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Abstract
Consider the scattering of a time-harmonic plane wave by a one-dimensional
periodic surface. A novel computational method is proposed for solving the
inverse elastic surface scattering problem by using the near-field data. Above
the surface, the space is filled with a homogeneous and isotropic elastic
medium, while the space below the surface is assumed to be elastically rigid.
Given an incident field, the inverse problem is to reconstruct the surface from
the displacement of the wave field at a horizontal line above the surface. This
paper is a nontrivial extension of the authors’ recent work on near-field
imaging of the Helmholtz equation and the Maxwell equation to the more
complicated Navier equation due to coexistence of the compressional and
shear waves that propagate at different speed. Based on the Helmholtz
decomposition, the wave field is decomposed into its compressional and shear
parts by using two scalar potential functions. The transformed field expansion
is then applied to each component and a coupled recurrence relation is
obtained for their power series expansions. By solving the coupled system in
the frequency domain, simple and explicit reconstruction formulas are derived
for two types of measurement data. The method requires only a single illu-
mination with a fixed frequency and incident angle. Numerical experiments
show that it is simple, effective, and efficient to reconstruct the scattering
surfaces with subwavelength resolution.

Keywords: inverse elastic surface scattering, near-field imaging, subwave-
length resolution
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1. Introduction

The elastic wave scattering problems have received much attention from both the engineering
and mathematical communities for their significant applications in diverse scientific areas
such as geophysics, seismology, and nondestructive testing [1-4, 14, 22, 23, 25, 28, 29]. For
instance, they are fundamental to detect the fractures in sedimentary rocks for the production
of underground gas and liquids. Moreover, for the investigation of earthquake and the
detection of oil and ore bodies, they have played an important role in the problem for elastic
pulse transmission and reflection through the Earth. Given an incident field, the direct scat-
tering problem is to predict the scattered field by a known scatterer, e.g. a rough surface, an
obstacle, or an inhomogeneous medium. Conversely, the inverse scattering problem is to
recover the properties of the scatterer such as its geometry or material, from the measurement
data of the wave field. This paper is aimed at developing an effective mathematical model and
design an efficient computational method for solving quantitatively an inverse elastic scat-
tering problem of reconstructing the shape of rough surfaces.

Specifically, we consider the scattering of a time-harmonic plane wave incident on a one-
dimensional periodic surface. The space above the surface is filled with a homogeneous and
isotropic elastic medium; while the space below the surface is assumed to be elastically rigid.
Given an incident elastic plane wave, the inverse problem is to determine the surface from the
wave field measured on a horizontal line above the surface. Although we focus on the
periodic surfaces in this work, the method works for other types of surfaces which include the
infinite/unbounded rough surfaces and the locally perturbed plane surfaces. We assume that
the surface has a small amplitude comparing with the wavelength of the incident field, which
is a suitable assumption in the scenario of near-field imaging. Since the space is assumed to be
elastically rigid below the surface, we consider the simplest homogeneous Dirichlet boundary
condition on the surface. The method can be naturally extended to surfaces with other
boundary conditions, or the transmission problem where the wave can penetrate the surface
into the substrate, as well as the obstacle problem where the surface is bounded and closed.
These problems will be reported in future work.

The direct scattering problem has been investigated extensively by many researchers for
either infinite rough surfaces [8, 9, 19-21] or periodic surfaces [6, 7, 17, 18]. The inverse
problem has also been studied theoretically for its uniqueness [5] and numerically by using an
optimization method [18] and the factorization method [24]. The optimization method is a
common approach for solving many inverse problems and is criticized for its large compu-
tational complexity. As a quantitative method, it is accurate but requires a good initial guess
and suffers from the issue of local minima. As a qualitative method, the factorization method
is computationally efficient and requires no a priori information about the solution but it is
not as accurate as those quantitative based methods.

Recently, a novel approach has been developed for solving a wide range of inverse
surface scattering problems in the applications of near-field imaging by acoustic or electro-
magnetic waves, including impenetrable infinite rough surfaces [11], penetrable infinite rough
surfaces [12], two- and three-dimensional diffraction gratings [10, 13, 15], bounded obstacles
[26], and interior cavities [27]. This work is a nontrivial extension of the method from the
Helmholtz and Maxwell equations, which describe the acoustic and electromagnetic wave
propagation, to the Navier equation, which models the elastic wave propagation. The latter is
more complicated due to the coexistence of compressional waves and shear waves that
propagate at different speeds. In view of this physical characteristics, we use two scalar
potential functions and split the wave field into its compressional and shear parts through the
Helmholtz decomposition. The transparent boundary condition for each part can be derived
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Figure 1. Problem geometry. The space below the scattering surface Iy is rigid and the
space above [y is filled with a homogeneous and isotropic elastic medium. An plane
wave is incident on I from above and the total field is measured at the line 7}, and used
as the data for the inverse problem.

and the transparent boundary condition for the wave field can thus be deduced from the
Helmbholtz decomposition. We then apply the transformed field expansion on each part and
obtain a coupled system of recursive boundary value problems formulated in a rectangular
domain. The system is further reduced to the frequency domain through the Fourier series
expansion and solved in an analytical form. Based on the analytic solutions, the nonlinear
inverse problem is linearized by dropping higher order terms in the power series expansions;
explicit reconstruction formulas are obtained in terms of the Fourier coefficients of the data
and the solutions.

The method requires only a single incident field with one polarization, one frequency,
and one incident direction. It is realized efficiently by using the fast Fourier transform (FFT).
As a regularization technique to overcome the ill-posedness, the spectral cut-off is adopted to
suppress the exponential growth of the noise in the evanescent wave components. Numerical
results show that the method is simple, efficient, and effective to reconstruct rigid surfaces
with subwavelength resolution. Numerical examples include both smooth and non-smooth
surfaces, although the mathematical justification requires smooth surfaces. Numerical
experiments investigate the effect of the reconstruction from all the parameters such as the
deformation parameter, the measurement distance, and the noise level. To the best of our
knowledge, this work provides the first quantitative method for solving the inverse elastic
surface scattering problem with subwavelength resolution.

The outline of this paper is as follows. In section 2, we introduce the mathematical model
for elastic surface scattering and derive the boundary value problems. Section 3 is devoted to
the transformed field expansion and the analytical solution to the coupled system in the
frequency domain. The reconstruction formulas are presented in section 4, where two dif-
ferent formulas are given depending on two different type of measurement data. In section 5,
we report numerical examples to demonstrate the effectiveness of the proposed method. Some
general remarks and directions for future research are concluded in section 6.

