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a b s t r a c t

Using the inverse diffractive grating problem as an example, we demonstrate how a
super-resolution can be achieved stably by using far-field data. The idea is to place
a slab of a homogeneous medium with a large index of refraction above the grating
surface, and more propagating wave modes can be utilized from the far-field data
which contributes to the reconstruction resolution.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

According to the Rayleigh criterion, there is a resolution limit to the sharpness of details that can be
observed by conventional far-field optical microscopy, one half the wavelength, referred to as the diffrac-
tion limit [1]. The loss of the details is related to the non-radiative components of the field known as
evanescent waves [2]. It is severely ill-posed to directly use the evanescent waves since the noise in the mea-
surements will be amplified exponentially. Therefore, near-field data is of paramount importance to achieve
super-resolution [3,4]. However, it might be cumbersome to measure the near-field data as a sophisticated
control is needed for the probe when scanning samples.

We use the diffraction grating problem as an example to demonstrate how a super-resolution can be
achieved stably by using the far-field data. The idea is to place a slab of a homogeneous medium with a
large index of refraction above the grating surface. A particular function of the slab is to convert more prop-
agating wave modes of the far-field data into the near-field. The approach avoids measuring the sensitive
near-field data.

Scattering theory in periodic structures has many significant applications in optical industry. The scat-
tering problems have been studied extensively for periodic structures [5–9,14,15]. This paper is built upon
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Fig. 1. Schematic of the problem geometry.

our recent work on solving a wide class of inverse surface scattering problems for acoustic, electromagnetic,
and elastic waves [10–12], where the methods were designed especially for the near-field data. It reflects
our effort to design more practical models and efficient methods for solving quantitatively complex inverse
scattering problems with high resolution.

2. Problem formulation

Consider a perfect electrically conducting surface Γf = {(x, y) ∈ R2 : y = f(x), 0 < x < Λ}, where f is a
periodic function with period Λ. The scattering surface function f is assumed to have the form

f(x) = εg(x), (2.1)

where ε > 0 is a sufficiently small constant g is also a periodic function with the same period Λ. Hence the
surface Γf is a small perturbation of the planar surface Γ0 = {(x, y) ∈ R2 : y = 0, 0 < x < Λ}.

Let a slab of a homogeneous dielectric medium be placed above Γf . The slab’s bottom face is Γh =
{(x, y) ∈ R2 : y = h, 0 < x < Λ}, where h, satisfying ∥f∥∞ < h ≪ λ, is a positive constant. Here λ is the
wavelength of the incident field. The slab’s top face is Γb = {(x, y) ∈ R2 : y = b, 0 < x < Λ}, where b,
satisfying h≪ b = O(λ), is also a positive constant.

Denote by Ω the bounded domain between Γf and Γh, i.e., Ω = {(x, y) ∈ R2 : f < y < h, 0 < x < Λ}.
Let R be the domain of the slab, i.e., R = {(x, y) ∈ R2 : h < y < b, 0 < x < Λ}. Denote by U the open
domain above Γb, i.e., U = {(x, y) ∈ R2 : y > b, 0 < x < Λ}. The index of refraction is one in Ω and U since
they are free spaces, and has a constant value n > 1 in the slab R. The schematic of the problem geometry
is shown in Fig. 1.

Let an incoming plane wave φinc(x, y) = e−iκy be normally incident on Γb from above, where κ is the free
space wavenumber. Let ψ, φ, and ϕ be the diffracted field in U , the total field in R, and the total field in
Ω , respectively. They satisfy the Helmholtz equations:

∆ψ + κ2ψ = 0 in U,

∆φ+ (κn)2φ = 0 in R,

∆ϕ+ κ2ϕ = 0 in Ω ,
(2.2)

and the boundary conditions: 
ϕ = 0 on Γf ,
∂yψ = Bψ on Γb.

(2.3)
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Here B is the boundary operator and is defined as follows:

(Bu)(x) =

m∈Z

iβmu(m)eiαmx,

where u(m) is the Fourier coefficient of u(x),

αm = m


2π
Λ


, βm =


κ2 − α2

m

1/2
, |αm| < κ,

i

α2
m − κ21/2 , |αm| > κ.

In addition, these wave fields are connected via the continuity conditions:
φinc + ψ = φ, ∂yφ

inc + ∂yψ = ∂yφ on Γb,
φ = ϕ, ∂yφ = ∂yϕ on Γh.

