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Abstract. Consider the wave propagation in a two-layered medium consisting of a homogeneous
compressible air or fluid on top of a homogeneous isotropic elastic solid in three dimensions. The
interface between the two layers is assumed to be an unbounded rough surface. This work presents
the first mathematical analysis for the transient acoustic-elastic interaction problem in such an un-
bounded structure. Using an exact transparent boundary condition and suitable interface conditions,
we study an initial boundary value problem for the coupling of the acoustic and elastic wave equa-
tions. The well-posedness and stability are established for the reduced problem. Moreover, a priori
estimates with explicit dependence on the time are obtained for the acoustic pressure and the elastic
displacement. The problem addressed is sufficiently general to have potential use in applications.
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1. Introduction. Consider a two-layered medium which consists of a homoge-
neous compressible air or fluid on top of a homogeneous isotropic elastic solid. The
interface between air/fluid and solid is assumed to be an unbounded rough surface,
which refers to a nonlocal perturbation of an infinite plane surface such that the whole
surface lies within a finite distance of the original plane. As a source located in the
solid layer, the external force generates an elastic wave, which propagates towards the
interface and further excites an acoustic wave in the air/fluid layer. The wave prop-
agation leads to an air/fluid-solid interaction problem with an unbounded interface
separating the acoustic and elastic waves which are coupled on the interface through
two interface conditions. The first kinematic interface condition is imposed to ensure
that the normal velocity of the air/fluid on one side of the boundary matches the
accelerated velocity of the solid on the other side. The second one is the dynamic
condition which results from the balance of forces on two sides of the interface. The
problem addressed above is sufficiently general to have potential use in applications.
For example, the model problem can be used to describe the seismic wave propagation
in the air/fluid-solid medium due to the excitation of an earthquake source which is
located in the crust between the lithosphere and the mantle of the Earth. Mathemati-
cally, there are two major challenges for this acoustic-elastic interaction problem: the
time dependence and the unbounded rough interface.
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This problem falls into the class of unbounded rough surface scattering problems,
which have been of great interest to physicists, engineers, and applied mathematicians
for many years. These problems arise from diverse scientific areas such as optics,
acoustics, electromagnetics, and radar techniques [1, 11, 32, 38, 41]. In particular,
the elastic wave scattering by unbounded interfaces has significant applications in
geophysics and seismology. For instance, the problem of elastic pulse transmission
and reflection through the Earth is fundamental to the investigation of earthquakes
and the utility of controlled explosions in search for oil and ore bodies [14, 15, 35]. The
unbounded rough surface scattering problems are quite challenging due to unbounded
structures. The usual Sommerfeld (for acoustic waves), Kupradze-Sommerfeld (for
elastic waves), or Silver—Miiller (for electromagnetic waves) radiation condition is no
longer valid [2, 43]. The typical Fredholm alternative argument is not applicable
either, due to the lack of compactness results. For the time-harmonic problems,
we refer to [3, 4, 5, 25, 27] for some mathematical studies on the two-dimensional
Helmholtz equation and [17, 29, 30] for the three-dimensional Maxwell equations.
Despite many studies conducted so far, it is still unclear what the least restrictive
conditions are for those physical parameters to assure the well-posedness of the wave
equations in unbounded structures.

The time-domain scattering problems have recently attracted considerable atten-
tion due to their capability of capturing wideband signals and modeling more general
material and nonlinearity [6, 24, 26, 33, 40]. These attractive features motivate us to
tune our focus from seeking the best possible conditions for those physical parameters
to the time-domain problems. Comparing them with the time-harmonic problems, the
time-domain problems are less studied due to the additional challenge of the temporal
dependence. The analysis can be found in [7, 19, 39] for the time-domain acoustic
and electromagnetic obstacle scattering problems. We refer to [28] and [16] for the
analysis of the time-dependent electromagnetic scattering from an open cavity and a
periodic structure, respectively.

The acoustic-elastic interaction problems have received much attention in both the
mathematical and engineering communities [9, 10, 18, 21, 20, 31]. Many approaches
have been attempted to solve numerically the time-domain problems such as coupling
of the boundary element and finite element with different time quadratures [12, 22, 34,
36, 13]. There are also some numerical studies on the inverse problems arising from
the fluid-solid interaction such as reconstruction of surfaces of periodic structures or
obstacles [23, 42]. However, rigorous mathematical study, especially the stability, is
very rare at present.

This work presents the first mathematical analysis for the time-domain acoustic-
elastic interaction problem in an unbounded structure. The problem is reformulated
as an initial boundary value problem by adopting an exact transparent boundary
condition (TBC). Using the Laplace transform and energy method, we show that the
reduced variational problem has a unique weak solution in the frequency domain.
Meanwhile, we obtain the stability estimate to show the existence of the solution in
the time domain. In addition, we achieve a priori estimates with explicit dependence
on the time for the pressure of the acoustic wave and the displacement of the elastic
wave by considering directly the time-domain variational problem and taking special
test functions.

The paper is organized as follows. In section 2, we introduce the model equations
and interface conditions for the acoustic-elastic interaction problem. The time-domain
TBC is presented and some trace results are proved. Section 3 is devoted to the
analysis of the reduced problem, where the well-posedness and stability are addressed
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FiG. 1. Problem geometry of the acoustic-elastic interaction in an unbounded structure.

in both the frequency and time domains. We conclude the paper with some remarks
in section 4.