2. A model problem

In this section, we introduce a mathematical model, define some notation, and deduce a
reduced boundary value problem for the elastic scattering by a rough surface. For simplicity
of presentation, we take a periodic surface for an example, which is also known as a dif-
fraction grating problem. The results can be obtained similarly for an infinite/unbounded
surface and a locally perturbed planar surface by considering the Fourier transform instead of
the Fourier series expansion.
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2.1. Elastic wave equation

Let us first introduce the problem geometry. As seen in figure 1, we consider a periodic
surface within one period of A. The surface is assumed to be invariant in the z-direction. Let
the cross section of the surface be described by Iy = {(x, y) € R y=Ff(x), 0<x<A},

where f € C?(R) is a periodic function with period A and has the form

fx) =eg(x). (2.1)

Here € > 0, standing for the surface deformation parameter, is a sufficiently small constant.
The periodic function g € C?(R) describes the surface profile and has the same period of A.
Denote by 2/ = {(x, y) € R* y > f(x), 0 < x < A} the space above I}, which is filled

with a homogeneous and isotropic elastic medium. Denote 2 = {(x, y) € R>: f(x) <y < h}
and [}, = {(x,y) € R>: y=h, 0 < x <A}, where i > max ,e,4)f (x) is the measurement
distance constant.

Let u™™ be a time-harmonic plane wave which is incident on the scattering surface I}
from above in £;. More explicitly, the incident wave can be either the compressional wave

u}l}nc — [SiIl 9, — cos 9] ele(X sin f—y cos 6)

or the shear wave
usmc — [COS 9’ sin 0] eiKS(.X sin @—y cos 9),

where 0 € (—n/2, n/2) is the incident angle, and

Kp=w/1//1+2 , Ks=a)/\/ﬁ 2.2)

are the compressional and shear wavenumbers, respectively. Here @ > 0 is the angular
frequency, 4 and y are the Lamé constants satisfying 4 > 0 and 1 + g > 0 which implies that
kp < k. For the sake of determinacy and simplicity in the presentation of this paper, we take
the incident wave to be the compressional plane wave with normal incidence, i.e.,

uine = [0, _l]e—iKp)" 2.3)

The method works for general non-normal incidence and the shear plane wave with obvious
modifications. It can be verified that the incident field u™ satisfies the two-dimensional
Navier equation:

”Auinc + A+ wvyv. u™ + @™ =0 in Qf (2.4)

Since the structure is invariant in the z-direction, the displacement of the total field u
satisfies the same Navier equation:

pAu+ A+ VV-u+ou=0 in Q. (2.5)
By assuming that the substrate below I is impenetrable and rigid, we have

u=0 only. (2.6)
The total field u consists of the incident field #™™ and the scattered field v:

u=u"+vy,
where the scattered field v is required to satisfy the bounded outgoing wave condition as
y - .

It is clear to note that the two components of the wavefield are coupled in the Navier
equation, which is the essential difficulty to derive an analytic solution when applying the
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transformed field expansion. To decouple them, it is crucial to introduce the Helmholtz
decomposition to split the wavefield into its compressional and shear parts.

Letu = [u;, u,] and u be a vector and a scalar function, respectively. Introduce a scalar
curl operator and a vector curl operator:

curlu = duy — dyuy, curlu = [a},u, —axu].
For any solution # of the Navier equation (2.5), the Helmholtz decomposition reads

u=Vep+ curly, 2.7)
where ¢ and y are called the compressional and shear scalar potential functions. Substituting
(2.7) into (2.5) yields

V[(/I + 2u)Ap + w2¢] + curl [/lAl// + wzy/] =0.

This equation is fulfilled if ¢ and y satisfy the homogeneous Helmholtz equations
Ap + k79 =0, Ay+x’y=0, (2.8)

where k;, and k, are the compressional and shear wavenumbers defined in (2.2). Combining
(2.7) and (2.8), we have the explicit representations of ¢ and y in terms of u:

1 1
¢ = -——Veou, y=— curl u. 2.9
Kp K,
In addition, it follows from the Helmholtz decomposition (2.7) that the boundary condition
(2.6) is equivalent to

0xp + 0w =0, 0yp—0=0 only. (2.10)
Hence, we may either solve the boundary value problem of the Navier equation for # and

then obtain the scalar potentials ¢, y via (2.9), or solve the boundary value problem of the
Helmbholtz equations for ¢, y and then obtain u by (2.7).

2.2. Transparent boundary conditions

To reduce the problem from the unbounded domain £2; into the bounded domain £2, it is
required to introduce transparent boundary conditions for # and for ¢, yw on I},
Subtracting (2.4) from (2.5), we get the Navier equation for the scattered field:

,uAv+(/1+,u)VV-v+w2v=0 in ;. (2.11)
Similarly, we decompose the scattered field v into its compressional part and the shear part:
v=Vp + curly, (2.12)
where the scalar potential functions
Q= —%V~ v, W= churlv,
Kp K

satisfy the homogeneous Helmholtz equations

Ap + sz(p =0, Ay + K‘szl// =0. (2.13)

Remark 2.1. Recalling thatu = u'™ + v, we may also decompose the scalar potentials ¢, y
into their incident and scattered fields:
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p=¢" +0. y=y"+y.
Below, we shall show that " = 0 so the total field y is equal to the scattered field y.

It follows from the uniqueness of the solution for the direct problem that ¢, w are
periodic functions and admit the Fourier series expansions

PO, y) = D Pme ™,y y) = Yy e, (2.14)
nez nez
where a, = 2nx/A. Plugging (2.14) into (2.13) yields
d’ep™ (y) )’ dy () )2
o A em =0 TR (A7) v m =0, @1s)
where
k2—a2)” | <k k2-a2)” e <k
p = (x5 )1/2 U= ( )1/2 AT
i(oc,,2 - sz) , |a,,| > Kps i(an2 - KSZ) , |a,,| > K.

