r~*(cos 0)dy| ¢ — [(cos 0)d, — r~ (sinf)dy| ¢ = 0. '
Recall that a vector [uj,us] = 0 if and only if its projection to the orthonormal vectors 7 =

[cos 0, sin 6] and 6 = [—sin 6, cos 0] are zero, i.e.,
upcos @ +ugsind =0, wuy(—sinf) + ug(cosd) = 0.

Substituting (2.21) into the above equations, we obtain the equivalent boundary conditions for the
scalar potentials:

rOr¢ 4+ 0 =0, 10, —0gp =0 on I'y. (2.22)
In summary, the scalar potentials ¢ and v satisfy the coupled system of boundary value problems:

(A+r2)o=0, (A+rI)Y=0 inQ,

ror¢ 4+ 0pp =0, 10, —0gp =0 on Iy, (2.23)

(87’ - %) (]5 = Pp> (ar - %) ¢ = pPs O I‘b'

It is easy to note that ¢ and 1 are decoupled in the equations over {2 and in the transparent boundary
conditions on I'y but they are coupled in the boundary conditions on I'f.

3. TRANSFORMED FIELD EXPANSION

In this section we derive an analytical solution for the coupled system of boundary value problems
(2.23) using the technique of transformed field expansion. It consists of three steps: change of
variables, power series expansion, and Fourier series expansion.

3.1. Change of variables. Consider the change of variables:

Ao hr—bf(@)’ i—0,
h—f(0)
which transforms the domain €2 to the annulus D = {(r,0) : a < r < b, 6 € [0,2x]} by mapping
the boundary I'f to the circle I'y = {(r,0) : 7 = a, 0 € [0,27]} while keeping the boundary I',
unchanged.
We seek to restate the boundary value problems (2.23) in the new variables. Direct calculations
yield the following differentiation rules:

h y (T h ’
8r:<—h_f>8f, Og =05+ f (h—f)af’ aM:<ﬁf> O,

o [(F—b\? L(F—b L F—b na (F—b)
o=+ ()" (=) e 20 (5= ) oo+ |17 (=) 2 0 G o
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Introduce new functions (5(7", é) = ¢(r,0) and ¥ (f, 9~> = 9(r,0) under the transformation. It can

be verified after a tedious but straightforward calculation that the new functions, upon dropping
the tilde on all variables for simplicity of notation, satisfy the following equations in D:

{(Clarr + 90y 4 c3099 + c40r9 + C5I<L]2)) ¢ =0, (3.1)
(Clarr + 20, + 3099 + c40ro + C5K§) Y =0, '
where the variable coefficients are given by
1 = 5% = 2hr(r ~b)f + (= BRI+ ()7,
ca = hPr — h(2r = b)f + h(r = b)f" + (r = 0)[f? + 2(f)* = £ 1],
12 2
C3 = h 2hf + f 5 (3‘2)
cy =2h(r —=b)f —2(r=0)ff,
cs = h?r? — 2hr(2r — b)f + (67> — 6rb + b?) f?
—2h7t(r —b)(2r — b)f3 + h72(r — b)2fL.
Under the change of variables, the boundary conditions (2.22) on I'; become
{(a+f)3r¢+ (1 =h71 )0 — fO.] =0 (3.3)
(a+ o = [L=h7" )3~ f'0,] =0
and the transparent boundary conditions (2.19) on I', reduce to
{c‘w = (L=17f) (Fd + pp) s 3.4
O = (1 - h_lf) (957,1} + ps) :

3.2. Power series expansion. Recalling the assumption of the surface function (2.1), we employ
a boundary perturbation approach and consider formal expansions of ¢ and 1 as power series of the
surface deformation parameter e:

o(r,0;¢) Zgz&er P(r,0;¢) Zipkré (3.5)
Substituting (2.1) into (3.2) and (3.5) into (3.1), we obtain a successive sequence of equations:
(A+ /{12)) op=uvk, (A+k ) Yy =w in D, (3.6)
where
4 4
=2 (k) by, wr =12 D) p-j. (3.7)
j=1 Jj=1

