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Abstract. Consider the scattering of a time-harmonic acoustic incident wave by a
bounded, penetrable, and isotropic elastic solid, which is immersed in a homoge-
neous compressible air or fluid. The paper concerns the numerical solution for such an
acoustic-elastic interaction problem in three dimensions. An exact transparent bound-
ary condition (TBC) is developed to reduce the problem equivalently into a boundary
value problem in a bounded domain. The perfectly matched layer (PML) technique
is adopted to truncate the unbounded physical domain into a bounded computational
domain. The well-posedness and exponential convergence of the solution are estab-
lished for the truncated PML problem by using a PML equivalent TBC. An a posteriori
error estimate based adaptive finite element method is developed to solve the scat-
tering problem. Numerical experiments are included to demonstrate the competitive
behavior of the proposed method.
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1 Introduction

Consider the incidence of a time-harmonic acoustic wave onto a bounded, penetrable,
and isotropic elastic solid, which is immersed in a homogeneous and compressible air
or fluid. Due to the interaction between the incident wave and the solid obstacle, an
elastic wave is excited inside the solid region, while the acoustic incident wave is scat-
tered in the air/fluid region. This scattering phenomenon leads to an air/fluid-solid
interaction problem. The surface of the elastic solid divides the whole three-dimensional
space into a bounded interior domain and an open exterior domain where the elastic
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wave and the acoustic wave occupies, respectively. The two waves are coupled together
on the surface via the interface conditions: continuity of the normal component of ve-
locity and the continuity of traction. The acoustic-elastic interaction problems have re-
ceived ever-increasing attention due to their significant applications in geophysics and
seismology [22,23]. These problems have been examined mathematically by using either
variational method [18, 19] or boundary integral equation method [24, 28]. Many com-
putational approaches have also been developed to numerically solve these problems
such as boundary element method [17, 31] and coupling of finite and boundary element
methods [16].

Since the work by Bérenger [4], the perfectly matched layer (PML) technique has been
extensively studied and widely used to simulate various wave propagation problems,
which include acoustic waves [5, 12, 21, 27, 32], elastic waves [6, 11, 13, 20, 26], and elec-
tromagnetic waves [3, 15]. The PML is to surround the domain of interest by a layer of
finite thickness fictitious material which absorbs all the waves coming from inside the
computational domain. It has been proven to be an effective approach to truncated open
domains in the wave computation. Combined with the PML technique, the adaptive fi-
nite element method (FEM) has recently been developed to solve the diffraction grating
problems [2,8,25] and the obstacle scattering problems [7,9,10]. Despite the large number
of work done so far, they were concerned with a single wave propagation problem, i.e.,
either an acoustic wave, or an elastic wave, or an electromagnetic wave. It is very rare to
study rigorously the PML problem for the interaction of multiple waves.

This paper aims to investigate the adaptive finite element PML method for solving
the acoustic-elastic interaction problem. An exact transparent boundary condition (TBC)
is developed to reduce the problem equivalently into a boundary value problem in a
bounded domain. The PML technique is adopted to truncate the unbounded physical
domain into a bounded computational domain. The variational approach is taken to
incorporate naturally the interface conditions which couple the two waves. The well-
posedness and exponential convergence of the solution are established for the truncated
PML problem by using a PML equivalent TBC. The proofs rely on the error estimate be-
tween the two transparent boundary operators. To efficiently resolve the solution with
possible singularities, the a posteriori error estimate based adaptive FEM is developed
to solve the truncated PML problem. The error estimate consists of the PML error and
the finite element discretization error, and provides a theoretical basis for the mesh re-
finement. Numerical experiments are reported to show the competitive behavior of the
proposed method.

The paper is organized as follows. In Section 2, we introduce the model equations
for the acoustic-elastic interaction problem. In Section 3, we present the PML formu-
lation and prove the well-posedness and convergence of the solution for the truncated
PML problem. In Section 4, we discuss the numerical implementation and show some
numerical experiments. The paper is concluded with some general remarks in Section 5.
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2 Problem formulation

In this section, we introduce the model equations for acoustic and elastic waves, and
present an interface problem for the acoustic-elastic interaction. In addition, an exact
transparent boundary condition is introduced to reformulate the scattering problem into
an boundary value problem in an bounded domain.

2.1 Problem geometry

Consider an acoustic wave incident on a bounded elastic solid which is immersed in
a homogeneous compressible air/fluid in three dimensions. The problem geometry is
shown in Fig. 1. Due to the wave interaction, an elastic wave is induced inside the solid
region, while the scattered acoustic wave is generated in the open air/fluid region. The
wave propagation described above leads to an air/fluid-solid interaction problem. The
surface of the solid divides the whole three-dimensional space into the interior domain
and the exterior domain, where the elastic wave and the acoustic wave occupies, re-
spectively. Let the solid Ωs ⊂R3 be a bounded domain with a Lipschitz boundary Γs.
The exterior domain Ωe = R3\Ω̄s is assumed to be connected and filled with a homo-
geneous, compressible, and inviscid air/fluid with a constant density ρa > 0. Denote by
B= {x=(x1,x2,x3)⊤ ∈R3 : |xj|< Lj, j= 1,2,3} the rectangular box with the boundary ∂B,
where Lj are sufficiently large such that Ω̄s⊂B. Define Ωa=B\Ω̄s. Let n1 be the unit nor-
mal vector on Γs directed from Ωs into Ωe, and let n2 be the unit outward normal vector
on ∂B.