Following from the bounded outgoing radiation condition, we may obtain the analytic
solutions of second order differential equation (2.15):

o0 ) = Y o™ (el a 7 0-m)y(x y) = 3y @ el o-n), 2.17)
nez nez
which are called the Rayleigh expansions of the scalar potential functions ¢ and y. Taking the
partial derivatives with respect to y of (2.17) and evaluating at y = h, we get
O (x. by = i (e, oy, h) = YAy (e, (2.18)
nez nez

For a given periodic function v(x) with period A, it has the Fourier series expansion

. 1 A .
v(x) = Zv(")ela"x, v = 1 /(; v(x)e " *dx.

nezZ

We define two boundary operators
(%pv)(x) = z iﬂ;")v(n)eianx’ (Byv)(x) = Z By gl

nez nezZ
It is easy to verify from (2.18) that
0y = Brp, Ow=RBy onl,. (2.19)
Recall (2.3) and the Helmholtz decomposition for the incident field
u'™ = Vgp'" + curl yic,

which gives

¢inc - _LZV . uinc - _Le—ikpy’ y/inc — Lz curl uinc =0.
Kp Kp K
A simple calculation yields
ay¢inc — _e—iK'ph’ $p¢inc — e—ixph on Fh (220)
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Combining (2.19) and (2.20), we obtain the transparent boundary conditions for the scalar
potential functions ¢ and -

Oyp = B +p, Oy =Ry onl, (2.21)

where p = —2e~*h,
Next we derive the transparent boundary condition for the displacement of the total field
u. Given a vector field v = [v;, v,], we define a boundary operator on [}:

Ty =pow + G+ wl0, 11V -v=[pdw, G+ maowm + (4 + 2u)dym |. (2.22)

Following from the Helmholtz decomposition (2.12) and the Rayleigh expansions for the
scalar potential functions (2.17), we obtain the Rayleigh expansion for the scattered field v:

y = Zi[am ﬁgn):l(p(n)(h)ei(a”x+[ip(”)(y—h)) + i[ﬂs(n)7 _an]w(n)(h)ei(anx+[fs(")(y—h)). (223)
nezZ

On the other hand, as a periodic function, v = [v;, v,] admits the Fourier expansion

v by = Y v (el (2.24)

nezZ

Plugging (2.24) and (2.17) into (2.12), we obtain a system of algebraic equations for ¢ and
(n).
W

ia, ™ (h) + i w ™ (h) = v{" (h),
iB7 ™ (h) — ity (h) = v{" (h).
An application of Cramer’s rule yields

(o ®+ AP W) i((@d” () = %" ()
n) p(n 4 = n) pn
anz"'ﬂ;)ﬂs() anz"'ﬂ;)ﬁs()

(p(") h) = — (2.25)

Remark 2.2. It is easy to note from (2.16) that o> + ,Bp(”)/i’s(”) # 0 for |a,| < k;. When
|a,| > ks, we have

1/2 172
2 n) gny _ ,,2 2 2 2 2
a, +ﬂp ﬂs =a, _(an _Kp) (an _Ks)
2(..2 2 2.2
a, (KP +Ks)—KPKs Ks4

172 172 2’
al + (an2 - sz) (anz - Ksz) 2,

i 2 (n) g(n)
which shows that a,” + BB #0 forn e Z.

Combining (2.22), (2.24), and (2.25), we deduce an explicit representation for the
boundary operator 7 : for a periodic function with Fourier expansion v = Y, , v®el®¥, it
holds
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[ 23(n) i
o p, o’a,

— ﬂan —_————
2 2
a,’ +ﬂ;n)ﬂs(n) a; +'Bp()n)ﬂs(n)

Fv:Zi )

nez w°a, ua a)Zﬁs(n)
— e — ay, —
a’ + ﬂgn)ﬂs(n) a’ + ﬂ;n)ﬂs(”)

ymeiax —(2.26)

A simple calculation yields

uou™ + (A + [0, 11V - u™ =ik, (A + 2p)[0, 1]e "
and

Tu™ = —ik, (2 + 2u)[0, 1]e ",

which yields the transparent boundary condition for the total field u:
poyu + (A + w0, 11V-u=Ju+p onl, (2.27)

where

p = 2ik, (A + 2w)[0, 1]e~*oh,

2.3. Reduced problem

Using the transparent boundary conditions, the elastic surface scattering can be reduced to a
boundary value problem of the total field # in the bounded domain £2:

phu + A+ wWVV-u+ou=0, in £,
u=0, on [, (2.28)
uoyu + A+ w0, 11V-u=Ju +p, on I,

Due to the Helmholtz decomposition, we may alternatively consider the boundary value
problem for the scalar potential functions ¢ and y in the bounded domain £2:

Ap + K'p2¢ =0, Ay+xly=0, in Q,
0xp + 0oy =0, 0Jyp—day=0, on I, (2.29)
()y¢ = ‘%qub +p, ayl// = By, on [j.

Given the incident field, the direct problem is to solve the boundary value problem (2.28)
or (2.29) for the known scattering surface function f. We refer to [17] for the mathematical
study of the direct problem. The paper is focused on the inverse problem, which is to
reconstruct f from the measurement of the total field on [}, i.e., u (x, k). In particular, we are
interested in the inverse problem in the near-field regime where the measurement distance /4 is
much smaller than the wavelength 2z/®.

We shall apply the transformed field expansion to (2.29) to derive an analytic solution for
the direct problem and explicit reconstruction formulas for the inverse problem. To avoid the
inverse crime, we shall solve directly (2.28) to obtain the synthetic data by using the finite
element with perfectly matched layer (PML) technique.
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3. Transformed field expansion

In this section, we introduce the transformed field expansion to derive an analytic solution for
the coupled boundary value problem (2.29).

3.1. Change of variables

Consider the change of variables:

X =x, h(y f]
h—f

which maps the scattering surface Iy to the straight line
Ih={(F ) €R*: =0, 0<% <A}, and maps the boundary I to itself. Hence the
domaln Q is mapped into the rectangular domain

={# ) ER:0<F<A0<F<hl
The boundary value problem (2.29) will be reformulated in this transformed coordinates.
It is easy to verify the differentiation rules

ax=ai f(h y)

h—f
h
o= (i)
h—5Y h—y
Oxy =0z + (f')z(ﬁ) gy — 2f’(#)0if

_ " h—i /2(]/1—)7) -
P(h—f)+2“)m—ffa”

h 2
S S

Introduce two new scalar potential functions (f()?, ¥) = ¢(x, y) and (%, ¥) = w (x, y) under
the transformation. It can be verified that ¢p and ¥, upon dropping the tilde, satisfy the
following partial differential equations in D:

(Claxx + CZayy + C3axy + C45y + Cle2)¢ = 0’

(3.1

(c,axx + €20y, + €30y, + €40y + C]Ksz)l// =0,
where

= (=17
o =[f'(h=yF + 1,

3.2
¢ = =2 (h = )(h - f), G2
ca=—(h = [t -f)+2¢)]
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Under the change of variables, the boundary condition (2.10) becomes

[(1 ~ h'f)o, —f’dy]qb + oy =0,

(3.3)
oy — [(1 ~ h7'f ), —f’dy]y/ —0.
The transparent boundary condition (2.21) reduces to
0, = (1 - h7)( B + ).
= (1= 1) (3 +0) »

oy = (1 - h—lf)ggsw.