Here the differential operators Z; are given by
P (k) = h™ {2r(r = )90y + [(2r — b)g — (r — b)g"10, + 29pg
— (7‘ —b)g 09 + 2r(2r — b)g/—i2} ,
Po(k) = B2 {=(r = b)*[¢* + (¢')*)0r —(T—b)[92+2( ")? = 99"10, — 9% 0o
—I—2(r—b)gg Org — (61° — 6rb + b*)g*k*}
D5(k) = 2h73(r — b)(2r — b)g>K?,
D) = (e — )"
Plugging (2.1) into the boundary conditions (3.3) yields
Or s+ a” ' Ogtby = pr,  Opthr —a 'Ogdp = qx  on Iy,



NEAR-FIELD IMAGING OF OBSTACLES 7

where
{Pk = —a M g(Oppr—1 — h ™' Ogp—1) — ¢'Orbr—1], (3.8
gk = —a M g(Orhr—1 + h ' Opdr_1) + 9 Or 1]
Similarly, the the boundary conditions (3.4) reduce to
O — ) o =0k, (0r—T5)hp =7, only,
where
{Uo =pp, 01 =—h"g(Fpdo + pp), {To =ps, T =—h"g(Tto+ps), (3.9)
ok = —h"'9Tpp-1, k=2 T =—h"'9Tr_1, k>2.

In all the above recurrence relations, it is understood that ¢ = 1, = 0 for k < 0. Note that the
boundary value problems (3.6)—(3.9) for the current terms ¢y, ¥y involve vk, Wi, Pk, Gk, Ok, Tk, Which
in turn depend on ¢y_;,v,—; for j = 1,...,4. Hence the boundary value problems (3.6)—(3.9) can
be solved in a recursive manner starting from k = 0.

3.3. Fourier series expansion. Since all the functions in the boundary value problems (3.6)—(3.9)
are periodic in 6 with period 27w, we may adopt the Fourier series expansion to reduce the two-
dimensional boundary value problems into one-dimensional two-point boundary value problems in
the frequency domain:
[E?W + 7‘_18 —|— (H% — nzr_z)] gblg") = v,g"), a<r<b,
rqﬁ = pk ina_ll/},(gn), r=a, (3.10)
(r_p)¢k :O-](gn)7 T‘:b,
and
[E?W + 7‘_18 —|— (K2 n27’_2)] w,g") = wlg"), a<r<b,
r1/1 = + ma_l(bk ) r=a, (3.11)
(Or )z/)k =T, ), r=b.
Note that the above two boundary value problems are coupled in the boundary conditions at

r = a. To solve the coupled system, we consider zb,gn)(a) and QS,(:) (a) as constants and find the
analytical solutions for each boundary value problem. By evaluating the solutions at r = a, we

obtain a linear system of algebraic equations for ¢,(€") (a) and QS,(:) (a). We then solve this linear
system and substitute the results back to the analytical form to obtain the final solutions.
A direct application of Lemma A.1 yields the solutions of (3.10) and (3.11):

6" (1) = ~K ) (r, a3y [p"” — ina~ 1" (a)]
+K ™) (7, b; Hp)O'k / K™ (r, s; ,‘<;p)fu,(€ )(s) ds,
3.12
]i")(r) = —K™(r,a; k) [q " +ma_1¢ ( )} (3.12)
)

+ K™ (7, b; kg

7',5" / K™ (r,s; /ﬁs)w,(g )(8) ds,

where K" is given by (A.2) and qﬁk (a),wlgn) (a) are to be determined. Evaluating the above
solutions at r = a and noting that

K (a,a,8) = ~H (ra) /(RH (ra),
K®(a,b, k) = —bH(1 (mb)/(/-wH(1 (),
K(")(a, S,K) = —SH (Iis)/( (“a))’
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we obtain
kpaHY (pa) ¢\ (a) + inH® (mpa)y " (a) = ¢,
{msaHé”’(nsa)w,i"’ () — inHD (ksa) 6y (a) = 0",
where

b
C,g") = aH,(LI)(/ipa)p,(g") — bH,gl)(mpb)U,g") + / SHT(LI)(HPS)UI(:)(S) ds

) (3.13)
nlgn) = aHr(Ll)(/iSa)qlgn) — bHr(Ll)(/iSb)T]gn) +/ er(Ll)(/iSs)wli")(s) ds.
Hence we have a linear system of algebraic equations for qﬁ,(fn) (a) and w,g") (a):
kpatlf (pa)  inH{ (kp0) [ o <a>] Fﬁ")]
—inHr(ll)(/isa) K}SCLHy(Ll),(HSa) ]in) (a) 77,(;)
A simple calculation from Cramer’s rule yields its solution:
0 (@) = A7 [meatt (msa) ¢ — in Y ()] -
n — / n . n ’
¢,(€ )(a) =At [/{paHr(Ll) (lipa)n,(€ ) —|—er(L1)(/£sa)C,g )] ,

where the determinant

A, = ﬂp/isazH,(f)/(ﬁpa)H(l)/(/ﬁsa) — n2HV (kpa) HY (ksa).