Ωa

Ωs

Γs

Figure 1: A two-dimensional schematic of the problem geometry for the acoustic-elastic interaction.

2.2 Wave equations

Let the elastic solid be impinged by a time-harmonic sound wave pinc, which satisfies the
three-dimensional Helmholtz equation:

∆pinc+κ2 pinc =0 in Ωe,
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where κ = ω/c is the wavenumber, ω > 0 is the angular frequency, and c is the speed
of sound in the air/fluid. The total acoustic wave field p also satisfies the Helmholtz
equation:

∆p+κ2 p=0 in Ωe. (2.1)

The total field p consists of the incident field pinc and the scattered field psc:

p= pinc+psc in Ωe,

where scattered field psc is required to satisfy the Sommerfeld radiation condition:

lim
r→∞

r(∂r psc−iκpsc)=0, r= |x|.

The time-harmonic elastic wave satisfies the three-dimensional Navier equation:

∇·σ(u)+ω2
u=0 in Ωs, (2.2)

where u=(u1,u2,u3)⊤ is the displacement of the elastic wave, and the stress tensor σ(u)
is given by the generalized Hook law:

σ(u)=2µǫ(u)+λtr(ǫ(u))I, ǫ(u)=
1

2
(∇u+∇u

⊤). (2.3)

Here µ(x)∈ L∞(Ωs),λ(x)∈ L∞(Ωs) are the Lamé parameters satisfying µ> 0,λ> 0, and
∇u is the displacement gradient tensor given by

∇u=





∂x1
u1 ∂x2 u1 ∂x3 u1

∂x1
u2 ∂x2 u2 ∂x3 u2

∂x1
u3 ∂x2 u3 ∂x3 u3



.

Substituting (2.3) into (2.2) yields

∇·(µ(∇u+∇u
⊤))+∇(λ∇·u)+ω2

u=0 in Ωs. (2.4)

2.3 Interface conditions

To couple the acoustic wave equation and the elastic wave equation, the kinematic in-
terface condition is imposed to ensure the continuity of the normal component of the
velocity:

∂n1 p=ρaω2
n1 ·u on Γs, (2.5)

In addition, the dynamic interface condition is required to ensure the continuity of trac-
tion:

−pn1=σ(u)·n1 on Γs, (2.6)

where σ(u)·n1 denotes the matrix-vector multiplication.
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2.4 Acoustic-elastic interaction problem

The acoustic-elastic interaction problem can be formulated into the following coupled
boundary value problem: Given pinc, to find (p,u) such that























∆p+κ2 p=0, p= pinc+psc in Ωe,

∇·σ(u)+ω2
u=0 in Ωs,

∂n1
p=ρaω2

n1 ·u, −pn1=σ(u)·n1 on Γs,

∂r psc−iκpsc = o(r−1) as r→∞.

(2.7)

We refer to [28] for the discussion on the well-posedness of the boundary value problem
(2.7). From now on, we assume that the acoustic-elastic interaction problem has a unique
solution.

2.5 Transparent boundary condition

Given v∈H1/2(∂B), we define the Dirichlet-to-Neumann (DtN) operator T : H1/2(∂B)→
H−1/2(∂B) as follows:

T v=∂n2 u on ∂B,

where u is the solution of the exterior Dirichlet problem of the Helmholtz equation:











∆u+κ2u=0 in R3\ B̄,

u=v on ∂B,

∂ru−iκu= o(r−1) as r→∞.

(2.8)

It is well-known that the exterior problem (2.8) has a unique solution u∈H1
loc(R

3\B̄) (cf.,
e.g., [14]). Thus the DtN operator T : H1/2(∂B)→ H−1/2(∂B) is well-defined and is a
bounded linear operator.

Using the DtN operator T , we reformulate the boundary value problem (2.7) from
the open domain into the bounded domain: Given pinc, to find (p,u) such that























∆p+κ2 p=0 in Ωa,

∇·σ(u)+ω2
u=0 in Ωs,

∂n1
p=ρaω2

n1 ·u, −pn1=σ(u)·n1 on Γs,

∂n2 p=T p+ f on ∂B,

(2.9)

where f =∂n2 pinc−T pinc.

To study the well-posedness of (2.9), we define

X :=H1(Ωa)×H1(Ωs)
3={Φ=(p,u) : p∈H1(Ωa),u∈H1(Ωs)

3},
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which is endowed with the inner product:

(Φ,Ψ)X :=
∫

Ωa

(∇p·∇q̄+pq̄)dx+
∫

Ωs

(∇u :∇v̄+u·v̄)dx

for any Φ=(p,u) and Ψ=(q,v), where A : B= tr(AB⊤) is the Frobenius inner product of
square matrices A and B. Clearly, ‖·‖X =

√

(·,·)X is a norm on X.
Let a : X×X→C be the sesquilinear form:

a(p,u;q,v)=
∫

Ωa

(

∇p·∇q̄−κ2 pq̄
)

dx+
∫

Γs

ρaω2(n1 ·u)q̄ds−
∫

∂B
(T p)q̄ds

+
∫

Ωs

(

σ(u) :∇v̄−ω2
u·v̄

)

dx+
∫

Γs

(pn1)·v̄ds. (2.10)