3.2. Power series expansion

Noting the surface function (2.1), we consider formal expansions of ¢ and y in power series
of the deformation parameter &:

Py e) = Dx ek, win yie) = Py (x ek, (3.5)

k=0 k=0

Substituting (2.1) into (3.2) and plugging (3.5) into (3.1), we may obtain the recurrence
equations for ¢, and y, in D:

(A + Kp2)¢k = uy,

) 3.6)
(A + K )l//k = v,
where
e = 2 by + 25 b (3.7)
v =IOy + 2P

Here the differential operators
79 = h7'[ 2 g0 + 2¢'(h = )0y + &"(h = )0y + 2¢7 g |,
7P =~ { 20 + (¢)7(h = )20,y + 288/ (h = )y,
[ 2692 = gg"|h = )0y + k%)
PP =2 800 + 28 (h = )0 + 8" (h — )0y + 2 g,
9P = =h{ 2200 + (¢)(h = ¥)0yy + 28" (h = ¥) 0y
[ 26> - gg” ] = )0y + k2¢%}.

Substituting (2.1) and (3.5) into (3.3), we obtain the recurrence equations for the boundary
conditions on [y:
{ax¢k + ayU/k = Pi»

(3.8)
0y — O = G
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where

P = (h_lgax + g'ay)cbk_],

(3.9)
4 = _(h_lgax + g,ay)l//k—l'

Substituting (2.1) and (3.5) into (3.4), we derive the recurrence equations for the transparent

boundary conditions on [j;:
d, — %, ¢? = I,
(9= )o (3.10)
(ay - ‘%S)l//k = Sk,

where

nh=p, K= —h‘lg(%’quo + ,0), e = _h_lg‘%p¢k—l’

se = —h'g By,

(3.11)

In all of the above recurrence equations, it is understood that ¢, w;, uk, Vi, Py, Q> T Sk
are zeros when k < 0. The boundary value problem (3.6)—(3.11) for the current terms ¢, and
v, involve uy, Vi, Py, qi> T Sk, which depend only on previous two terms of ¢, _;, ¢,_, and
Wi_1» Wi_p- Thus, the boundary value problem (3.6)—(3.11) can be recursively solved
from k = 0.

3.3. Fourier series expansion

Since ¢, and y, are periodic functions of x with period A, they have the Fourier series
expansions

be(r, ) = DB Myt y) = Yy (el (3.12)
nez nezZ

Substituting (3.12) into the boundary value problem (3.6)—(3.11), we obtain a coupled two-
point boundary value problems:

2
Oyy k(n) + (ﬂ;’l)) ¢k(n) =u, 0<y<h,
dy(ﬁk(n) — qk(n) + ianl//k(n)’ 0, (3.13)

y =
0" — IR " = . y=

h

and

2
0yyl//,f") + (ﬁs(n)) Wk(n) =y, 0<y<h,
(3.14)

" = p — ", y=0,
o = iy = 5, y=h,

n)

() .(n)

s pk(n)’ qk s rk r)

where u", v} ) Sk

respectively.

are the Fourier coefficients of wuy, vk, py, gy, T Sk,
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It follows from lemma appendix A.1 that the solutions of (3.13) and (3.14) are
0 =K1 (2 A7) (9 + iy ©)
h
- Kz(y; ﬂp(”))r,ﬁ”) + /0 Kg(y, z ﬂp(”)>u,§”) (2)dz,
p 0)=Ki(3; B7) (" - iangp” ()
h
- Kz(y; ﬂs(”))s,?’) + f Kg(y, Z ﬂj’“)v,ﬁ”) (z)dz,
0

where ¢k(”) (0) and y/k(”) (0) are to be determined. Evaluating ¢k(”) (y) and t//k(”) (y)aty=0in
the above equations and recalling K; in lemma appendix A.1, we obtain

. (n)h

1 . el hoeifyz
¢ (0 = —= (g + iy ) = —=n" + [ —ui” (2)dz,
is P if P 0 i P

() " _ i ) e heh
O = —=(p = i@d” ) - s+ [T e,

i /}S(n) i ﬂs () i /38(")

which yields a system of algebraic equations for 4),{(") (0) and w,f") 0):

L —a /0 [¢,§"> (0)} _ [aé”)} (3.15)

a/f” 1 (w0 ] B

where
o — (g o ignm o [ g
ag =(1ﬁp ) q,” — e n +/ e’ fu (z2)dz |,
0

-1 L h
bi" = (iﬂs(”)) (Pk(") — eiA"hgm 4 / el ey (Z)dz).
0

It follows from remark 2.2 that the linear system has a unique solution given by

(n) g(n) (n)

b0 0 =| 2l g @t
2 9

al + ﬁén)ﬂs(n) ﬁén)

(n) p(n) (n)

w0 =| [
5 .

al + ﬂén) ﬂs(ﬂ) ﬁs(n)

Once ¢k(”) (0) and w,f”) (0) are determined, ¢k(”) (y) and y/k(”) (y) are available for all k and n.
Next we shall deduce more explicit expressions for the leading terms d)o(") ), l//o(") o)

and the linear terms g{)l(") (h), l//l(") (h), which make it possible to derive the explicit recon-
struction formulas.

3.4. Leading terms

For k = 0, it follows from (3.7), (3.9), and (3.11) that we obtain

up=v9=py=¢q,=s5=0, n=p,
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and their Fourier coefficients
uf® = v" = pg” = q" = 5" = 0. 1" = pon, (3.16)

where § is the Kronecker delta. Substituting (3.16) into (3.15) yields

i g(n)
el[fp h
af” = P iﬂ(n) Son b(gn) =0
P
and
g™ o
¢0(n) (0) =p —_ elﬁpl h50m
2 (n) p(n)
a? + pB
ia sp(n)
l//o(n) (O) =P e hé()n’

n
2
a’+ ﬂgn)ﬂs(n)

which gives the Fourier coefficients of the leading terms

¢(n) Q;) _) eiﬂ;")h anz eiﬂ(”)y 1 (ei/jm)y " e_iﬁ(”)") P
- P - - P | Ons
’ i )| @l + A0 A" 2 '
i a ﬂ(")
™ (yy = o| &2 "Tp iy
v ) =p| - e Yo0p.
0 lﬂ;n) > +ﬂ;n)ﬁs(n) "
Plugging p = —2e™**" yields the explicit expressions of the leading terms:
N
o, y) = 2(ixy) " cos (1)), yp(x, ¥) = 0. (3.17)

Remark 3.1. It follows from the Helmholtz decomposition (2.7) that
u= Ve, + curly, = [ oupy, 0y | + [ O, —0.0t |
=[0. 2isin (0 | = [0, eikpy — e_i"vy].