n

Plugging (3.14) into (3.12), we may obtain the solutions of gb,(g") (r) and 1/1,(6") (r) for all k£ and n.
Recalling the recurrence relations for Hankel functions

/
HY'(2) = HY, (2) = (n/2)HP(2),  (2n/2)HD (2) = HY, (2) + H, (2),
we may deduce the following alternative form for A,,:

1
Ao = =g hprsa® [HD, () HY, (rsa) + HL, (vs0) B, ()|

Next we shall derive more explicit expressions of the leading terms gb(()n) (r), 1/)((]“) (r) and the linear

terms gbgn) (T’),T[)YL) (r), which make it possible to obtain an explicit reconstruction formula for the
inverse problem.

3.4. Leading terms. For k = 0 it follows from (3.7)—(3.9) that
vo=wo=po=¢qo =0, o00=pp, To=ps
Recalling (2.16), we obtain the Fourier coefficients:
o’ = =p” = 0" =0, of” = a@WO)/HD (pb), 7" = BOWO)/HD (D). (3.15)
Substituting the above quantities into (3.13) and noting (2.15) yields
" = —bW(B)aD, = —bw ()2,
Plugging the above quantities into (3.14), we get
{(b(()")(a) = bW (b)A ! |:/€s H(l)/(ns )ag) mH(l)(ﬁpa) (2)] ,

3.16
5" (a) = —bW (B)A;! [RPQH( (rpa) B inHy(Ll)(Hsa)ag)} : (3.16)
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Substituting (3.15), (3.16) into (3.12) and noting that
K™ (r,a: k) = —HD (kr) | (xHY' (),

we obtain explicit expressions of the leading terms:

K™ (r,by k) = HY (kb) Ry (75 1) /W (b),

" 2H Y (ks
o r) = 20O | T () (@ g 62| 10 1)+ 2 R ),
A, HW
rpatln” (rpa) (3.17)
0 bW (b) [ n2HS
wé '(r) =~ A( ) (rpa) s lnag)] HY (ker) + B R (r; ),
n | ksaHS ) (ksa)
where R, is given in (A.3).
3.5. Linear terms. For k =1 it follows from (3.7) that
vy = h 72 {2r(r — b)g0yr + [(2r — b)g — (1 — b)g"] O + 29Op0
—2(r — b)g'0pg + 2r(2r — b)g/fl%} ¢o(r,0),
wy = h~'r=2{2r(r — b)g0,r + [(2r — b)g — (1 — b)g"] O + 29pe
—2(r — b)g'Org + 2r(2r — b)gr2 } Yo(r, 0).
Using the Fourier series expansion and the convolution theorem yields
Z V (n ™) wgn) (T) = Z Wn,m(r)g(n_m)a (3-18)
meZ meZ
where
Vam(r) =h=r=2{2r(r = b)0,, + [(2r — b) + (n* — m?) (r — )] O»
+ [2r(2r — b)/<; —2m?]} qﬁ m) (r),
Wiym(r) =h~ Lp—2 {27‘ r—b)0p + [(27" —b)+ (n —-m ) (r— b)] Oy
+ [2r(2r — b)s2 — 2m2] Y ™ (),
By (3.8) we have
{pl = —a"' g (Or¢po — K1 Optho) — g'Oribo] .
g1 =—a"" g (0rho + h™ 0o + g'Orbo] -
Their Fourier coefficients are given by
P =3 Aug™ ™, @ =37 Bung™ ™ (3.19)
meZ meZ
where
A = == |0,0§"™ = imh 1" — i(n = m)o.u™ |
Bnm -1 [8ri,b((]m) + imh_qu((]m) +i(n —m)o, ((]m)} .
By (3.9) we obtain
—h7lg (oo +pp), T=—h""g(Tao+ ps).
Their Fourier coefficients are given by
O'gn) = Z Smg("_m), Tl(n) = Z ng("_m), (3.20)
meZ

meZ
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where

S = =h7 [P0 + ] T = <7 [ ]