The acoustic-elastic interaction problem (2.9) is equivalent to the following weak formu-
lation: Find Φ=(p,u)∈X such that

a(p,u;q,v)=
∫

∂B
f q̄ds, ∀Ψ=(q,v)∈X . (2.11)

Since we assume that the variational problem (2.11) has a unique weak solution (p,u)∈
X , the generalized Lax-Milgram theorem implies that there exists a constant γ0 such that
the following coercivity condition is satisfied

sup
0 6=(q,v)∈X

|a(p,u;q,v)|

‖(q,v)‖X

≥γ0‖(p,u)‖X , ∀(p,u)∈X . (2.12)

3 The PML problem

In this section, we introduce the PML formulation for the acoustic-elastic interaction
problem and establish its well-posedness. An error estimate will be shown for the so-
lutions between the original scattering problem and the PML problem.

3.1 PML formulation

Now we turn to the introduction of an absorbing PML layer. As is shown in Fig. 2, the
domain Ωa is surrounded by a PML layer of thickness dj which is denoted as ΩPML.
Define Ω :=Ωa∪∂B∪ΩPML. Let αj(t)=1+iσj(t) be the PML function which is continuous
and satisfies

σj(t)=0 for |t|< Lj and σj(t)=σ0

(

|t|−Lj

dj

)m

otherwise.

Here σ0 > 0 is a constant and m is an integer. Following [15], we introduce the PML by
the complex coordinate stretching:

x̃j =
∫ xj

0
αj(τ)dτ, 1≤ j≤3. (3.1)
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Ωa

Ωs

Γs

ΩPML

Γ

Figure 2: A two-dimensional schematic of the geometry for the PML problem.

Let x̃=(x̃1, x̃2, x̃3). Introduce the new function:

p̃(x)=

{

pinc(x)+(p(x̃)−pinc(x̃)), x∈ΩPML,

p(x̃), x∈Ωa.
(3.2)

It is clear to note that p̃(x)= p(x) in Ωa since x̃=x in Ωa. It can be verified from (2.1) and
(3.1) that p̃ satisfies

L ( p̃−pinc)=0 in Ω,

where the PML differential operator is defined by

L p=∇·(A∇p)+κ2bp,

where

A=diag

(

α2α3

α1
,
α1α3

α2
,
α1α2

α3

)

, b=α1α2α3.

It can be verified from (2.1) and (3.2) that the outgoing wave p̃(x)−pinc(x) in ΩPML

decays exponentially. Therefore, the homogeneous Dirichlet boundary condition can be
imposed on Γ := ∂ΩPML\∂B to truncate the PML problem. We arrive at the following
truncated PML problem: Find ( p̂,û) such that























L p̂= g in Ω,

∇·σ(û)+ω2
û=0 in Ωs,

∂n1
p̂=ρaω2

n1 ·û, − p̂n1=σ(û)·n1 on Γs,

p̂= pinc on Γ,

(3.3)

where

g=

{

L pinc in ΩPML,

0 in Ωa.

Define

Y :=H1(Ω)×H1(Ωs)
3={Φ=(p,u) : p∈H1(Ω),u∈H1(Ωs)

3},
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which is endowed with the inner product

(Φ,Ψ)Y :=
∫

Ω
(∇p·∇q̄+pq̄)dx+

∫

Ωs

(∇u :∇v̄+u·v̄)dx

for any Φ=(p,u) and Ψ=(q,v). Obviously, ‖·‖Y =
√

(·,·)Y is a norm on Y .
The weak formulation of the truncated PML problem (3.3) reads as follows: Find

( p̂,û)∈Y such that p̂= pinc on Γ and

b( p̂,û;q,v)=−
∫

Ω
gq̄dx, ∀(q,v)∈Y0, (3.4)

where Y0={Φ=(p,u)∈Y : p=0 on Γ}, and the sesquilinear form b :Y×Y →C is defined
by

b(p,u;q,v)=
∫

Ω

(

A∇p·∇q̄−κ2bpq̄
)

dx+
∫

Γs

ρaω2(n1 ·u)q̄ds

+
∫

Ωs

(

σ(u) :∇v̄−ω2
u·v̄

)

dx+
∫

Γs

(pn1)·v̄ds.

We will reformulate the variational problem (3.4) imposed in the domain Ω∪Ω̄s into
an equivalent variational formulation in the domain B=Ωa∪Ω̄s, and discuss the existence
and uniqueness of the weak solution to the equivalent weak formulation. To do so, we
need to introduce the transparent boundary condition for the truncated PML problem.

3.2 Transparent boundary condition of the PML problem

We start by introducing the approximate DtN operator T PML : H1/2(∂B)→ H−1/2(∂B)
associated with the PML problem.

Given ψ∈H1/2(∂B), let T PMLψ= ∂n2 φ on ∂B, where φ∈H1(ΩPML) is the solution of
the following boundary value problem in the PML layer:











∇·(A∇φ)+κ2bφ=0 in ΩPML,

φ=ψ on ∂B,

φ=0 on Γ.