(2.4)

Given the incident field φinc, the inverse problem is to determine f from the far-field measurement of the
total field φ on Γb, which is denoted by φb(x) = φ(x, b). By far-field data, it means that the measurement
distance b is comparable with the wavelength, i.e., b = O(λ).

3. Reduced problem

Consider the periodic solution of the Cauchy problem for φ in the slab R:
∆φ+ (κn)2φ = 0 in R,

φ = φb on Γb,
∂yφ = Bφ+ ρ on Γb,

(3.5)

where ρ = −2iκe−iκb. It can be verified that the problem (3.5) has a unique solution which gives the
far-to-near data conversion formula:

φ(m)(h) = (2ηm)−1[(ηm + βm)φ(m)
b − iρ(m)]e−iηm(b−h)

+(2ηm)−1[(ηm − βm)φ(m)
b + iρ(m)]eiηm(b−h), (3.6)

where φ(m)
b is the Fourier coefficient of the far-field data φb(x) and

ηm =


(κn)2 − α2
m

1/2
, |αm| < κn,

i

α2
m − (κn)21/2 , |αm| > κn.

(3.7)

Based on (3.6) and (3.7), it is easy to make the following observations: it is well-posed to convert the
far-field data for the Fourier modes satisfying |αm| < κn in the sense that a small variation in the far-field
data will not lead to a large error in the near-field data; it is severely ill-posed to convert the far-field data
for the Fourier modes satisfying |αm| > κn as a small variation in the far-field data will be exponentially
amplified and lead to a huge error in the near-field data. Therefore it is only reliable to make the near-field
data by converting the low frequency far-field data φ(m)

b with |αm| < κn. Noticing n > 1 in the slab, we are
allowed to include more frequency modes than the case without the slab in the reconstruction of the surface,
which contribute to a super-resolution.

Finally, we may consider the reduced boundary value problem for ϕ in Ω :
∆ϕ+ κ2ϕ = 0 in Ω ,
ϕ = 0 on Γf ,
∂yϕ = Bϕ+ r on Γh,

(3.8)
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where r(x) has Fourier coefficient:

r(m) = i(2ηm)−1κ2(n2 − 1)

e−iηm(b−h) − eiηm(b−h)


φ

(m)
b

+ (2ηm)−1

(ηm − βm)e−iηm(b−h) + (ηm + βm)eiηm(b−h)


ρ(m).

The inverse problem is reformulated to determine f(x) from the Fourier coefficients ϕ(m)(h) = φ(m)(h) for
m ∈ Z with |αm| < κn.

4. Reconstruction formula

Consider a power series solution of the boundary value problem (3.8) in terms of ε:

ϕ(x, y) = ϕ0(x, y) + εϕ1(x, y) + e(x, y), (4.9)

where e = O(ε2) denotes the remainder consisting of all the high order terms. Dropping the remainder and
evaluating (4.9) at y = h gives an approximation

ϕ(x, h) = ϕ0(x, h) + εϕ1(x, h),

which yields

ϕ(m)(h) = ϕ
(m)
0 (h) + εϕ

(m)
1 (h). (4.10)

Noting f = εg, we obtain an infinite dimensional linear system of equations for the Fourier coefficients of
the solution: 

m′∈Z
Sm,m′f

(m−m′) = ϕ(m)(h)− ϕ(m)
0 (h), (4.11)

where ϕ(m)
0 = (2iβm)−1eiβmh(eiβmh − e−iβmh)r(m) and Sm,m′ = −r(m′)ei(βm+βm′ )h.

To truncate (4.11) into a finite dimensional system and to suppress the exponential growth of the error
in the data, we choose the cut-off frequency N such that |αm| < nκ for all |m| ≤ N , i.e.,

N =

nκΛ
2π


.