2. Problem formulation. In this section, we define some notation, introduce
the model equations, and present an initial boundary value problem for the acoustic-
elastic scattering in an air/fluid-solid medium.

2.1. Problem geometry. As shown in Figure 1, we consider an active source
which is embedded in an elastic solid medium. It models an earthquake focus located
in the crust which lies between the lithosphere and the rigid mantle of the Earth. Due
to the excitation of the source, an elastic wave is generated in the solid and propagates
through to the medium of the air/fluid. Clearly, this process leads to the air/fluid-
solid interaction problem with the scattering interface separating the domains where
the acoustic and elastic waves travel.

Let r=(z,y) " € R? and z = (z,y,2)" € R%. Denote by I'y={z € R®: 2= f(r)}
the surface separating the air/fluid and the solid, where f is assumed to be a W1>°(R?)
function. Let T'y = {x € R3: z = g(r)} be the surface separating the crust and the
mantle, where g is an L°°(R?) function satisfying g(r) < f(r),r € R2. We assume
that the open space QF = {& € R® : 2 > f(r)} is filled with a homogeneous com-
pressible air or a compressible inviscid fluid with the constant density p;. The space
Qy = {x € R3: g(r) < z < f(r)} is assumed to be occupied by a homogeneous
isotropic linear elastic solid which is characterized by the constant mass density po
and Lamé parameters p, A. Define an artificial planar surface I'y, = {x € R3: 2 = h},
where h > sup,.cg> f(r) is a constant. Let Q; = {& € R® : f(r) < 2z < h} and
Q=0,UQs.

2.2. Acoustic wave equation. The acoustic wave field in air/fluid is governed
by the conservation and the dynamics equations in the time domain:

(1) Vp(x,t) = —p10v(x,t), EpiV-v(x,t) = —0ip(x,t), xc Q}", t>0,

where p is the pressure, v is the velocity, and the constants p; > 0 and ¢ > 0 are the
density and sound speed, respectively. Eliminating the velocity v from (1), we obtain
the acoustic wave equation for the pressure p:

1
Ap(x,t) — C—26t2p(m,t) =0, xc Q;ﬁ, t > 0.

The homogeneous initial conditions are considered as causality:

P\t:o =0, 8tp|t:0 =0 in Q}_
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2.3. Elastic wave equation. For the solid, the elastic wave field in a homoge-
neous isotropic solid material satisfies the linear time-domain elasticity equation,

(2) V- o(u(z,t)) — pg@fu(a},t) =j(x,t), x€ Qo t>0,

where u = (uy,ug,us3) " is the displacement vector, po > 0 is the density of the elastic
solid material, j(x,t) is the source which models the earthquake focus and is assumed
to have a compact support contained in Qs x (0,7T) for any T' > 0, and the symmetric
stress tensor o (u) is given by the generalized Hooke’s law

3) o () = 2uE () + Mr (E(w) T, Eu) = %(w + (vu)T).

Here y, A are the Lamé parameters satisfying > 0, \+u > 0, I € R3*3 is the identity
matrix, tr(&(w)) is the trace of the matrix £(u), and Vu is the displacement gradient
tensor given by

azul 8yu1 82 (751
Vu = 81 U2 ayUZ az U2
aw us 8yu3 8Z us

Substituting (3) into (2), we obtain the time-domain Navier equation for the displace-
ment u:

(4)  pAu(z,t) + AN+ p)VV - u(z,t) — pediu(z, t) = j(x,t), x € Qo t>0.
By assuming that the mantle is rigid, we have
u=0 only,t>0.
The homogeneous initial conditions are also imposed for the elastic wave equation:
Uli=o =0, Oi|t=0 =0 in Qo.

2.4. Interface conditions. To couple the acoustic wave equation in the air /fluid
and the elastic wave equation in the solid, the kinematic interface condition is imposed
to ensure the continuity of the normal component of the velocity on I'y:

(5) n-v(x,t) =n-ou(x,t), el t>0,

where n is the unit normal on I'; pointing from 5 to ;. Noting (1), we have from
(5) that

Opp=n-Vp=—pin-0iu onI'y, t>0.

In addition, the dynamic interface condition is required to ensure the continuity of
traction:

—-pn=o(u)-n only, t>0,

where o(u) - n denotes the multiplication of the stress tensor o(u) with the normal
vector M.
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2.5. Laplace transform and some functional spaces. We first introduce
some properties of the Laplace transform. For any s = s; + ise with s > 0,52 € R,
define @(s) to be the Laplace transform of the function wu(t), i.e.,

It follows from the integration by parts that

/ w(r)dr = L =1 (s~1a(s),
0

where L ! is the inverse Laplace transform. It is easy to verify from the inverse
Laplace transform that

u(t) = F (el (u)(s1 + is2)),

where F ~! denotes the inverse Fourier transform with respect to ss.
Recall the Plancherel or Parseval identity for the Laplace transform (cf. [8,
(2.46))):
1 o0 o0
(6) L7 () - 6(s)dsy = / 2ty () w(t)dt ¥ sy > oo,
2 —0o0 0
where & = L (u), o = L (v), and o is the abscissa of convergence for the Laplace
transform of v and wv.