Substituting (3.18)—(3.20) into (3.13) yields
meZ meZ

where

b
Xnm = aHy(Ll)(/ipa)An,m - bHy(Ll)(/{pb)Sm + / sH,gl)(mps)Vn,m(s) ds,
b

Yym = aHS (1550) By — bHSY (Kgb) T + / SHWU (k8) Wi m(s) ds.

a

Plugging (3.21) into (3.14) leads to

gn) (a) = Z Cn,mg(n_m)y ¢1n)(a) = Z Dn,mg(n_m)7 (3.22)

mEZ meZ

where
Chm = A [msaH,gl)/(msa)Xn,m — inHy(Ll)(/{pa)Ymm} ,
{Dmm = A [KpaH,Sl)'(ﬁpa)Yn,m + inH,Sl)(msa)Xn,m] .
Substituting (3.18)—(3.20) and (3.22) into (3.12), evaluating at r = b, and noting that
KO (b,a;5) = —HD (1) /(xHY (),

K™ (b,b; k) = HY (k) Ry (b; 5) /W (b),
K™(b,5;5) = Hy" (5b) Rp (55 %) /W (s),

we obtain explicit expressions of the leading terms at r = b:
W) =3 Pomg™™, 1 0) =3 Quang™ ™, (3.23)
meZ meZ

where

Apm —1i _1Dnm n\0; b n\S;
Pom :H,gl)(ﬁpb)< , ina , R, (b; /fp)sm_/ R, (s;kp)

W) Va,m(8) ds) ,

HpHy(Ll),(Hpa) W (b)
Bom +ina  Cpam  Ru(b; ks) b R, (s;ks)
Qn,m = Hr(Ll) (K/sb) : : T — 7Wn,m(8) ds |.
Rer(Ll),(/fsa) W(b) a W(S)

It is clear to note the relation of the Fourier coefficients between ¢, and ¢ in (3.23) that the
linear terms of the wave field contain all the information about the surface function. This observation
motivates us to design an explicit inversion formula to reconstruct the surface function.

4. INVERSE SCATTERING

In this section, we introduce an explicit reconstruction formula and a nonlinear correction algo-
rithm to improve the accuracy of the reconstruction.
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4.1. Reconstruction formula. Let uw = [u;, ug]. By the Helmholtz decomposition (2.18) we have
up = 0,0 + 0y, up = =0, + Oy,
which can be equivalently written in the polar coordinate:
U = [(cos )0, — b~ (sin 9)8@] o+ [(sin )0, + b~ (cos 9)89] 0,
{ug = [~ (cos0)0, + b~ (sin0)Jy| ¢ + [(sin0)d, + b~ (cos 0)dy] ¢.

Each of the above equation can be used independently to derive a reconstruction formula for
the given data uw on I',. However, a more convenient formula can be obtained by considering the
following combination of the data. Let

v = (cosO)ui + (sin@)uy = 9,0 + b 1090 on T,
which is equivalent to
v= T+ b '9h +pp, onTy. (4.1)

Considering the power series expansion
o
v(@,yie) = Y vm(z, )™
m=0

We apply the Fourier series expansions to (4.1) and obtain the Fourier coefficients for the leading
term:

o () = 75 (b) + b~ S (b) + Y,

where qﬁgn) and 1/1(()") are given by (3.17). Using (3.23) we find the Fourier coefficients for the linear
term

o) = 3 M(n,m)gm, (4.2)
meZ
where

M(n,m) =
Now assume the measured data is given by us = [u; 5, uas] with
w;5(6,0) = w;(0,6) + O(), j=1,2,
where u;(b, §) denotes the noise-free data and § denotes the noise level. Let
v5(b,0) = (cos O)uy 5(b,0) + (sin B)ug 5(b, ) (4.3)
be the combined noisy data. Clearly we have
vs(b,80) = v(b,0) + O(9).
It follows from the power series expansion of v that
vs(b,0) = vo(b,0) + ev1 (b, 0) + O(%) + O(9).
Dropping the high order remainder and the noise terms linearizes the inverse problem and leads to
vs(b,0) —vo(b,0) = ev1(b,0).