The PML problem (3.3) can be reduced to the following boundary value problem: Find
(pPML,uPML) such that























∆pPML+κ2pPML =0 in Ωa,

∇·σ(uPML)+ω2
u

PML=0 in Ωs,

∂n1
pPML=ρaω2

n1 ·u
PML, −pPML

n1=σ(uPML)·n1 on Γs,

∂n2 pPML=T PMLpPML+ f PML on ∂B,

(3.5)
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where f PML=∂n2 pinc−T PML pinc.
The weak formulation of (3.5) is to find (pPML,uPML)∈X such that

aPML(pPML,uPML;q,v)=
∫

∂B
f PMLq̄ds, ∀(q,v)∈X , (3.6)

where the sesquilinear form aPML : X×X →C is defined by

aPML(p,u;q,v)=
∫

Ωa

(

∇p·∇q̄−κ2 pq̄
)

dx+
∫

Γs

ρaω2(n1 ·u)q̄ds−
∫

∂B
(T PML p)q̄ds

+
∫

Ωs

(

σ(u) :∇v̄−ω2
u·v̄

)

dx+
∫

Γs

(pn1)·v̄ds. (3.7)

The following lemma establishes the relationship between the variational problem
(3.6) and the weak formulation (3.4). The proof is straightforward based on our construc-
tions of the transparent boundary conditions for the PML problem. The details of the
proof is omitted for simplicity.

Lemma 3.1. Any solution p̂ of the variational problem (3.4) restricted to Ωa is a solution of the
variational (3.6); conversely, any solution pPML of the variational problem (3.6) can be uniquely
extended to the whole domain to be a solution p̂ of the variational problem (3.4) in Ω.

3.3 Convergence of the PML solution

Now we turn to estimating the error between (pPML,uPML) and (p,u). The key is to esti-
mate the error of the boundary operators T PML and T .

Lemma 3.2. For any p,q∈H1(Ωa), there exists a constant C>0 which depends on κ and σ at
most polynomially such that

|〈(T PML−T )p,q〉∂B|≤Cα3
0(1+κL)3e−κγ1σ‖p‖L2(∂B)‖q‖L2(∂B),

where α0 = maxx∈Γ{|α1(x1)|,|α2(x2)|,|α3(x3)|}, γ1 :=
(

∑
3
j=1(2Lj+dj)

2
)−1/2

×min1≤j≤3dj,
L=max1≤j≤3 Lj, and σ>0 is a sufficiently large constant such that γ1σ≥1.

Proof. The proof can follow similar arguments in [5, Theorem 3.8]. For the sake of sim-
plicity, we do not elaborate on the details here.

Theorem 3.1. Let γ0 be the constant in the inf-sup condition (2.12) and let γ2 := Cα3
0(1+

κL)3e−κγ1σ be the constant in Lemma 3.2. If γ2 < γ0, then the PML variational problem (3.6)
has a unique weak solution (pPML,uPML), which satisfies the error estimate

‖(p−pPML,u−u
PML)‖X ≤γ2‖p−pinc‖L2(∂B), (3.8)

where (p,u) is the unique weak solution of the variational problem (2.11).
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Proof. It suffices to show the coercivity of the sesquilinear form aPML defined in (3.7) in
order to prove the unique solvability of the weak problem (3.6). Using Lemma 3.2, and
the assumption γ2<γ0, we get for any (p,u),(q,v) in X that

|aPML(p,u;q,v)|≥ |a(p,u;q,v)|−〈(T PML−T )p,q〉∂B|

≥ |a(p,u;q,v)|−γ2‖p‖H1(Ωa)‖q‖H1(Ωa)

≥
(

γ0−γ2

)

‖(p,u)‖X‖(q,v)‖X .

It remains to show the error estimate (3.8). It follows from (3.6)-(3.7) that

aPML(p−pPML,u−u
PML;q,v)

=aPML(p,u;q,v)−aPML(pPML,uPML;q,v)

=aPML(p,u;q,v)−a(p,u;q,v)+〈 f ,q〉∂B−〈 f PML,q〉∂B

=−〈(T PML−T )p,q〉∂B+〈(T PML−T )pinc,q〉∂B

=〈(T −T
PML)(p−pinc),q〉∂B,

which completes the proof upon using Lemma 3.2 and the trace theorem.

4 Finite element approximation

In this section we introduce the finite element approximations of the PML problem (3.4).

4.1 Error representation formula

Let Mh be a regular tetrahedral partition of the domain D=Ω∪Γs∪Ωs = {x∈R3 : |xj|<
Lj+dj,1≤ j≤ 3} such that Mh|Ω and Mh|Ωs are also regular tetrahedral partitions of Ω

and Ωs, respectively. Let Vh ⊂ H1(Ω) and Uh ⊂ H1(Ωs)3 be the conforming linear finite
element space over Ω and Ωs, respectively, and

VΓ,h={ph ∈Vh : ph =0on Γ}.