If we denote by u = [0, 1]e*»> the reflected field, then the total field is composed of the
incident field u'™ = [0, — 1]e ™ and the reflected field, i.e., u = u™ + u™f, which is
consistent with the solution when a plane wave is incident on a flat surface.

3.5. Linear terms

For k = 1, it follows from (3.7), (3.9), (3.11), and (3.17) that we obtain
Vi=p =q =s85= 0, n= —2ih~! sin (Kph)g(x),

U= h"[—4il<p cos (kpy)g(x) + 2isin (kpy)(h — y)g” (x)],
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and their Fourier coefficients

y = pl(n) — ql(n) =s"=0, r”=-2ik""sin (Kph)g("),

™ = h—l[—4ixp cos (kpy) — 2ia,; sin (kpy)(h — y)]g(">,

where g™ is the Fourier coefficient of the periodic function g(x).
Substituting these Fourier coefficients to (3.15), we get

-1 s h
al” = (i[)’p(”)) (—e"’é ) 4 / e u (™ (z)dz), b =0,
0

and
(n) ﬁs(n) s (n)h (n) h i) (n)
H () = ————| e [T )z |,
i(ozn2 + ﬂ;")ﬂs(")) 0
a . o(n h )
Wl(n) (0) — 2—n(elﬂ; )hrl(i‘l) _ / elﬂ; )zul(l‘l) (Z)dz),
1(% +ﬁ}£n)ﬁs(n)> 0

which gives the Fourier coefficients of the linear terms at y = h:

a2ei/j1§"’h < a(n) 1 h 2 n(n) < a(n)
¢ (h) = . —{ e 4 / [an‘ A (elﬁv Tl )
B (@2 + AR 0

ip.h
— ei/};")z _ e—iﬂg’”z um (z)dz § — e’ ei/};”)h + e—i/;‘p(”)h Fm
‘ 2" b

p

. sp(n)
ia, e h

(1) =
v ()= s
‘ @l + B

s b n
[—e‘ﬁé )hrl(”)+/ e‘ﬁp()zul(")(z)dz].
0

We substitute the expression of 1" into above integrals and obtain from the integration by
parts that

%/;h [(xn_zﬂgn)ﬂs(n) (eiﬁgn)z + e‘iﬂémz) - (eiﬂp(”)Z - e‘iﬁgn)z)]ul(") (2)dz = [ih‘1 sin (Kph)
X (eiﬁp(”)h - e‘i/”;")h) - ih—lan_zﬂ;")ﬂs(”) sin (Kph)
X (eiﬁ]fn)h + e‘iﬁﬁ")h) - 2ian_zkpﬂ;")ﬂs(")]g(”)

and

h s . . s .
fo e (z)dz = [—211<p — 2ih~ e sin (Kph)]g(").
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Finally, we substitute the expression of ™ into above identities and deduce

alei"h
¢ (h) = & ek —2in~1 sin (K‘ h)
! a0 (2 o ) g ’ P
i (@l + A7)
+ [ih‘1 sin (Kph)(eiﬁp(n)h — C_iﬂ;”)h)
_ ih_la,,_zﬂ;”)ﬁs(") sin (Kph)(ei/};”)h " e—i/}r(,")h)
: (n)]
— 2ia; 2B A | o - T in g e [ —2in~" sin (xph) o
n TPPp Fs Ziﬂ(") P
)
2,1 h
a,c . _ . : a(n o
= n-’ —ih7 (1 + o, 2B ™) sin (K h) B 4 eif"h
o) (2 ) p(n) "p s P
B (af + A7)
iB"h
= i 2y o = S (& 4 ) <20 sin (xph) [
n “pFp Fs Ziﬂ(n) p
P
B 2i (n) g(n)
_t —ih~! sin (Kph)(eiﬂén)h + e‘iﬂri”)h) - 7Kpﬂp A
: 2
ip" a; + p" "
+ ih~" sin (Kph)(eiﬂ;mh + e—i/f.i’”h)] o
-2 (n)
I e S el gn) (3.18)
az + ﬁ(”)ﬂ(n) .
n p Ps
and
ian eiﬁs(n)h

(n) — ip"h =1
v, (h)——{—e » | —=2ih~" sin ( kyh
! anz + ﬂ;")ﬂs(n) [ ( ’ )]
— 2k, — 201 sin (icph) } g

2
= 2";(“)() eiA"gm, (3.19)
a; + BB

It is clear to note from (3.18) and (3.19) that the linear terms in the power series
completely carry the profile information, i.e., the Fourier coefficient g, of the scattering
surface function f.

4. Inverse scattering

Based on the transformed field expansion and analytic solutions of the leading and linear
terms, we present explicit inversion formulas to reconstruct the scattering surface. The for-
mulas differ according to different types of the input data: the decomposed data or the
combined data.
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4.1. Decomposed data

Let u, and u, be the compressional part and the shear part of the total field u. It follows from
the Helmholtz decomposition that

u, = Ve, u;=curly.

Assuming that the compressional and shear parts of the wavefield can be measured, we have
the decomposed data

up(x, ) = [ up(x, ), Oyp(x, ) |,

(4.1)
ug(x, ) = [y (x, ), =0y (x, ) |.

Plugging the transparent boundary condition (2.19) into (4.1) yields

{up(x, = [0 h). Bypx, h) +p]. W

ug(x, h) = [ By (x, h), —0ow (x, h)].

Substituting the power series expansions for u,, us, ¢, y, we obtain
up i (x, h) = [ 0y (x, ), FBpgpy (x, ) + py |,
Uk (v, ) = [ B (e h), =0 (x, b |,

which gives in the frequency domain that

4.3)

ul) () = [ i@, (. PP )+ 9. s
up () = [y (), —iay® () ]

Substituting (3.17) into (4.4) yields for k = O that
uéf‘g h) = Z[QnKp_l cos (K'ph), ﬂ;”)lcp_l cos (K'ph) - e‘i"Ph]éon,
uly () =10, 01,
which implies that
wpo(x, h) = [0, 2i sin (Kph)], uso(x, h) = [0, 0].