Applying the Fourier series expansion, substituting (4.2), and noting the fact that f = g, we obtain
the reconstruction formula in terms of the Fourier coefficients of the data and solution:

o () = o (B) = 37 M(n,m) fO, (4.4)

meZ

) P + 10 Q-

It is clear to note that (4.4) is an infinite dimensional linear system of equations relating the
Fourier coefficients of the surface profile f and the data vs. Hence we may obtain the Fourier
coefficients of f by inverting the above system of equations. In practice, it is necessary to truncate
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the infinite dimensional system to a finite dimensional system. Keeping only £ for |m| < N in
(4.4), we obtain a truncated finite dimensional linear system:
LF =V —Vj, (4.5)
where L is the (2N + 1) x (2N + 1) matrix defined as
L(m,n) = M(m,m —n), —N<m,n<N,
and F, Vs,V are (2N + 1) x 1 vectors defined as
F(m) =™, Vs(n) =o{"(b), Vo(n)=v{"(b), —N <m,n<N.
Let
F=L%Vs— W), (4.6)

where L™ denotes the Moore-Penrose pseudo-inverse of L. Then the reconstructed obstacle surface
function is obtained as

f= > F(m)em, (4.7)

|m|<Ne

where the spectral cut-off frequency N. < N may be determined from the signal-to-noise ratio.
We point out that the error for the above reconstruction formula consists of the following parts.

(1) regularization error by dropping high frequency modes of f;
(2) approximation error by truncating the infinite dimensional linear system (4.4) to the finite
dimensional linear system (4.5);

(3) linearization error by dropping high order terms in the power series expansion of u;;

(4) noise in the measured data.
The convergence of the power series and the error estimate of the inverse problem require a dedicated
regularity analysis of the solution for the direct problem and will be reported in a separate work.
We refer to [8] for a related work on near-field imaging of periodic surfaces for acoustic waves, which
establishes the well-posedness, convergence, and error estimates for the underlying direct and inverse
problems.

4.2. Nonlinear correction algorithm. The reconstruction obtained by (4.6) and (4.7) is an ap-
proximate solution of the linearized inverse problem. They may serve as a good initial guess for an
iterative algorithm that can improve the solution if the surface deformation parameter may not be
small.

Let Fy be the initial Fourier coefficients obtained by (4.6) and fy be the initial reconstruction
obtained by (4.7). Using fy as the surface function for the obstacle, we may solve the direct scattering

problem and obtain the Fourier coefficients for data v%)(b). It follows from the reconstruction
formula that we have an approximate relation:

LFy =V — Vo,
where Vi, is a (2N 4 1) x 1 vector given by Vy (n) = U}Z)(b). Subtracting the above equation from
(4.5) yields
L(F — Fy) = Vs = Vy,.
Inverting the above equation yields the updated Fourier coefficients
Fy = Fy+ LY (Vs — Vy,).
Then the updated reconstructed surface function is

flz Z Fl(m)eime.

|m|<Ne
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Repeating the above procedure yields the nonlinear correction algorithm:

FJ+1:FJ+L (%_ij f]+1 Z F’j—l-l 7 J=0,1,...,
|m|<Nc

where Vy, is a (2N +1) x 1 vector given by Vy (n) = fu](c?)(b). Here v}?)(b) is the Fourier coefficient of
the data field which is from the solution of the direct problem corresponding to the surface function
fj. Since the coefficient matrix L remains unchanged during iterations, it is efficient to implement
the algorithm.

5. NUMERICAL EXPERIMENTS

In this section, we consider some representative surface functions, investigate the dependence of the
reconstructions on various parameters, and present numerical experiments to show the effectiveness
of our method.

The synthetic data is obtained from solving the direct scattering problem by using the finite
element method with the perfectly matched layer technique. Once the total displacement field u is
obtained at the mesh points on I', it is interpolated to uniformly distributed points on I'; through
a cubic spline interpolation. To test the stability, we add an amount of noise to the data:

u‘s(b, 0;) = u(b,0;)(1 + or;),

where ¢ indicates the noise level and r; is a random vector with values drawn from the uniform dis-
tribution in [—1, 1]. The combined data vs is then obtained through (4.3) and its Fourier coefficients
are computed from the fast Fourier transform.

In the following numerical experiments, we fix the angular frequency w = m, and the Lamé
constants A = 2, u = 1. The corresponding pressure and shear wavelength are 4 and 2 respectively.
The radius of the unperturbed obstacle is taken as a = 1. Hence any fine details of the perturbed
obstacle is within the subwavelength regime with respect to either pressure or shear wave.