The finite element approximation to the PML problem (3.4) reads as follows: Find (ph,uh)∈
Vh×Uh such that ph = Ih pinc on Γ and

b(ph,uh;qh,vh)=−
∫

Ω
gq̄hdx, ∀(qh,vh)∈VΓ,h×Uh. (4.1)

For any ϕ∈H1(Ωa), let ϕ̃ be its extension in ΩPML such that

∇·(Ā∇ϕ̃)+κ2b̄ϕ̃=0 in ΩPML, (4.2)

ϕ̃= ϕ on ∂B, ϕ=0 on Γ. (4.3)
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Introduce the sesquilinear form c : H1(ΩPML)×H1(ΩPML)→C as follows:

c(ϕ,ψ)=
∫

ΩPML

(

Ā∇ϕ·∇ψ̄−κ2b̄ϕψ̄
)

dx.

The weak formulation for (4.2)-(4.3) is: Given ϕ∈H1/2(∂B), find ϕ̃∈H1(ΩPML) such that
ϕ̃=0 on Γ, ϕ̃= ϕ on ∂B, and

c(ϕ̃,ψ)=0, ∀ψ∈H1
0(ΩPML). (4.4)

In this paper we will not elaborate on the well-posedness of (4.4) and simply make the
following assumption: There exists a unique solution to the boundary value problem
(4.4) in the PML layer.

In order to obtain a constant independent of PML parameter σ in the inf-sup condi-
tion, we define

|||ϕ|||ΩPML
=

(

∫

ΩPML

3

∑
j=1

1

1+σj

∣

∣

∣
∂xj

ϕ
∣

∣

∣

2
+(1+σ1σ2σ3)κ

2|ϕ|2
)1/2

.

By using the general theory in [1, Chap. 5], we know that there exists a constant Ĉ> 0
such that

sup
0 6=ψ∈H1

0(ΩPML)

|c(ϕ,ψ)|

|||ψ|||ΩPML

≥ Ĉ|||ϕ|||ΩPML
, ∀ϕ∈H1(ΩPML). (4.5)

The constant Ĉ depends on the domain ΩPML and the wave number κ.

Lemma 4.1 (Estimates for the extension). For any ϕ ∈ H1(Ωa), which is extended to be a
function ϕ̃∈H1(Ω) according to (4.2)-(4.3). Then there exists a constant C>0 independent of κ
and σ such that

‖∇ϕ̃‖L2(ΩPML)≤CĈ−1α0(1+κL)‖ϕ‖H1/2(∂B), (4.6)

‖A∇ ¯̃ϕ·n3‖H−1/2(Γ)≤CĈ−1α3
0(1+κL)2‖ϕ‖H1/2(∂B), (4.7)

where n3 is the unit outward normal vector on Γ.

Proof. For any ζ∈H1(ΩPML) such that ζ=ϕ on ∂B and ζ=0 on Γ. By the inf-sup condition
in (4.5) and using (4.4), we know that

Ĉ|||ϕ̃−ζ|||ΩPML
≤ sup

0 6=ψ∈H1
0(ΩPML)

|c(ϕ̃−ζ,ψ)|

|||ψ|||ΩPML

= sup
0 6=ψ∈H1

0(ΩPML)

|c(ζ,ψ)|

|||ψ|||ΩPML

.

By Cauchy-Schwarz inequality

|c(ζ,ψ)|≤Cα3/2
0 (1+κL)‖ζ‖H1 (ΩPML)|||ψ|||ΩPML

.
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Noting

|||ζ|||ΩPML
≤Cα3/2

0 (1+κL)‖ζ‖H1 (ΩPML)
,

using the triangle inequality and the trace inequality, we conclude that

|||ϕ̃|||ΩPML
≤CĈ−1α3/2

0 (1+κL)‖ϕ‖H1(∂B), (4.8)

which shows the first estimate in the theorem by using the definition of |||·|||ΩPML
.

Next, for any ψ∈H1(ΩPML) such that ψ=0 on ∂B, using (4.2) and the integration by
parts, we obtain
∫

Γ
(A∇ ¯̃ϕ·n3)ψ̄ds=

∫

∂ΩPML

(A∇ ¯̃ϕ·n3)ψ̄ds

=
∫

ΩPML

(A∇ ¯̃ϕ·∇ψ̄+∇·(A∇ ¯̃ϕ)ψ̄)dx=
∫

ΩPML

(

A∇ ¯̃ϕ·∇ψ̄−κ2b ¯̃ϕψ̄
)

dx.

It follows from the Cauchy-Schwarz inequality and (4.8) that
∣

∣

∣

∣

∫

Γ
(A∇ ¯̃ϕ·n3)ψ̄ds

∣

∣

∣

∣

≤Cα3/2
0 (1+κL)|||ϕ̃|||ΩPML

‖ψ‖H1(ΩPML)

≤CĈ−1α3
0(1+κL)2‖ϕ‖H1(∂B)‖ψ‖H1(ΩPML)

,

which completes the proof after using the trace inequality.

Lemma 4.2 (Error representation formula). For any ϕ∈ H1(Ωa), which is extended to be a
function ϕ̃∈H1(Ω) according to (4.2)-(4.3), v∈H1(Ωs)3, ϕh∈VΓ,h, and vh∈Uh we have

a(p−ph,u−uh;ϕ,v)=
∫

Ω
g( ¯̃ϕh− ¯̃ϕ)dx−b(ph,uh; ϕ̃− ϕ̃h,v−vh)

−
∫

∂B
(T −T

PML)(ph−pinc)ϕ̄ds−
∫

Γ
(A∇ ¯̃ϕ·n3)(pinc− Ih pinc)ds.