Substituting (3.18) and (3.19) into (4.4) gives for k = 1 that
-1 .
w) () = =2ikp B (aF + A7A0) [ an B |,
. n n -1 n iB" n
us(,’? (h) = 21Kpan( anz + /))15 )/}S( )) I:ﬂs( )’ _aﬂ]e [i( )hg( )'

Although either uéf’l) (h) or us(,’{) (h) gives an explicit relation to the Fourier coefficient of

the surface profile function g™ and is readily to derive the reconstruction formula, it is not
convenient to use in practice. In fact, a simple calculation yields

e At (") (h) + A" () = [ 0, —2ix, |, 4.5)
which is simple and may lead to an elegant reconstruction formula.

16
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4.2. Combined data

Alternatively, we consider the combined data u (x, 1) = [u;(x, h), us(x, h)]itself in case that
its compressional and shear parts may not be available.
It follows from the Helmholtz decomposition (2.7) that we have

u(x, h) = 0x (x, h) + oy (x, h), “6)

uz (x, h) = dyp(x, h) — 0y (x, h). '
Substituting the transparent boundary conditions (2.19) into (4.6) yields

u(x, h) = 0,9 (x, h) + By (x, h), 47

us(x, h) = By (x, h) — oy (x, h) + p. @.7)
Consider the power series expansion for u;:

uj(x,y; e) = Zu.i,k (x, y)ek. 4.8)
k=0

Using the power series expansions of u;, ¢, y, we obtain from (4.7) that

ul,k (.X, h) = ax¢k (-x7 h) + =%Slllk (-x’ h), (4 9)

u2,k (x7 h) = ‘%p¢k (-xs h) - aXWk (-x’ h) + pk, '

where p, = p, p; = 0 for k > 0. Comparing the Fourier coefficients in the frequency domain
of (4.9) gives

ulp (h) = i, () + "y (),

usd () = g7 " () = ey () + p . o

Substituting (3.17) into (4.10) yields for k = 0 that

ully () = 25 a, cos (Kph)Son,

ud) (h) = 2[z<p—1 B cos (kyh) - e—iKph]aon,
which implies that

(e, h) =0,  uzp(x, h) = 2isin (kph). @.11)
Substituting (3.18) and (3.19) into (4.10) gives for k = 1 that

ult (h) = MPg®, (4.12)
where

a, + BB
—2ikp

(n) _

g 2 i
——————(BWBWeR" + afe )
o + B A" (s '
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Again, it is not convenient to use (4.12) in the reconstruction formula. It is easy to note that
a(B7) M + MY = <dic,e,
Combining (4.12) and the above identity, we deduce
an A7) ul) (1) + ud) () = 2k g, (4.13)
which is simple and may also lead to an elegant reconstruction formula.

4.3. Reconstruction formula

In practice, the combined data may be easier to get than the decomposed data. We shall derive
an explicit reconstruction formula based on the combined data. An alternative reconstruction
formula can be deduced similarly for the decomposed data.

Due to the presence of noise, the scattering data is assumed to have the form:

wf(x, h) = u;(x, h) + O0), (4.14)

where u;(x, h) is the noise-free data and ¢ is the noise level.
It follows from the power series expansion (4.8) that

wf (e, h) =ujo(x, h) + euji(x, h) + e, (4.15)

where ¢; = O (¢?) stands for the remaining higher order terms substituting the noise data
(4.14) into (4.15) yields

Wi, by = ujo(x, y) + ey (x, b) + 0(52) + O).

Dropping the higher order and noise terms, we linearize the nonlinear inverse problem and
obtain

euji(x, h) = uf(x, h) — ujo(x, h). (4.16)
Combining (4.13) and (4.16) yields

-1 . spn
an( A7) (uf ™ () = u® 0) + (5™ () = ufy () = =2ircye"Hp®,

where u,°™ (h) and uf ™ (h) are the Fourier coefficients of the scattering data, and £ is the
Fourier coefficient of the scattering surface function f. Hence we have an explicit
representation for the Fourier coefficient of the scattering surface function:

£ = 2i1<p)_][a,,(ﬂs(”))_l(ul‘s(”) () = uf® ) + (ud® () - ugy (h))]e—iﬁ,i”)h

= 2i,<p)“[ (an(ﬂ;m)‘luf(") (h) + uf® (h)) — uffy (h)]e—iﬁp‘”’h. 4.17)

It is easy to observe from ﬂ;") that it is well-posed to reconstruct those Fourier coeffi-
cients £ for |a,| < kp. The reason is that the noise is controllable and will not contaminate
the reconstruction largely. However, the resolution of the reconstructed function f is limited
by the given compressional wavenumber «,,. Contrastly, it is severely ill-posed to reconstruct
those Fourier coefficients ™ with |a,| > kp since a small amount of noise will be expo-
nentially enlarged and lead to huge errors in the reconstruction. Nonetheless, these evanescent
wave components contribute to the super resolution of the reconstructed function f. It is

18
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crucial to suppress the exponetial growth of the error while still maintain the super-resolved
resolution.
Following [11], we consider a spectral cut-off regularization

o = _(2i,<p)‘1[ (a,l(ﬂ;m)‘luf(”) (h) + uf™ (h)) — ufy (h)]e‘iﬁ;mh;([_% e (@), (4.18)

where the characteristic function

1, for |a,,| < Kg,

X, k1 (On) =
Ee, ko] 700 0, for|a,| > .

Here k. > k, is the cut-off wavenumber and may be determined from the signal-to-noise ratio.

Once the Fourier coefficient £ is computed, the scattering surface function can be
approximated by

fx) ~ Zf(n) elany — _(2iKP)—1 Z I:(an(ﬂs(n))—lulé(n) (h) + uzé(n) (h))

nez |{1,,|<KC

- udf (h)]ei(“nX—ﬂl;")h)

= —( 2iKP)_] Z I:(an(ﬁs(n))—lulé(n) (h) + uzé(n) (h))ei(anx—ﬂ;")h)

| |<xe

+ &, " sin (Kph)e_ikph. (4.19)

Hence, the method requires only two FFT: one is done for the data to obtain the Fourier
coefficients of the scattering data ul’s(") (h) and uz‘s ™ (h) and another is taken to obtain the
reconstructed scattering function f.

5. Numerical experiments

In this section we discuss the implementation of the direct and inverse problems. We report
the numerical results for three types of surfaces: a periodic smooth surface, a locally perturbed
smooth surface, and two non-smooth surfaces. We shall investigate the dependence of the
results on the following parameters: the measurement distance /4, the noise level 6, and the
surface deformation parameter .