5.1. Incident field. Let the exact surface function be given by f(0) = eg(6), where
g(0) = exp(sin5t) — 1.5. (5.1)

Since our method is derived for an arbitrary time-harmonic incident field, let’s investigate the effect
of different incident fields on the reconstructions.

First consider a time-harmonic plane compressional wave propagating in the angle 6y. Specifically,
we have

ikpr cos(0—6p) : cos
¢in =eP 0 5 ¢in = 07 Uin = vQsin = 1K/pgbin X
sin 6,

where ¢;, has the following expansion into Hankel functions

. i . i . .
bin = Z ian(/ipT‘)em(G_GO) _ Z |:1§e_m90Hr(L1)(/1p7‘) + %E_mGOHT(?)(/ipT‘)] einf
nes neL
Recalling (2.14), we have
_—
(1) (2) %e—lm‘)o, 57(3) — 57(?) =
Due to the linearity of the linearized inverse problem, it is simple to consider an incident field with

multiple wave components. For instance, we may consider an incident field with two plane pressure
wave components propagating in the angles 6y and 64, i.e.,

b = einpr cos(6—0p) + eiﬁprcos(G—Gl), Vi = 0.



14 PEIJUN LI AND YULIANG WANG

Then we have
in . .
o) = alP) = = (o eTnl) gD = 53 o,
This is still considered as a single incident field since the two plane waves are sent simultaneously
from two different directions. The measurement is only taken once at I'.
Another commonly used incident field is the one generated from a point source. For example, a

pressure incident field generated at the point (79, 6p) can be represented by

Oin = Hél) <I{p\/7‘2 — 2rrgcos(f — 6y) + r%) . Yin=0,

where (r9,0y) is a source point in the exterior of the obstacle. It follows from (2.14) and the
boundedness of ¢;, at » = 0 that ag) = ag) for all n € Z. Consequently, we have

o (b) = aVHD (sypb) + o H (sb) = 2000 Ty (h),
which implies
(n)
W _ @ _ w0
Gt = T o (kb))

Again, multiple point sources may be used and the coefficients are simply the sum of the coefficients
for each source.
We may also consider an incoming cylindrical pressure wave, i.e.,

Bl =52 =o.

/ x/r
$in = Hé())(’ipr): Yin =0, Ui = Voin = HPH§O) (kpr) [9/7’] .

The corresponding coefficients are simply
agn) = 07 agn) = 57107 B%n) = /BQn) = 07

where ¢ is the Kronecker delta function. This type of incident field has been used in our previous
work on inverse obstacle scattering for acoustic waves [20,22].

Let the deformation parameter ¢ = 0.1, the measurement distance h = 0.2, the noise level § = 1%,
and the truncation and cut-off frequencies N = N, = 10 be fixed. Figure 1 shows the reconstruction
results using six different pressure incident fields. For the incident field propagating in one direction,
we observe an excellent reconstruction on the illuminated side of the obstacle but a defect of the
reconstruction on the shaded side of the obstacle. Comparing Figure 1(b) and Figure 1(c), we can
see that the defect is severer if the point source is closer to the obstacle, which is an expected effect
from the physical point of view. It should be pointed out this defect is milder for smaller obstacles
and severer for larger ones. As shown in Figure 1(d), the defect can be completely removed by
using the incoming cylindrical incident field, which accounts for an incident field illuminating from
all the directions. Similar results can be achieved by using only two plane waves sent from opposite
directions, or by using two point sources positioned at opposite sides of the obstacle, as shown in
Figure 1(e) and Figure 1(f). In the rest of the numerical experiments, we will take the incident field
to be two plane pressure waves propagating in the angles 0 and m when investigating the effects of
other parameters.

5.2. Deformation parameter. The explicit reconstruction formula is relied on the linearization
of the inverse problem by dropping all the nonlinear terms in the power series expansion. The
reconstruction error will increase as the deformation parameter ¢ increases. To investigate this effect,
we set h = 0.3 and 6 = 0 fixed and consider three different deformation parameters e = 0.05,0.1,0.15.
Figure 2 shows the reconstruction results and displays the expected results.
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Ficure 1. (Color online) Experiments of the incident field. The reconstructed ob-
stacles (dashed lines) are plotted against the exact obstacles (solid lines) using the
pressure incident field. (a) a plane wave from the left; (b) a point source at (—2,0);
(c) a point source at (—10,0); (d) an incoming cylindrical wave; (e) two plane waves
from the left and the right; (f) two point sources at (—10,0) and (10, 0).