Hereafter, the expression a < b or a 2 b stands for a < Cb or a > Cb, where C
is a positive constant and its specific value is not required but should be always clear
from the context.

The following lemma (cf. [37, Theorem 43.1]) is an analogue of the Paley—Wiener—
Schwarz theorem for the Fourier transform of the distributions with compact supports
in the case of the Laplace transform.

LEMMA 2.1. Let E(s) be a holomorphic function in the half-plane Re s > o¢ and
be valued in the Banach space E. The following two conditions are equivalent:
L. there is a distribution h € D’ (E) whose Laplace transform is equal to h(s);
2. there is a real o1 with o < 01 < 00 and an énteger m > 0 such that for all
complex numbers s with Res > o1, we have ||h(s)||g < (1+ |s])™,
where D', (E) is the space of distributions on the real line which vanish identically in
the open negative half-line.

Next we introduce some Sobolev spaces. For any u € L?(I';), which is identified
as L?(R?), we denote by @ the Fourier transform of u:

il€) = - [ umesar,

“or
where & = (£1,£) " € R2. For any a € R, define
H*(T,) = HY(R?) = {u € L*(R?) : / (1+ |€]*)¥al?de < oo} .
]R2

It is clear to note that the dual space associated with H*(I'y,) is the space H~*(I'},)
with respect to the scalar product in L?(R?) defined by

oir, = [ utrypryar = [ i)
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Define
H'Y2(Ty) ={u:Ty = C:ul- f(-) € H/*(R?)}

with the associated image norm

_ 9 1/2
lull e,y = (/Rz|u(r,f(r))|2dr + /Rz 5 |u(7'1,f(1°|123 - :S;z,f(mm d1°1d7‘2> .

Denote by H¥(Q) = {u € L*(Q) : D% € L?() for all |a| < k} the standard
Sobolev space of square integrable functions with the order of derivatives up to k € N.
Let Hllg(Q) ={ue H(Q) : u=10o0n Ty} Let Hllg(Q)?’ and H'/2(T';)? be the
Cartesian product spaces equipped with the corresponding 2-norms of H%g (©) and
HY2(T'}), respectively. For any u = (u1,uz,u3)' € H%g (Q2)3, define

1/2

3
HVUHL2(92)3><3 = Z/ |Vu]|2da:
=178

It is easy to verify that
IVulfziq,mxs + IV - wlliea,) S lullfn @y

The following trace results can be easily proved by using the definitions. The
proofs are omitted for simplicity.

LEMMA 2.2. There exists a positive constant C' such that
[ull e,y < Cllulla,y  Yu e H ().
LEMMA 2.3. There exists a positive constant C' such that
[ullgira,ys < Cllullaiyys Yu € Hy (Q2)°.

2.6. Transparent boundary condition. In this subsection, we will introduce
an exact time-domain TBC to formulate the acoustic-elastic wave interaction problem
into the following coupled initial boundary value problem:

Ap— %0ip=0 in Q,t>0,
pAu+ A+ p)VV - u — prd2u = j in Qy, t >0,
Pli=o = Opli=o =0, u|—g = Opuuly—0 =0 in Q,

Onp=—pin-0}u, —pn=o(u)-n onTy, ¢>0,
Op=Tp onT'y, t>0,
u=0 on Ty, t>0,

where v = (0,0,1)" is the unit normal vector on I';, pointing from €; to QZ =
{x € R®: 2> h}, and T is the time-domain TBC operator on I',. In what follows,
we shall derive the formulation of the operator T and show some of its properties.

Let p(x,s) = L (p) and a(x,s) = L (u) be the Laplace transform of p(x,t) and
u(x,t) with respect to ¢, respectively. Recall that

L (atp) = sp(-, S) _p('v 0), L (atQp) = 5215('7 S) - Sp('70) — op(+,0),
L (0w) = stil- s) — u(-,0), L (92w) = sa(-, s) — su(-0) — dyu(-,0).
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Taking the Laplace transform of (7) and using the initial conditions, we obtain the
acoustic-elastic wave interaction problem in the s-domain:

(8a) Ap— %ﬁ -0 in Q,
(8b) pAL + (N + p)VV - & — pasit = j in O,
(8c) Onp=—p18°n-u, —pn=c(u) -n onTy,
(8d) o,p = Bp on I'y,
(8e) u=0 onTy.

where j = L (j), B is the Dirichlet-to-Neumann (DtN) operator on I', in the
s-domain and satisfies T =L "'oBolL.

In order to deduce the TBC, we consider the Helmholtz equation with a complex
wavenumber,

2
(9) Ap—Zp=0 Q.

Taking the Fourier transform of (9) with respect to r yields

28 S
{dd(“— (5 +1€P)iE =0, =2>n,

(10) 5 .
]5(5,2) = ﬁ(ivh)’ z=nh

Solving (10) and using the bounded outgoing wave condition, we get
P& 2) =& h)e O 2> p,
where
2 s? 2 :
(11) 52(€) = 2 +1€P  with Res(¢) > 0.

Thus we obtain the solution of (9),
(12 pr2) = [ BE e O g,
Taking the normal derivative of (12) on Ty, we have
Ouplr.h) = [ ~BOP(E R de.
For any function u defined on I'},, we defined the DtN operator

(13) (Bu)(r) = | —p&)a§)e*dE.