5.1. Direct solver

We use the finite element method and directly solve the boundary value problem (2.28) to

obtain the synthetic data for the inverse problem. Although the transparent boundary con-

dition (2.27) is exact, it is nonlocal and inconvenient to implement in practice. Computa-

tionally, we adopt the local PML technique to truncate the domain in the y-direction [16].
Consider the Navier equation for the scattered field in Q:

pAY + A+ W VV-v+ o2 =0,



Inverse Problems 31 (2015) 035009 P Li et al

1

0.8+ .
PML region ¥
0.6}
0.4 i - s
measurement line
02 | %A\ < /< 5 ,W
0 L

0 02 04 06 08 1

Figure 2. A typical diagram of the computational domain for the PML problem.

whose component-wise version is

(A + 2u)0x 1 + uoyyvi + (A + p)0vy + w* =0,
U0V + (A + 21)0yvo + (A + p)dyvi + w*v, = 0.

Denote the computational domain Q™' = {(x,y) eR* f(x) <y <h+d, 0 <x < A},
where d > 0 is the PML thickness. Define '™ = {(x, y) € R*: y=h+d, 0 <x < A}.
Let s(y) =1 + io(y) be the model medium property, where ¢ is a positive continuous
function satisfying o(y) = 0 in . Following the general idea in designing the PML
absorbing layer, we may deduce the truncated PML equations:

A+ Zy)dx(saxvl) + u()y(s_layvl) + (A + woyvy + sw*v; =0,
,uéx(saxvz) + 4+ Z,u)ay(s_layvz) + (A + woyv + sw*v, =0,

along with the Dirichlet boundary conditions

v=-u"™ onl; and v=0 on/ ™M
Clearly, the PML equations are coupled due to the terms d,,v; and dy,v,. We consider the
following Gauss—Seidel iterative scheme to decouple the PML equations:

A+ Zy)ax(sdxvl(m)) + ,udy(s_layvl(’")) + so*v{™ = —(4 + ,u)()xyvz(m_]),
ﬂdx(saxvz('”)) + @A+ Zﬂ)dy(s‘lz)yvz(m)) + so*i™ = —(4 + ,u)dxyvl(’").

Hence two PML equations for the Helmholtz problem need to be solved at each iteration.

For periodic scattering surface and normal incident wave, the solution of the direct
problem is also periodic so that we truncate the domain in the x-direction by imposing the
periodic boundary condition on the left and right boundaries. For locally perturbed scattering
surface, we focus on the cases when the surface is symmetric about the centerline of the
domain. Due to the symmetry of the domain and the incident field, the solution of the direct
problem is also symmetric so that the periodic boundary condition can still be used in the x-
direction.

As mentioned in section 4, we may present two reconstruction formulas based on either
the decomposed or the combined data. Since the two formulas are mathematically equivalent

20
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h=0.20,8 = 0.001, = 0.01 h=0.15,0 = 0.001, = 0.01
0.02 0.02
0.015 | o (@ | oots (b)
0.01| - 0.01
0.005 |\ 0.005
0 N
0005 -0.005 |
-0.01| -0.01
-0.015 -0.015
002, 0.2 0.4 0.6 0.8 1 7002, 0.2 0.4 0.6 0.8 1
00s h = 0.10,8 = 0.001,¢ = 0.01 000 h = 0.05,8 = 0.001,¢ = 0.01
0.015 (c) 0.015 (d)
0.01 0.01
0.005 | 0.005
0 0
-0.005 | -0.005
-0.01 -0.01
-0.015 | | -0015
0025 0.2 04 06 058 1 002, 0.2 0.4 06 08 1

Figure 3. Example 1: computed (dashed line) against exact (solid line) solution for a
periodic surface. Parameters are € = 0.01, 6 = 0.1% and (a) h = 0.2; (b) & = 0.15; (¢)
h=0.1; (d) h =0.05.

and the combined data is easier to obtain in practice, we focus on this case and use only the
reconstruction formula (4.19). In the following experiments, we fix the angular frequency
@ = r, the Lamé constants 4 = 2 and u = 1. So the wavenumber x, = « /2 and x, = 7,
which correspond to the compressional wavelength 4 and the shear wavelength 2. The
incident wave is taken as a single compressional plane wave at normal incidence, i.e.
u™ = [0, —1]e™*»*. The computational domain for the direct problem is chosen to be
[0, 1] x [f, 1] with the PML region [0, 1] X [0.5, 1], as shown in figure 2. After the direct
problem is solved and the value of u (x, /) is obtained at the grid points, a natural cubic spline
interpolation is used to generate the synthetic data u (x;, #) at 513 uniformly distributed points
on the line [0, 1] X A. To test the stability of our method, an amount of noise is added to the
data

u®(x;, h) = u(x;, h)(1 + 6 rand),

where rand is independently and uniformly distributed random numbers in [—1, 1].

5.2. Numerical examples

We consider three numerical experiments which include both smooth and non-smooth sur-
faces to illustrate the performance of the proposed method.
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h =0.10,5 = 0.05,¢ = 0.01 h =0.10,6 = 0.03,c = 0.01

0.02 0.02
0.015 ’ (a) 0.015 (b)
0.01 i 0.01
0.005 0.005
(N 0
-0.005 ~0.005 "
-0.01 ; -0.01
-0.015 -0.015
0025 0.2 04 06 0.8 1 7002, 0.2 04 06 0.8 1
h=0.10,6 = 0.01, = 0.01 h =0.10,6 = 0.00, = 0.01
0.02 0.02
0.015 (c) 0.015 (d)
0.01 0.01
0.005 0.005
ok 0
-0.005 -0.005
-0.01 -0.01
-0.015 -0.015
002, 0.2 0.4 06 0.8 1 002, 0.2 0.4 06 0.8 1

Figure 4. Example 1: computed (dashed line) against exact (solid line) solution for a
periodic surface. Parameters are ¢ = 0.01, 7 = 0.1 and (a) 6 = 5%; (b) 6 = 3%; (c)
6=1%; (d) 6 = 0%.

Example 1. Consider a smooth surface with only two Fourier modes. The exact surface
function is given by f (x) = eg(x), where

g(x) = 0.5 sin (6zzx) — 0.5 sin (107x).