(4.9)

Proof. First by (2.10), (2.11), (3.6), and (3.7), we have

a(p− p̂,u−û;ϕ,v)=
∫

∂B
f ϕ̄ds−

∫

∂B
f PML ϕ̄ds+aPML( p̂,û;ϕ,v)−a( p̂,û;ϕ,v)

=
∫

∂B
(T −T

PML)( p̂−pinc)ϕ̄ds,

which yields

a(p−ph ,u−uh;ϕ,v)=a(p− p̂,u−û;ϕ,v)+a( p̂−ph,û−uh;ϕ,v)

=
∫

∂B
(T −T

PML)( p̂−pinc)ϕ̄ds+b( p̂−ph,û−uh; ϕ̃,v)

−
∫

∂B
T ( p̂−ph)ϕ̄ds−

∫

ΩPML

(A∇( p̂−ph)·∇ ¯̃ϕ−κ2b( p̂−ph) ¯̃ϕ)dx.

(4.10)
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Recalling that n2 is the unit outer normal to ∂B which points outside B and n3 is the unit
outer normal vector on Γ directed outside ΩPML, we deduce that

∫

ΩPML

(A∇( p̂−ph)·∇ ¯̃ϕ−κ2b( p̂−ph) ¯̃ϕ)dx

=
∫

Γ
(A∇ ¯̃ϕ·n3)( p̂−ph)ds−

∫

∂B
∂n2

¯̃ϕ( p̂−ph)ds

=
∫

Γ
(A∇ ¯̃ϕ·n3)( p̂−ph)ds−

∫

∂B
(T PML( p̂−ph))ϕ̄ds, (4.11)

where we have used (4.2)-(4.3), the definition of T PML, and the identity (c.f., [9, Lemma
5.1])

∫

∂B
(T PML ϕ)ψ̄ds=

∫

∂B
(T PMLψ̄)ϕds, ∀ϕ,ψ∈H1(ΩPML).

By (3.4), (4.1), and (4.10)-(4.11),

a(p−ph ,u−uh;ϕ,v)

=b( p̂−ph,û−uh; ϕ̃,v)−
∫

∂B
(T −T

PML)(ph−pinc)ϕ̄ds−
∫

Γ
(A∇ ¯̃ϕ·n3)( p̂−ph)ds

=
∫

Ω
g( ¯̃ϕh− ¯̃ϕ)dx−b(ph,uh; ϕ̃− ϕ̃h,v−vh)

−
∫

∂B
(T −T

PML)(ph−pinc)ϕ̄ds−
∫

Γ
(A∇ ¯̃ϕ·n3)(pinc− Ih pinc)dx,

which completes the proof.

4.2 A posteriori error analysis

For any K∈Mh, we denote by hK its diameter. Let Bh denote the set of all sides that do
not lie on Γ. For any e∈Bh, he stands for its length. For any K ∈Mh, we introduce the
residual:

RK :=

{

∇·(A∇ph)+κ2bph−g for K∈Mh|Ω,

∇·σ(uh)+ω2
uh for K∈Mh|Ωs .

(4.12)

For any interior side e ∈ Bh not lying on the interface Γs which is the common side of
K1,K2∈Mh, we define the jump residual across e:

Je :=

{

(A∇ph)|K1
·ν−(A∇ph)|K2

·ν for e∈Bh|Ω,

σ(uh)·ν|K1
−σ(uh)·ν|K2

for e∈Bh|Ωs
,

(4.13)

where we have used the notation that the unit normal vector ν on e points from K2 to K1.
If e lies on the interface Γs, then we define the jump residual as

Je :=

{

∂ν ph|K1
−ρaω2

ν·uh|K2
for e⊂K1∈Mh|Ω,

−phν|K1
−σ(uh)·ν|K2

for e⊂K2∈Mh|Ωs .
(4.14)
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For any K∈Mh, we define the local error estimator ηK as

ηK :=

(

‖hK RK‖
2
L2(K)+

1

2 ∑
e⊂∂K\Γs

he‖Je‖
2
L2(e)+ ∑

e⊂∂K∩Γs

he‖Je‖
2
L2(e)

)1/2

.

Theorem 4.1. There exists a constant C>0 depending only on γ1 and the minimum angle of the
mesh Mh such that the following a posterior error estimate holds

‖p−ph‖H1(Ωa)+‖u−uh‖H1(Ωs)3

≤CĈ−1α3
0(1+κL)

(

∑
K∈Mh

η2
K

)1/2

+CĈ−1α3
0(1+κL)3e−γ1κσ‖ph−pinc‖H1/2(∂B)+CĈ−1α3

0(1+κL)2‖pinc− Ih pinc‖H1/2(Γ).

Proof. Let Πh : H1
Γ(Ω)→ VΓ,h and Πh : H1(Ωs)3 → Uh be Scott-Zhang [30] interpolation

operators satisfying the following interpolation estimates: For any ϕ ∈ H1(Ω) and v ∈
H1(Ωs)3,

{

‖ϕ−Πh ϕ‖L2(K)≤ChK‖∇ϕ‖L2(K̃)3

‖ϕ−Πh ϕ‖L2(e)≤Ch1/2
K ‖∇ϕ‖L2(ẽ)3

for K∈Mh|Ω (4.15)

and
{

‖v−Πhv‖L2(K)≤ChK‖∇v‖L2(K̃)3×3

‖v−Πhv‖L2(e)≤Ch1/2
K ‖∇v‖L2(ẽ)3×3

for K∈Mh|Ωs , (4.16)

where K̃ and ẽ are the union of all elements in Mh having a non-empty intersection with
K∈Mh and the side e, respectively.