R2

LEMMA 2.4. Let s = $1 + 182,81 > 09 > 0,85 € R. The DtN operator B(s) :
HY?(T},) — H-Y2(T'},) is continuous, i.e.,

IB(s)ull 1720,y < Cloo)lslllull v,y Yu € HY2(T),

where C (o) = max{c™, o5}
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Proof. For any u € HY/?(T},), it follows from (13) and (11) that
Bl er,y = [+ 1E1) 2 = B(@u(6) e
= [ PR+ g s Pl Pag
< Cloo) 5P ullZ ey

where we have used (2.11) to derive the explicit bound of |3(€)|?:

1B = L €17

<lof (5 + 02|£|2) < Cloo)?Is2(1 + &),
0

which completes the proof. O
LEMMA 2.5. We have

—Re(s™'B(s)u, wyr, >0 Vue Hl/Q(Fh), s =51 +1s9,81 > 0,50 € R.

Proof. A simple calculation yields that

s Bue, = [ s o@laora = [ 2 aerae

Let 5(€) = a+1ib,s = s1 + ise with a > 0,s7 > 0. Taking the real part of the above
equation gives

_ (s1a + s2b)
(14) ~Re(sBu,ur, = [ S ae)ae.
Recalling 5%(¢) = i—z + |€]?, we have
82 — 82 5182
(15) a’ — b = 102 2 1€% ab= 5

Substituting (15) into (14) yields

1 2
Rels B, = [ (o 22 ate)Pag > o
Rr2 |5 c

which completes the proof. ]

Using the DtN operator (13), we can get the following TBC for the acoustic
pressure in the s-domain:

(16) O,p=Bp only.

Using Lemmas 2.1 and 2.4, we may take the inverse Laplace transform of (16) and
obtain the TBC in the time domain,

Oyp=Tp only.
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3. The reduced problem. In this section, we present the main results of this
paper, which include the well-posedness and stability of the scattering problem and
related a priori estimates.

3.1. Well-posedness in the s-domain. Consider the reduced problem (8a)-
(8d) in the s-domain. Multiplying (8a) and (8b) by the complex conjugate of a
test function ¢ € H'(Q;) and a test function v € Hllg (Q2)3, respectively, using the
integration by parts and boundary conditions, which include the TBC condition (8d),
the kinematic and dynamic interface conditions (8c), and the rigid boundary condition

(8e), we arrive at the variational problem: to find (p, %) € H'(Q1) x Hllg (€22)? such
that

1_. _ S __ _ o
/ (Vp-Vq+2pq) dz — (s"'Bp, q)r,
N S C

(17) s / (n-@)ady =0 Yqe H'Q)
Ly
and

/92 <1 (Ve : Vo) + (A+p) (V- @) (V - 9)) +p25a~v> dz

s
1[0 . 1. .

(18) +-/ pn-ov)dy=— -7 -vdx Vv € Hp (2),
s Jry Qs S g

where A : B = tr (ABT) is the Frobenius inner product of square matrices A and B.
We multiply (18) by pi|s|? and add the obtained result to (17) to obtain an
equivalent variational problem: to find (p,@) € H'() x Hf (€22)? such that

(19) a (p,;q,v) = — / p15j - vdz (g, v) € H'(Q) x Hp (22)%,
Qo
where the sesquilinear form

C . 1o, oo, S _ Lo
a(p,a;q,v) :/ <Vp -Vq+ 2pq> dx +/ (pls(u(Vu : Vo)
o \S ¢ Qo
+ A+ p) (V- @) (V- 0)) + p1pas|s|*t - 'D)dm —(s'Bp,q)r,

(20) s / (5p(n - ®) — sd(n - 1)) dy.

THEOREM 3.1. The variational problem (19) has a unique weak solution (p, ) €
H' () x Hy (Q2)®, which satisfies

(21) VBl 2 ()3 + 8Pz S 17122020

. o . 1 -
(22) V]| 200,038 + |V - @ p2(0m) + [I58] 22(00)3 S QHJHB(QZ)&
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Proof. We have from the Cauchy—Schwarz inequality and Lemmas 2.2, 2.3, and
2.4 that

s o
5 10l 2 llal 2

1
s c

|la (p, w; q,v) | STHVﬁHLZ(Ql)ﬁ‘HVQ||L2(91)3 +
+ p1|8| (MHV’ELHL2(QQ)3><3||VU||L2(Q2)3X3
+ A+ WV -l L2V - vl 2 0,)

2 1 5
+ PlP2|5|3HUHL2(Qg)3||’U||L2(Qz)3 + m”Bp”H—lﬂ(Fh)||Q||H1/2(Fh)

+pulsl (Ipllez@plln - vllezoep) + lallcz @ lnc- allce )
Sl @ llall o) + 1@l mr@u vl s + 1B av2 @ gl zrr2 )

+ 10l a1z py ol 2w s + lallmze 1@l g2,
Sl e @nllallar @y + 1@l mr @)z vl a0 + 1B a1 @) gl z2r @)

+ 18l @ 1ol 71 (2202 + gl 18] 71 (0,)2,

which shows that the sesquilinear form is bounded.
Letting (¢,v) = (p, ) in (20) yields
VIV 1o, Sy _ o S o
a(p, @; P, i) =/ (SVP2 + 62|p|2> de +/ (15 (u(Vaa: Va) + (A + p)|V - al?)