F1GurE 2. (Color online) Experiments of the deformation parameter €. The recon-
structed obstacles (dashed lines) are plotted against the exact obstacles (solid lines).
(a) e = 0.05; (b) e =0.1; (c) e = 0.15.

5.3. Nonlinear correction. An iterative algorithm is proposed in section 4.2 to improve accuracy
for a large deformation parameter. To test this algorithm, we let ¢ = 0.15,h = 0.3 and § = 1% be
fixed. Figure 3 shows the results by using the explicit reconstruction formula, the nonlinear correction
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FIGURE 3. (Color online) Experiments of the nonlinear correction algorithm. The
reconstructed obstacles (dashed lines) are plotted against the exact obstacles (solid
line). (a) Explicit reconstruction formula with no iteration; (b) nonlinear correction
with two iterations; (c) nonlinear correction with five iterations.

F1GUuRE 4. (Color online) Experiments of the measurement distance h. The recon-
structed obstacles (dashed lines) are plotted against the exact obstacles (solid lines).
(a) h=10.2; (b) h=0.3; (¢) h =0.4.

with two iterations, and the nonlinear correction with five iterations, respectively. Evidently, the
algorithm is very effective at improving the accuracy of the reconstruction in few number of iterations.

5.4. Measurement distance. Now we investigate the effect of the measurement distance h. We
consider a different surface function. Let the exact surface function be given by f(6) = €g(f), where

g(0) = 0.5cos(36) + 0.5sin(156).

This surface function displays more oscillation than the previous surface function in (5.1), although
it contains only two nonzero Fourier modes. Figure 4 shows the reconstruction results with fixed
€ =0.1,8 = 5% and various h = 0.2,0.3,0.4. It is clear to note that we have a better reconstruction
when the measurement distance h is smaller. This is consistent with the general principle of inverse
scattering problems in near-field imaging.

5.5. Noise level. Next we consider the effect of noise in the measurement data. Figure 5 shows
the results with three different noise levels 6 = 1%,5%,10% when fixing other parameters ¢ =
0.1,h = 0.2, N = N, = 15. We observe that the reconstruction is very robust with respect to
the measurement noise since the spectral cut-off regularization is adopted to suppress the possible
amplified contamination of the noise.
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FIGURE 5. (Color online) Experiments of the noise level . The reconstructed obsta-
cles (dashed lines) are plotted against the exact obstacles (solid lines). (a) 0 = 1%;
(b) § = 5%; (c) 6 = 10%.

FIGURE 6. (Color online) Experiments of the number of measurement points. The
reconstructed obstacles (dashed line) are plotted against the exact obstacles (solid
line). (a) 6 = 0 and 256 measurement points; (b) 6 = 20% and 256 measurement
points; (c) § = 20% and 2560 measurement points.

5.6. Sample points. Another important factor that influences the reconstruction error due to the
measurement noise is the number of measurement points. It is shown in [24] that the Fourier
coefficients of an additive white noise has a variance of order O(1/N), where N is the number of
samples. We have similar observations for the multiplicative noise used in our numerical experiments.
As a consequence, the error due to the measurement noise can be made arbitrarily small by taking
sufficiently large number of measurement points. Figure 6(a) shows the reconstruction result with no
measurement noise and 256 measurement points, while Figure 6(b) shows the result with 20% noise
and 256 measurement points. The other parameters are taken as ¢ = 0.1,h = 0.3, N = N, = 15.
The influence of the noise is apparently seen from the results. However, if we increase the number
of measurement points ten times to 2560, then we obtain the result in Figure 6(c). The influence of
the noise is greatly reduced.

5.7. Cut-off frequency and non-smooth obstacles. Now we investigate the dependence of the
reconstruction on the truncation frequency N and the cut-off frequency N.. Both parameters are
used to reduce the infinitely dimensional problem to a finite dimensional problem. They can be
considered as the regularization parameters controlling the trade-off between the fit of the data and
stability of the solution. Regularization methods for inverse problems and the choice of regularization
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FIGURE 7. (Color online) Experiments of the cut-off frequency and a non-smooth
surface function. The reconstructed obstacles (dashed lines) are plotted against the
exact obstacles (solid lines). (a) N =4; (b) N =8; (¢) N = 16.

parameters are important research topics. We shall illustrate the influence of those parameters using
a few examples for our problem. We refer to [12] and [19] for comprehensive treatment of those topics.
It is possible to choose N. < N once N is set. However, we find that there is no evident advantage
for doing that so we always set N. = N in the numerical experiments.