Taking ϕ̃h=Πh ϕ̃∈VΓ,h and vh=Πhv∈Uh in the error representation formula (4.9), we
get

a(p−ph ,u−uh;ϕ,v)

=
∫

Ω
g(Πh ϕ̃− ϕ̃)dx−b(ph,uh; ϕ̃−Πh ϕ̃,v−Πhv)

−
∫

∂B
(T −T

PML)(ph−pinc)ϕ̄ds−
∫

Γ
(A∇ ¯̃ϕ·n3)(pinc− Ih pinc)ds

=I1+ I2+ I3+ I4. (4.17)
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It follows from the integration by parts and (4.12)-(4.14) that

I1+ I2= ∑
K∈Mh|Ω

(

∫

K
RK(ϕ̃−Πh ϕ̃)dx+

1

2 ∑
e⊂∂K\Γs

∫

e
Je(ϕ̃−Πh ϕ̃)ds

+ ∑
e⊂∂K∩Γs

∫

e
Je(ϕ̃−Πh ϕ̃)ds

)

+ ∑
K∈Mh|Ωs

(

∫

K
RK ·(v−Πhv)dx

+
1

2 ∑
e⊂∂K\Γs

∫

e
Je ·(v−Πhv)ds+ ∑

e⊂∂K∩Γs

∫

e
Je ·(v−Πhv)ds

)

.

By (4.15)-(4.16) and the estimate (4.6), we have

|I1+ I2|≤C

(

∑
K∈Mh

η2
K

)1/2

‖∇ϕ̃‖L2(O)

≤CĈ−1α3
0(1+κL)

(

∑
K∈Mh

η2
K

)1/2

‖ϕ‖H1/2(∂B).

By Lemma 3.2, we have

|I3|≤CĈ−1α3
0(1+κL)3e−kγ1σ‖ph−pinc‖H1/2(∂B)‖ϕ‖H1/2(∂B).

It follows from (4.7) that

|I4|≤CĈ−1α3
0(1+κL)2‖ϕ‖H1/2(∂B)‖pinc− Ih pinc‖H1/2(Γ).

The proof is completed by using the above estimates in (4.17) and the inf-sup condition
(2.12).

5 Numerical experiments

According to the discussion in Section 4, we choose the PML medium property as the
power function and need to specify the thickness dj of the layers and the medium param-
eter σ. It is clear to note from Theorem 4.1 that the a posteriori error estimate consists of
two parts: the PML error ǫPML and the finite element discretization error ǫFEM, where

ǫFEM =

(

∑
K∈Mh

η2
K

)1/2

+‖pinc− Ih pinc‖H1/2(Γ), (5.1)

ǫPML =α3
0(1+κL)3e−γ1κσ‖ph−pinc‖H1/2(∂B). (5.2)
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In our implementation, we first choose dj and σ such that α3
0(1+κL)3e−γ1κσ≤10−8, which

makes the PML error (5.2) negligible compared with the finite element discretization er-
ror (5.1). Once the PML region and the medium property are fixed, we use the standard
finite element adaptive strategy to modify the mesh according to the a posteriori error
estimate. For any K∈Mh, we define the local a posteriori error estimator

η̂K =ηK+‖pinc− Ih pinc‖H1/2(Γ∩∂K).

The adaptive FEM algorithm is summarized in Table 1.

Table 1: The adaptive FEM algorithm.

1 Given a tolerance ǫ>0 and mesh refinement threshold τ∈ (0,1);

2 Choose dj and σ such that α3
0(1+κL)3e−γ1κσ

<10−8;

3 Construct an initial tetrahedral partition Mh over D and compute error estimators;

4 While ǫh>ǫ do

5 choose M̂h ⊂Mh according to the strategy ηM̂h
>τηMh

;

6 refine all the elements in M̂h and obtain a new mesh denoted still by Mh;

7 solve the discrete problem (4.1) on the new mesh Mh;

8 compute the corresponding error estimators;

9 End while.

In the following, we present two examples to demonstrate the competitive numerical
performance of the proposed algorithm. The first-order linear element is used for solv-
ing the problem. Our implementation is based on parallel hierarchical grid (PHG) [29],
which is a toolbox for developing parallel adaptive finite element programs on unstruc-
tured tetrahedral meshes. The linear system resulted from finite element discretization is
solved by the PCG solver.