1 2

(23) +prpaslsPlaf)de — (s Bpp)r, 1 [ (spn
Ty

)= sitn- @) do.

al

Taking the real part of (23) and using Lemma 2.5, we obtain
VY] S1 w2 Sy 2 12
Ro(alp. i) = [ (195 + 515 ) o+ pusa (Vs
Q

+ A+ )|V 17”%?(92)) +p1pasi|s|®|alFz (o, — Re(s ' By, p)r,
S1 o o
2 1op IVl +spliaca,))

It follows from the Lax-Milgram theorem that the variational problem (19) has a
unique weak solution (p, %) € H' () x H%q (922)3. Moreover, we have from (19) that

VIV S1 % o
(25) |la(p, u; p, )| < QllallmmmIISuI\L2<92)3-

Combing (24) and (25) completes the proof. d

3.2. Well-posedness in the time domain. We now consider the reduced prob-
lem in the time-domain:

(26a) Ap — Ci?afp =0 in Q, t>0,
(26b) pAu+ AN+ p)VV - u — pdiu = j in Qo, t >0,
(26¢) Pli=o = Opli=o =0, u|—o = dpuly—o =0 in Q,

(26d) Onp = —pin-0tu, —pn=o0c(u) n on Iy, t>0,
(26e) Oup=Tp on 'y, t >0,
(261) u=0 onIy, t>0.
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To show the well-posedness of the reduced problem (26), we assume
(27) j € H'(0,T; L*(22)*).

THEOREM 3.2. The initial boundary value problem (26) has a unique solution
(p,w) which satisfies

p(x,t) € L* (0,T; H' (™)) nH' (0,T; L*()),
2 . 1 3 1 . 2 3
u(x,t) € L*(0,T; H (Q2)%) NH'(0,T; L*(Qs)%)
and the stability estimates
e, (I0epll 200y + VDIl L2 (0,)2)
(28) S 10l 0,15 £2(0:)%)

[, (10sull L2 0,)s + IV - wllL2() + [Vl L2(y)5x3)

(29) S 0edll L 0,75 L2(02)3)-

Proof. For the air/fluid pressure p, we have
T
2 2
| (198120, + 101, )
T
< /O e~ 251(t=T) (HVPH%2(Q1)3 + ||8f,p||2L2(Ql)> dt
T

=T [ e (19pl 0 + 10l )

S [ e (190l + 10l ) .
Similarly, we have for the elastic displacement u that

T
2 2 2
| (10l + 190l oo + 19 -l o
S [ e (10l + IVula@pe + IV - ulia, )t

Hence it suffices to estimate the integrals

/ e (IVPIIZ2 @2 + 19l 22 0,)) At
0

and oo
/o 2 (0ull3a s + IV8l32agyoxs + 1V - wlliz(q, ) dt.

Taking the Laplace transform of (26), we obtain the reduced acoustic-elastic
interaction problem in the s-domain (8). It follows from Theorem 3.1 that p and @
satisfy the stability estimates (21) and (22), respectively. It follows from [37, Lemma
44.1] that p and @ are holomorphic functions of s on the half-plane Res > (. Hence
we have from Lemma 2.1 that the inverse Laplace transform of p and @ exists and is
supported in [0, c0).
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Using the Parseval identity (6), the assumptions (27), and the stability estimate
(21), we have

e o] _os 1 o0 . .
/0 e (Vb + 1001 )) dt = 5= [ (1800 + [5913a,)) ds:

Soi [ Mslilspdsa =57 [ IL @) s

T
o [ B0 e, it
0
which shows that
p(x,t) € L? (0,T; H' (1)) N H'(0,T; L*(Q1)).

Since & = L (u) = F (e *'u), where F is the Fourier transform in s», we have
similarly from the Parseval identity (6) and the stability estimate (22) that

/0 2 (0l a s + IVl3aayoxs + 1V - ullfzqq, ) dt

T
Soi? [ et
0
which shows that
w e L*(0,T; Hy (Q2)°) N H'(0,T; L*(Q2)°%).

Next we show the stability estimates. Let p be the extension of p with respect
to t in R such that p = 0 outside the interval [0,¢]. By the Parseval identity (6) and
Lemma 2.5, we get

t t
RC/ e 2T p Oyp)r, dt = Ro/ e*QSlt/ (T p)O;pdrdt
0 T

0
oo _ 1 (e e) o o
= Re/ / e 25T p)9,pdtdr = —/ Re(Bp, sp)r, dss
F;L 0 27T — 00 )

1 [ ¢ ow
=5 |s|2Re<s_1Bp, )7, ds2 <0,

which yields after taking s; — 0 that

t
(30) Re/ / (T p)oypdrdt < 0.
0 JTy

Taking the partial derivative of (26b)—(26d) and (26f) with respect to ¢, we get

pAOu) + (A + p)VV - (Opu) — p20?(0u) = 045 in Qo, t >0,
Orut=0 =0 in Qo,

(31) Otulimo = p3 (AU + N+ p)VV-u—35) =0 =0  in Qy,
—Opn =0i(o(u)) -n=0c(0u) n onTy, t>0,
Ou=0 on I'y,t>0.
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For any 0 < ¢t < T, consider the energy function

E(t) =ei(t) + ea(t),

where .
ei(t) = ||Eatp||%2(91) + 1Vll72 (0,8

and

es(t) = [(p1p2) 2 ul| 2y + (o1 (A + 1)V - (D) |7 20
+ | (plu)l/zv(atu) H%Z(Q2)3x3~

It is easy to note that
(32) E(t) ~ E(0) = /0 E/(r)dr = /O (¢y(7) + éy(r)) dr.