Finally, we show that our method also works for non-smooth obstacles, although the mathematical
judgment requires a smooth surface function. Let the boundary of the obstacle be a square. The
size of the square is chosen in such a way that if s is half of the side, then V25 — a = a — s, i.e.,
s = 2a/(1++/2). The corresponding deformation parameter is ¢ = a—s = (v/2—1)a/(v/2—1) ~ 0.17.
Figure 7 shows the reconstruction results with h = 0.3, = 5% and N = 4, 8, 16, respectively. Clearly
the reconstructed obstacle becomes more oscillatory as N increases and displays the well-known
Gibbs phenomenon near the corners.

6. CONCLUSION

We presented an efficient method for solving the inverse obstacle scattering problem for elastic
waves. By using the Helmholtz decomposition, we decomposed the displacement vector field into
the compressional part and shear part, and derived a coupled system of boundary value problems.
Utilizing the transformed field expansion, we reduced the two-dimensional problems into a successive
sequence of coupled one-dimensional two-point boundary value problems, which were solved in closed
forms. Assuming that the surface was a small and smooth perturbation of the circle and neglecting
the nonlinear terms in the power series expansion, we linearized the inverse problem and deduced
infinite dimensional linear systems relating the Fourier coefficients of the surface function and the
data. The final reconstruction formula was obtained by truncating the systems to finite dimensions.
We conducted comprehensive numerical experiments to demonstrate the effectiveness of the method
and to investigate the dependence of the reconstruction on various parameters. The method requires
a single incident field at a fixed frequency and is computationally efficient. The incident field can be a
plane wave, point source or incoming cylindrical. The method works very well for smooth, oscillatory,
and even non-smooth surfaces with super-resolved resolution. The proposed nonlinear correction
algorithm is effective at improving accuracy of the reconstruction in few number of iterations.

The method should be readily modified to solve the transmission problems, where the background
medium is not rigid and allows elastic waves to penetrate. It can also be extended to the three-
dimensional geometry without essential difficulties. A difficult and interesting problem is to consider
elongated surfaces, such as a perturbation of an ellipse. More challenging problems include the
convergence analysis of the proposed method, inverse scattering of random surfaces, and multiple
obstacles. We hope to work on some of these problems and report the results in the near future.
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APPENDIX A. A TWO-POINT BOUNDARY VALUE PROBLEM
Consider a two-point boundary value problem:

[87’7’ + T_lar + (1‘432 - n27’_2)] w=uv, a<r<b,

Orw = p, r=a, (A1)
/

[ar — wHY (kb) /Hﬁl”(,.@b)} w=gq, r=b

Lemma A.1. The two-point boundary value problem (A.1) has a unique solution given by

b
w(r) = =K (r,a;k)p + K™ (r,b;k)q — / K™ (r,s; k)v(s) ds,

where
(1)
Hy ' (kr)R,(s;k), s<,
KM (r,s:5) = ! . (57) B35 ) (A.2)
Wi(s) | @ )(/{s)Rn(r; K), §>T.
Here W is the Wronskian given in (2.15) and
2’
Rz 0) = HE (z) — 250 ) (4.3)
j2e (ka)

Proof. Tt follows from the variation of parameters that the differential equation (A.1) admits the
general solution:

w(r) = wi(r) [cl - /: % ds} + wo () [02 + /: %2;})(8) ds} , (A4)

where wy (1) = Hr(Ll)(m‘) and wsy(r) = Hr(?)(lﬂ‘) are two linearly independent solutions for the corre-
sponding homogeneous differential equation, W is the Wronskian of wq,ws, and ¢, ¢ are constants
to be determined from the boundary conditions. Substituting (A.4) into the boundary conditions
(A.1) yields

_p_ uy(a) _w(b) /b uy(s)v(s)
TTR@ @™ 2Twe ) we (49)
The proof is completed by plugging (A.5) into (A.4). O

We notice that the function R, (z;k) in (A.3) is well-defined for all z > 0 since Hfll)/(z) # 0 for
all z > 0. It is also useful to note that
Ry(a; k) = —W (ka)/H{D (ka) = =W (a)/ (s H' (ka)).

n
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