We first consider the dependence of the resolution on the measurement height 4. The
deformation parameter is fixed at € = 0.01 and the noise level is fixed at § = 0.1%. We solve
the inverse scattering problem by using the scattering data measured at four different height
h = 0.2, 0.15, 0.1, 0.05. Figure 3 shows the numerical results, where the computed scattering
surface (dashed line) is plotted against the exact surface (solid line) for each measurement
height. Clearly better reconstruction is obtained by using smaller measurement height /4. All
the fine features of the scattering surface is completely recovered and subwavelength reso-
lution is achieved, especially when using 2 < 0.15. As can be seen in the reconstruction
formula (4.19), smaller £ results in smaller amplification of the data noise and linearization
error, as well as larger cut-off frequency. Physically speaking, by measuring closer to the
surface we obtain more accurate data of the evanescent wave, which decays exponentially in
the y-direction.

Next we consider the effect of the noise level 6 on the reconstruction. The deformation
parameter is fixed at e = 0.01 and the measurement height is fixed at 4 = 0.1. Four different
noise level § = 5, 3, 1, 0% are added to the scattering data and the results are shown in
figure 4. As expected smaller noise level results in better computed solution. It is worth
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h =0.10,5 = 0.00,¢ = 0.08 h =0.10,5 = 0.00,¢ = 0.04
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Figure 5. Example 1: computed (dashed line) against exact (solid line) solution for a
periodic surface. Parameters are 4 = 0.1, § = 0% and (a) ¢ = 0.08; (b) ¢ = 0.04; (c)
e =0.02; (d) e = 0.01.

pointing out that the sensitivity of the reconstruction on the measurement noise depends on
the sampling rate (the number of measurement points). Higher sampling rate results in lower
sensitivity, i.e. higher tolerance of the reconstruction on the measurement noise. In our
opinion this is a great advantage of the method thanks to the explicit relation between the
Fourier coefficients of the data and the solution.

Finally we consider the surface deformation parameter ¢. The measurement height is
fixed at &~ = 0.1 and the noise level is fixed at 6 = 0%, i.e. no noise is added to the data.
Figure 5 shows the results with four different deformation parameter
e = 0.08, 0.04, 0.02, 0.01. It is clear that better reconstruction is obtained with smaller
deformation parameter. This is reasonable since & implies smaller linearization error © (g2)
when we drop the higher order terms in the power series expansion.

Example 2. Consider a smooth surface with infinitely many Fourier modes. The exact
surface deformation function is given by f(x) = eg(x), where

g(x) = {cos[6z(x — 0.5)] — cos[10z (x — 0.5)]}e~25x=0.57,

Since the observations on the effect of the parameters h, e, and § are similar as those in
example 1, we shall not repeat all experiments but only present some representative results.
Figure 6 shows the results for four different set of parameters. Again we are able to achieve
subwavelength resolution as long as the parameters are sufficiently small.
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Figure 6. Example 2: computed (dashed line) against exact (solid line) solution for a
locally perturbed surface. Parameters are (a) h = 0.1,0 =2%, e =0.01; (b)
h=0.05,6=2%, ¢ = 0.01; (¢) h=02,6=0.1%, e = 0.02; (d)
h=0.05,6=0.1%, € = 0.02.

Example 3. We demonstrate that our method can also be applied to non-smooth surfaces,
although the mathematical justification requires that the surface belongs to C2. We consider
two examples. The first exact surface deformation function is given by f (x) = eg(x), where

g(x) =1 =10 |x = 0.3Dx004 + (1 = 10 |x = 0.7D)x50,6,0.8)>

where y denotes the characteristic function. The second exact surface deformation function is
given by f(x) = eg(x), where

8(X) = Xo02,041 T Xo0.6,081-

Again we shall not present all investigations on the parameters but just report a few
representative results to show the effectiveness of the method. Figure 7 shows the results for
the two scattering surfaces, each with two sets of parameters. The quality of the reconstruction
for the non-smooth but continuous surface is as good as those for the smooth surfaces. The
reconstruction of the discontinuous surface displays the well known Gibbs phenomenon
around the points of discontinuities.

24



Inverse Problems 31 (2015) 035009 P Li et al

h=0.05,6 = 0.01,¢ = 0.01 h=0.02,5 = 0.05,¢ = 0.01
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Figure 7. Example 3: computed (dashed line) against exact (solid line) solution for non-
smooth  surfaces. Parameters are (a) h=0.056=1%,¢=0.01; (b)
h=0.02,5=5%, ¢ =0.01; () h=0.056=1%, ¢ = 0.01; (d)
h=0.02,5=5%, ¢=0.0l1.

6. Concluding remarks

We presented a simple, effective, and efficient method for solving an inverse problem of
surface scattering by elastic wave with near-field data. The surface was assumed to be a small
and smooth deformation of the ground plane. A crucial step was to decompose the total field
into its compressional and shear parts via the Helmholtz decomposition. The transformed field
expansion was applied to each part and a recursive boundary value problem for the power
series expansions is derived. These boundary value problems were coupled at the lower
boundary line of the transformed domain. After solving analytically the coupled system and
dropping high order terms in the power series expansion, the inverse problem was linearized
and explicit reconstruction formulas were deduced for both the decomposed data and the
combined data. The method requires only a single illumination at a fixed frequency and
incident angle and is realized efficiently by the FFT. Although the presentation was for
periodic surfaces, it could be translated directly to more general rough surfaces. In numerical
experiments, we investigated three types of surfaces: periodic, locally perturbed, and non-
smooth. The results show that our method is effective in reconstructing those surfaces with
subwavelength. We also examined the effects of various parameters and found that smaller
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measurement distance, lower noise level, and smaller deformation parameter would yield
more accurate results.

As for future work, we plan to extend the method to solve the inverse surface scattering
problem with other boundary conditions, transmission problems where the surface is pene-
trable, and inverse obstacle or cavity scattering problems. Other interesting and challenging
problems include the three-dimensional problem, random surfaces, phaseless or limited
aperture data, as well convergence analysis of the method.

Appendix. A two-point boundary value problem

Consider the two-point boundary value problem

w' + pPw =, 0<y<h,
w =r, y= 0, (A.1)
w —ipw =, y=h,

where f# # 0 is a constant.

Using the integrated solution method (see, [11, lemma B.1]), we may obtain the analytic
solution for the two-point boundary value problem (A.1).

Lemma Appendix A.1. The two-point boundary value problem (A.1) has a unique solution,
given by

h
w(y) = Ki(y; Byr — Kz2(y; B)s + /0 K3 (y, z; p)v(2)dz,

where
ipy iph
K (y; = Y CYS = ey 4 e,
0 p = K03 Ziﬂ( )
and
ipy )
Sy s
1
KS(y9 Z; ﬂ): iz
e.—(eiﬁy + e‘iﬁy), >y,
2if3
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