It follows from (26a), (26¢)—(26e), and the integration by parts that

t t 1
/ ey (r)dr = 2Re/ / (Czafp 0D + 0:(Vp) - Vp) dxdr
0 0 Jo,

t
= 2Re/ (ApOp + 0¢(Vp) - Vp) dedr
Q1

- /t/ﬂ 2Re (=Vp - 9,(Vp) + 9,(Vp) - Vp) ddr

t t
+ 2Re / / (T p)Oypdrdr — 2Re / / Onpdypdydr
0 'y 0 Iy

t t
(33) = 2Re/ / (T p)oypdrdr + 2Re/ / p1m - O2ud;pdydr.
T, o Jry

Similarly, we have from (31) and the integration by parts that

/ eh()dr = p12Re / / (20:(0Fu) - B+ (A + p)V - (FFu)V - (Oyu)
0 Qo
+ uV(9u) : V(9,u))dedr
_ p12Re/ /Q ((uA@w) + (A + p)VV - (Bu) — 8,9) - 02
A+ @)V - (Fu)V - (8yw) + pV (0} ) : V(dya))dzdr
p1/ /Q Re( — puV(0u) : V(07w) — (A + p)V - (Qyu)V - (07 u)
+ A+ )V - (07u)V - (0pw) + pV (07u) : V(dyu))dzdr

¢ ¢
— 2Rep; / Orj - OFudxdr + 2Rep; / / (o (du) - n) - Ot udydr
0 JQ, 0Jry

t t
(34) = — 2Rep; / Orj - OFudxdr — 2Rep; / drpm - O udrydr.
0 JQo 0 JTy
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Since E (0) = 0, combining (32)—(34) and (30) gives

¢ ¢
E(t)= 2Re/ / (T p)Oypdrdr — 2Rep; / Orj - OFudxdr
o Jry, 0

Q2
t
< —2Rep; / 03 - O?udxdr
0 JQo

s

2 .
< 2p1 max 105 ull L2022 1063 || L1 0, 7;22(022)2)-
It follows from Young’s inequality that
tg&%(ﬂatpﬂm(m) + IVl z2(arys + 107 ull L2 (s

+ |V - (0w || L2(0s) + IV(Ouw) | L2(05)22) S 110ed | L1(0,7522(02)2)5

which shows the stability estimate (28).

(35)

For

(36)

For the elastic displacement u, we can also obtain

s (197l B2 o + IV - (O0) a0y + V(0] 2,000

S ||ath%1(0,T;L2(QQ)3)'

any function v with v(-,0) = 0, we have

t
[o(-, )] S/ [0 (-, 7)[[dT < T max |[0pv]],
0 t€[0,T)

which holds for any norm. Combining (35)—(36) gives

max ([10ulfz o, + IV - wlieay + 1Vuldaiauena ) S 10610 rize @)

te[0,T)

which shows the estimate (29).

3.3. A priori estimates. In what follows, we derive a priori stability estimates
for the air/fluid pressure p and the displacement v with a minimum regularity re-

quirement for the data and an explicit dependence on the time.

We shall consider the elastic wave equation for d,u in order to match the interface
conditions when deducing the stability estimates. Taking the partial derivative of

(26b)—(26e) and (26f) with respect to t, we obtain a new reduced problem:

(37)

Ap— %0ip=0 in Qp,t>0,
Op=Tp on Ty, t>0,
6np=—p1n-8t2u on Ff,t>0,
Pli=0 = Oypli=o = 0 in
pAOu) + (N + p)VV - (Opu) — p20?(0yu) = 045 in Q, t >0,
Orut=0 =0 in Qo,
Rulimo = p3 ' (AU + AN+ )VV - u—3) [1=o =0  in O,

—gpn = Oy(o(u)) -n=0c(0u) n onTy, t>0,
Ou=0 on I'y,t>0.
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The variational problems of (37) are to find (p,u) € H'(Q1)x € Hy (Q2)* for all
t > 0 such that

1
/ —28t2p(jd33 =— Vp - Vgdx —I—/ (T p)gdr — / Onp qdy
o € 1951 Ty Ty
(38) ==/ Vp~Vq‘dw—|—/ (Tp)(jdr+/ p1(n - 0?u)qdy, Vg € H ()
1 'y Ty

and

/Q p20?%(Opu) - vdx = — / (uV(Opu) : Vo + (A + p)(V - (Opu))(V - v)) dze

Qo

_ 0,7 - vdx +/ (0(0pu) - m) - vdy

Qo Ff

__ /Q (V) : Vo + (A + 1)(V - (9w))(V - B) + (B4 - B) da
(39) _ /F (@p)(n-o)dy, Vo e HL (0)°

To show the stability of the solution, we follow the argument in [37] but with a
careful study of the TBC. The following lemma is useful for the subsequent analysis.