It is clear to note from the above equation that the index of refraction n plays a critical role for the
reconstruction resolution. The bigger the n is, the higher the resolution is. By keeping only the Fourier
coefficients of the solution in [−N,N ], we obtain the truncated equation

AF = B, (4.12)

where A is the (2N + 1)× (2N + 1) matrix given by

A(m,m′) = Sm,m−m′ ,

and F,B are (2N + 1) column vectors given by

F (m) = f (m), B(m′) = ϕ(m′)(h)− ϕ(m′)
0 (h)

for −N ≤ m,m′ ≤ N . It is easy to note that Sm,m′ contains unstable terms which exponentially amplify
error for |m′| > N . Hence we regularize (4.12) by letting Am,m′ = 0 if |m −m′| > N . Let the solution of
(4.12) be given by

F = A†B, (4.13)

where A† denotes the Moore–Penrose pseudo inverse of A. Finally, the scattering surface is reconstructed as

f = Re

|m|≤N

F (m)eiαmx. (4.14)
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5. Nonlinear correction scheme

The explicit inversion formula (4.14) is accurate to reconstruct the surface function for sufficiently small
ε. If ε is not small, the reconstruction formula (4.14) may provide an initial approximation. To improve the
reconstruction accuracy, we propose a nonlinear correction scheme.

Let F0 be the reconstructed Fourier coefficients by (4.13) and f0 be the reconstructed surface function by
(4.14). Using f0 as the surface function, we solve the direct scattering problem and obtain the total field at
y = b, which is denoted by φf0(x, b). Let Af0 , Bf0 be the corresponding matrix and right-hand-side vector,
but with the new data φ(m)

f0
(b). Then we have an approximate equation

Af0F0 = Bf0 . (5.15)

Subtracting (5.15) from (4.12) yields

AF = Af0F0 +B −Bf0 .

Inverting the above equation yields the updated Fourier coefficients:

F1 = A† (Af0F0 +B −Bf0) .

We then update the surface function as

f1 = Re

|m|≤N

F1(m)eiαmx.

Repeating the above procedure gives the nonlinear correction scheme:

Fj = A†

Afj−1F0 +B −Bfj−1


,

fj = Re

|m|≤N

Fj(m)eiαmx,

j = 0, 1, . . . , where f−1 = Af−1 = Bf−1 = 0.

6. Numerical experiments

We generate the scattering data by solving the direct problem via the finite element method (FEM) with
the perfectly matched layer (PML) technique [13]. A random noise of relative level δ is added to the data:

φδ(x, b) = φ(x, b)(1 + δ rand),

where rand is a uniformly distributed random number in [−1, 1].
We show a representative example. Let the exact surface function be given by f(x) = εg(x), where

g(x) = 0.5

ecos(2π(t−0.25)/Λ) + ecos(4π(t−0.25)/Λ) − 1.2e


.

The period of the surface is taken as Λ = 1.0 and the wavenumber in the air is taken as κ = 2π, which
corresponds to a wavelength λ = 1.0. The deformation parameter is taken as ε = 0.02. The bottom of the
slab is positioned at y = h = 0.03λ and the top of the slab is at y = b = 1.0λ. Hence the slab is put in the
near-field regime to the surface while the measured data is in the far-field regime. The noise level is taken
as δ = 2%.

In Fig. 2(a)–(c), the reconstructed surface functions (dashed line) are plotted against the exact surface
function (solid line) for n = 1.0, 2.0, 4.0, respectively. For n = 1.0, the slab is absent and the cut-off frequency
is N = 1. Hence only the zeroth and first frequency modes may by reconstructed and the resolution is at
most one wavelength. As n increases, more frequency modes are able to be recovered and the resolution
increases to the subwavelength regime. Using the reconstruction in Fig. 2(c) as the initial guess, we apply
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a b

c d

Fig. 2. (Color online) The reconstructed surface (dashed line) is plotted against the exact surface (solid line) for (a) n = 1.0; (b)
n = 2.0; (c) n = 4.0; (d) n = 4.0 and after two iterations of nonlinear correction.

the nonlinear correction algorithm and obtain the result in Fig. 2(d) after two iterations. The reconstruction
is almost perfect. Clearly, the algorithm is effective to increase the accuracy of the reconstruction.

7. Conclusion

Using the inverse diffraction grating problem, we demonstrated that super-resolution could be achieved
stably by using the far-field data. Placing a slab of a homogeneous medium with a large index of refraction
above the grating surface, we were allowed to convert more propagating wave components from the far-field
to the near-field. Results show that the proposed method is effective to reconstruct grating surfaces with
super-resolution. The method can be easily applied to other boundary conditions and problem geometry.
We are extending the method to biperiodic structures where the full three-dimensional Maxwell equations
should be considered.
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