Example 5.1. We consider a problem with an exact solution. We set the elastic region
Ωs :=B(0,0.2) and the acoustic region Ωa :=B(0,0.5)\Ω̄s, where B(0,R) :={x∈R3 :|x|<R}
denotes the ball with radius R>0 and centering at the origin. Let

p(x)=
eiκ|x−x0|

|x−x0|
and u(x)=ω2∇p(x), (5.3)

where x0=(1,0,0)⊤. The parameters are chosen as κ=1, ω=1, λ=0.5, µ=0.25, and ρa=1
such that

κ2(λ+2µ)=ω2. (5.4)

First it is easy to verify that

∆p+κ2 p=0 in Ωa.
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When µ and λ are constants, the Navier equation (2.4) reduces to

µ∆u+(λ+µ)∇∇·u+ω2
u=0 in Ωs. (5.5)

Using (5.3) and (5.4), we have from a straightforward calculation that

µ∆u+(λ+µ)∇∇·u+ω2
u=ω2

(

µ∇·∇(∇p)+(λ+µ)∇(∆p)+ω2∇p
)

=ω2
(

µ∇·∇(∇p)−κ2(λ+µ)∇p+ω2∇p
)

=ω2
(

−κ2µ(∇p)−κ2(λ+µ)∇p+ω2∇p
)

=ω2
(

−κ2(λ+2µ)+ω2
)

∇p=0.

which shows that u = ω2∇p satisfies (5.5) in Ωs. It can be verified that the interface
conditions (2.5)-(2.6) are also satisfied by letting ρa =1.

Let q= p|∂B(0,0.5) and consider the following acoustic-elastic interaction problem with
the Dirichlet boundary condition:











∆p+κ2 p=0 in B(0,0.5)\ B̄(0,0.2),

µ∆u+(λ+µ)∇∇·u+ω2
u=0 in B(0,0.2),

p=q on ∂B(0,0.5).

We may test the adaptive FEM algorithm by solving the above boundary value problem.
Fig. 3 displays the errors of p and u against the number of nodal points Np in B(0,0.5)\

B̄(0,0.2) and Nu in B(0,0.2), respectively. It clearly shows that the adaptive FEM yields
quasi-optimal convergence rates, i.e.,

‖p−ph‖H1(Ωa)=O(N−1/3
p ), ηp,h=O(N−1/3

p )

and
‖u−uh‖H

1(Ωs)
=O(N−1/3

u ), ηu,h=O(N−1/3
u ),

where ηp,h and ηu,h are the a posterior error estimators for p and u, respectively. Fig. 4
plots the adaptive mesh of Ωa for solving ph and Fig. 5 plots the mesh on a cross section
of the domain Ωa on the xz-plane. Fig. 6 plots the adaptive mesh of Ωs for solving uh and
Fig. 7 plot the mesh on the cross section of the domain Ωs on the xz-plane.

Example 5.2. This example concerns the scattering of the incident plane wave

pinc(x)= e−iκx3 .

The Dirichlet boundary condition on the PML layer outer boundary Γ is set by p=pinc. We
choose κ=2, ω=2π, λ=1, µ=2, and ρa=1. Let the elastic region and the acoustic region
be Ωs=B1\B̄0 and Ωa=B2\Ω̄s, respectively. Here B0=(−0.1,0.1)×(−0.1,0.1)×(−0.2,0.0),
B1=(−0.2,0.2)×(−0.2,0.2)×(−0.2,0.2), and B2=[−0.6,0.6]×[−0.6,0.6]×[−0.6,0.6]. The
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Figure 3: Example 5.1: Quasi-optimality of H1-error estimates and the a posteriori error estimates.

Figure 4: Example 5.1: An adaptive mesh with 20390 elements of Ωa.

Figure 5: Example 5.1: The cross section of the mesh in Fig. 4 on the xz-plane.
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Figure 6: Example 5.1: An adaptive mesh with 7655 elements of Ωs.

Figure 7: Example 5.1: The cross section of the mesh in Fig. 6 on xz-plane.

PML domain is ΩPML = (0,1)×(0,1)×(0,1)\ B̄2, i.e., the thickness of the PML layer is
0.4 in each direction. In this example, the elastic solid is a rectangular box with a small
rectangular dent on the surface. We choose σ=16 and m=2 for the medium property to
ensure the PML error is negligible compared to the finite element error.

For this example, we set the numerical solution on the very fine mesh to be a reference
solution since there is no analytic solution. Fig. 8 shows the errors of p and u against the
number of nodal points Np and Nu. It is clear to note that the FEM algorithm yields
a quasi-optimal convergence rate. The surface plots of the amplitude of the fields are
shown as follows: Fig. 9 shows the real part of ph for the cross section in Ωa on the yz-
plane and Fig. 10 shows the real part of uh for the cross section in Ωs on the yz-plane.

6 Concluding remarks

We have studied a variational formulation for the acoustic-elastic interaction problem in
R3 and adopted the PML to truncate the unbounded physical domain. The scattering
problem is reduced to a boundary value problem by using transparent boundary con-
ditions. We prove that the truncated PML problem has a unique weak solution which
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Figure 8: Example 5.2: Quasi-optimality of H1- error estimates and the a posteriori error estimates.

Figure 9: Example 5.2: The amplitude of the real part of ph for the cross section of Ωa on the yz-plane.

Figure 10: Example 5.2: The amplitude of the real part of uh for the cross section of Ωs on the yz-plane.
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converges exponentially to the solution of the original problem by increasing the PML
parameters. We incorporate the adaptive mesh refinement with a posteriori error esti-
mate for the finite element method to handle the problem where the solution may have
singularities. Numerical results show that the proposed method is effective to solve the
acoustic-elastic interaction problem.
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