LEMMA 3.3. Given £ >0 and p € H(Q1), we have

Re/rh/ (/ )dr) 5 t)dtdr < 0.

Proof. Let p be the extension of p with respect to ¢t in R such that p = 0 outside
the interval [0,&]. We obtain from the Parseval identity (6) and Lemma 2.5 that

13 T
Re/ / e~ 281t (/ Tp(~,7')d7') (-, t)dtdr
ry Jo 0
[e%e) t B
= Re/ / e~ 25t (/ Tﬁ(~,7’)d7’) p(-, t)dtdr
ry Jo 0
[e%e) t
= Re/ / e~ 251t (/ L 'oBoLj(, T)dT) p(-, t)dtdr
Fh

Re/rh/ —2slt L 'o o(s™ B)o Lp(-t) f)(~,t)) dtdr

R -1 5
5 Re/rh Bp(-,s)p(-, s)drdss

1
= Re( Bp, >1"hd82 <0,
om

where we have used the fact that
t
[ tniar =L (s ).
0

The proof is completed after taking the limit s; — 0. O
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THEOREM 3.4. Let (p,u) € H'() x Hy (Q2)* be the solution of (38)~(39).
Given 8,3 € L' (0,T; L*(Q2)3) for any T > 0, we have

(40) Pl o< 0,7 z2(0)) S TNOF 10,15 £2(22)%)5
(41) l[wll oo 0,7522 (0202 S T210ed L1 0,75 12(02)2)
(42) Ipllz2 0,75 z2(20)) S T 2101l 0,75 12(022)%)
(43) Il 20,22 (00)%) S TP 211001 110,75 £2(020)2)-

Proof. Let 0 < 0 <T and define an auxiliary function

0
wl(m,t):/ pla,7)dr, we, 0<t <0,
t

It is clear to note that
(44) ¢1 (:IJ, 0) = Oa 8t¢1 (mvt) = _p(x7t)'

For any ¢(x,t) € L? (0,0; L?(;)), we have

(45) /¢mtw1<wtdt /(/¢wrdr> B, )dt.
Indeed, we have from the integration by parts and (44) tha
/ o0 = [ 9 <¢<m o Gp(wﬁ)d7> a
Ll
s [ ] ([n)pe
([

Next, we take the test function ¢ = ¢ in (38) and get

1 _ _ _
| Zotvinde == [ Vp-iide+ [ (T pyiar

Ql Fh,

(46) + /r pr(n - Ffu)iprdy.
f

It follows from (44) and the initial conditions (26¢) that

Re/ / = 07p i dadt = Re/ / (0¢ (Op 1) + Orpp) dtda
Ql Q1

- 1 56
_RGLI g <5tp1/11|0+2|p| |0> dx

= §||Ep('a9)||2L2(Ql)-
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It is easy to verify that
0 - 0 -
Re [ [ piin-owindsdt =ke [ [ 1 (0itn-dwin) + (- dwp) dey
o Jry r; Jo
— 0 0
= Re/ p1 (n - Oru 1/)1]0) dvy + Re/ / p1(n - Opu)pdydt
Ty o Jry

0
= Re/ / p1(n - Opu)pdrydt.
0 JTy

Integrating (46) from ¢ = 0 to ¢ = 6 and taking the real parts yield
1
2

1 2

0
+ Re/ Vp - Vqﬁldwdt
L2() 0 Jo

2
1
| +5 )
L2(Q1) 2 Q1

0 )
= Re/ (T p, 1), dt + Re/ / p(n- 8t2u)151d'ydt
0 0 Jry

1
Zp(-. 0
cp(,

o
/ Vp(-, t)dt| dex
0

1
)

0 0
(47) = Re/ (T p,1)r,dt + Re/ / p1(n - Opu)pdydt.
0 o Jry
We define another auxiliary function
0
Py, t) = / Oru(z,7)dr, €D, 0<t<O<T.
t

Clearly, we have
(48) ’l,b2(337 9) = 07 atw2(a:at) = _atu(m7t)'

Using a similar proof as that for (45), for any ¢(z,t) € L*(0,0; L*(92)?), we may
show that

(49) /09 o(x,t) - Py(x, t)dt = /00 (/Ot ¢(m,7)d7> - Oya(z, t)dt.

Taking the test function v = 1, in (39), we can get

| p0bOw) e = [ (u9@r) : Ty + ()T @)V )
Qo Qo

(50) - Ou - by)de — / (O1p) (- 3.

Ly
It follows from (48) and the initial condition in (37) that
0 0
Re/ / p20; (D) - hydzdt = Re/ / p2 (0:(07u - y) + Ofu - Oyun) dtdx
0 QQ QQ 0
9 =0 1 2160
=Re A 02 (atu-¢2)|0+§\8tu| |, | d

P2
= 7“@“('7 '9)||2L2(92)3
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and

o 0
Re/o /Ff (Oep) (12 - pp)drydt = Re /Ff/ (0 (pn - ) + p(n - Oyu)) dtdy

—Re/ (pm - 1ps) ’0d7+Re/ / (n - Oyu)dydt
Ly

—Re/ / (n - Oyu)dydt.
Ly

Integrating (50) from ¢t = 0 to ¢t = 6 and taking the real parts yields

9 —
?|@UEHW§GMB+R§A(AQWV@MWJ»ZV¢ﬂwﬂ
O ) (V- @ 0))(V 4o, 1) )zt

2 ot [ (][ Vot
/v (Oru(-, 1))dt )dx

0 0
(51) =— Re/ 04j - Podadt — Re/ / p(n - dyu)dvyde,
0 Ja, o Jry

6 6 (4
/0 V(Qu(-,t))dt :/0 V(@tu(-,t))dt:/o V(dpa(-,t))dt

Multiplying (51) by p; and adding it to (47) give

1 9
+f/ / Vp(-, t)dt
2(91) 2 Ql

( / V(0uu(-,t))dt

0
—Re/ <TP»1/11>tht+Re/ / p1(n - Opu)pdrydt
Ly

fRe/ / 0p1(0¢7 - ¢2 Ydaxdt — Re/ / p1p(n - Oyu)dydt
Qs Ty

(52) —Re/o (T pb1)r, dt—Re/ /Q p1(01] - By)dardt.

+ A+ w

2 2

p1p2
da + Z2(|0pu -, 0|32,

2
)dsc

0
+(A+p /O V - (Oyu(-,t))dt

In what follows, we estimate the two terms on the right-hand side of (52) sepa-
rately. Using Lemma 3.3 and (45), we obtain

Re / (T p, 1), dt = Re / /F h p)hrdrdt

(53) — Re /F h / ( / dT) B(-, t)dtdr < 0.
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For 0 <t <0 <T, we have from (49) that

] 0 t
Re// —pl(&gj-{bg)dacdt:lee/ / (/ —6tj(-,7)d7>-atﬁ(-,t)dtda:
0 Qo Qs JO 0
—lee/ // =03 (-, 7) - Opua(-, t)daedrdt
Qo
<p / ( / 1037 e e sdf) 10 )| e e
<p / (/ 1003 (- )2 92)36115) 100 )] 2

(54) <p < ||3tj(-,t)||m(n?>3dt> (/ atU(wt)lL?(nz)Sdt) :
0 0

Substituting (53) and (54) into (52), we have for any 6 € [0,T] that

P1pP2
+ 5570 <.79)||§2(92)3
2

1 0
) +—/ / Vp(-,t)dt
L2(Q) 2 Ja, |Jo

0 2
/ V(du(-,t))dt
0

F

= (/ 10e3 (-, )| 2 Qz)Bdt> (/ [|Orua( |L2(92)2dt>

Taking the L norm with respect to § on both sides of (55) yields

P1P2
da:+7||5t (- O72(0,)2

2
+& " dx

+ A+ w
2 Jo,

/9 V- (Bpu(-,t))dt
0

Hp||2Loo(o,T; L2y)) T ||3tu||2L<x>(o,T; L2(Q2)3)

5 T (HathLl(O,T; L2(£22)3)||8tUHLOC(0,T; L2(Q2)3)) .

Applying the Young inequality to the above inequality, we get

(56)  NPlZ~(or: z2ny) F 10wl 0.1: L2003y S T2N0G 21 0.7: £2(020)9)-

It follows from the Cauchy—Schwarz inequality that

PNl oo 0,722(01)) < Pl 0,1 L2(1)) + 10sul|Los (0,7 L2(02)%)
STl 0,1 £2(022)%)>

which gives the estimate (40).
For the elastic displacement u, using Young’s inequality again gives

t
T
(-, )72y :/0 Ol )1 72 (0py2dT < €Tllul-, 8)l|72(au0 + ;Hatu('at)H%?(Qz)s

T
< €T||U||2Loo(o,T;L2(Qz)3) + ;Hat“HQLw(o,T; L2(Q2)3)
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which gives

T
||U||2Loo(o,T;L2(92)3) < €T||u||2L°°(O,T;L2(Qg)3) + ?HatUHQLOO(O,T; L2(023)3)

Choosing € = 5, we have from (56) that

HUH%OO(O,T;L2(Q2)3) S T2||atu||%oo(o,T; L2(02)3)
ST (HPH%W(O,T; 2@ + 10l i< o 1. L2(92)3)>
STH0: 1 0,7 1200025

which implies the estimate (41).
The estimates (42) and (43) are simply the straightforward consequences of (40)
and (41), respectively. The details are omitted and the proof is completed. |

4. Conclusion. In this paper we have studied the time-domain acoustic-elastic
interaction problem in an unbounded structure in three dimensions. The problem
models the wave propagation in a two-layered medium consisting of the air/fluid and
the solid due to an active source located in the solid. We reduce the scattering problem
into an initial boundary value problem by using the exact TBC. We establish the well-
posedness and the stability for the variational problem in the s-domain. In the time
domain, we show that the reduced problem has a unique weak solution by using
the energy method. The main ingredients of the proofs are the Laplace transform,
the Lax—Milgram theorem, and the Parseval identity. Moreover, we obtain a priori
estimates with explicit time dependence for the quantities of acoustic wave pressure
and elastic wave displacement by taking special test functions to the time-domain
variational problem.
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