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1. Introduction and problem statement

Consider the one-dimensional stochastic Helmholtz equation
u'(z, k) + K2z, k) = f(x) + o(z)W,, (1.1)

where k > 0 is the wavenumber, f and o are deterministic functions which have compact supports contained

in the interval [0, 1], W, is the spatial Brownian motion and W, is the white noise. In this model, f, o, and

o? can be viewed as the mean, the standard deviation, and the variance of the random source, respectively.

The radiated random wave field u is required to satisfy the outgoing wave conditions:

(0, k) +iku(0,k) =0, u'(1,K) —irku(l, k) = 0. (1.2)
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Given f and o, the direct source scattering problem is to determine the radiated wave field u. It is shown
n [1] that (1.1)—(1.2) has a unique pathwise solution which is

ir|x y\ \d 1 elrlz— y\ qv 13
u(e) = [ Gty + [ ? (13)
0 0

Here the second integral at the right hand side of (1.3) is understood in the sense of It6. This paper concerns
the inverse source scattering problem, which is to determine f and g = o2 from boundary measurement of
the radiated wave field u. Specifically, we propose the following two inverse problems:

(1) If f and g are complex function, the inverse problem is to determine f and g simultaneously by two-sided
observation data u(0, <) and u(1, &),k € (0, K), where K > 1 is a constant.

(2) If f is a real function, the inverse problem is to determine f by one-sided observation data (0, ),k €
(0,1) UUN jm, where N € N.

The inverse source problem has significant applications in medical and biomedical imaging [11]. Although
the deterministic inverse source problem has been well studied [2,4], little is known for the stochastic case [7].
We refer to [1,14] for numerical solution of the one-dimensional inverse random source scattering problem.
A related inverse random source problem can be found in [5]. However, there are no stability results available
for the inverse random source scattering problem at present.

In this paper, we study stability of the above two inverse problems. As is known, the inverse source
problem does not have a unique solution at a single frequency even for its deterministic counterpart [8,10].
Our goal is to establish increasing stability of the inverse problems with multi-frequencies. We refer to [3,06]
for increasing stability of the deterministic inverse source problem. In [6], the authors discussed stability of
the inverse source problem for the three-dimensional Helmholtz equation by using the Huygens principle.
In [3], the authors studied the stability of the two- and three-dimensional Helmholtz equations via Green’s
functions. Related results can be found in [12,13] on increasing stability of determining potentials and in
the continuation for the Helmholtz equation.

2. Main results

Let the triple (92, F, P) be a complete probability space on which the one-dimensional Brownian motion
{Wa}seo, is defined. If X is a random variable, E(X) and V(X) = E(X — E(X))? are the expectation
and variance of X, respectively. We remark that V(X) is not an ordinary variance if X is a complex-
valued random variable. For convenience, we still call V(X)) the variance of random variable X even if it is
complex-valued. We refer to [9] for more details on notation of stochastic differential equations.

Define a complex-valued functional space:

Cu =A{f € H"(0,1) : | fllan0,1) < M, suppf C (0,1), f:(0,1) —» C}
and a real-valued functional space:
Ru = {f € H"(0,1) : || fllan(0,1) < M, suppf C (0,1), f:(0,1) = R},

where n € N and M > 1 is a constant. Given two random functions u; and wus, we define the function of
expectation discrepancy:

v(z, k) = Euy(z, k) — Eug(x, k)
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and the function of the variance discrepancy:
w(z, k) = Vuy(z, k) — Vua(x, k).
Now we show the main stability result of the first inverse problem.

Theorem 2.1. Let fj,g9; € Cu,j = 1,2, and let u; be the solution (1.3) corresponding to f;,g;. Then there
exist two positive constants C1,Cy independent of n, K, M, k such that

2 2 M?
If1 = fallz2(00) S Cr | €5+ —— N 2n-1 | (2.1)
<K3|1n 61|4>
“(6n—3)?
M2
Hgl - gQH%?(O,l) < CQ Eg + 2 1N 2n—1 3 (22)
<K3 |Ines]|% >
(6n—3)3
where K > 1 and
K 3
o = 4/,@2 ([0 (0, )% + Jo(1, x)[2) dr | (2.3)
0
1
K 2
€ = 16//{4 (Jw(0,K)[* + |w(1,k)[*) ds | . (2.4)
0

Remark 2.2. There are two parts in the stability estimates (2.1) and (2.2): the first part is the data discrep-
ancy and the second part comes from the high frequency tails of the functions. It is clear to see that the
stability increases as K increases, i.e., the problem is more stable as more frequencies data are used. We

2 1
K3|lne; |12 43 e . . .
can also see that when n < % the stability increases as n increases, i.e., the problem is more

stable as the functions have suitably higher regularity.
Here is the main stability result of the second inverse problem.

Theorem 2.3. Let f; € Ry, j = 1,2, and let u; be the solution of (1.3) corresponding to f;. Let

N 2
es= | Y (2jm)?Rev(0,jm) | . ex= sup 2x[Rev(0,x)| < L.
j=1 KE(O,l)

Then there exists a positive constant Cs independent of n, N, M, k such that

M2

5 1\ 2n—1
N3B8|Iney|9
(6n—3)3

If1— f2||2L2(0,1) <Cs e+
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Remark 2.4. Theorem 2.3 shows that only one-sided boundary observation data are needed for the wavenum-
bers in the set (0, 1)UU§V: 1Jjm if one wants to determine the mean of the random source. The stability increases

5 1
N24|lney|27+3

asNorn<{ 5

] increases.

The remainder of the paper is organized as follows. We prove Theorem 2.1 and Theorem 2.3 in section 3
and section 4, respectively.

3. Proof of Theorem 2.1

First we present several useful lemmas.

Lemma 3.1. Let f;, g; € L*(0,1),suppf;,suppg; C (0,1),5 = 1,2. We have

s

2 (o]
1= FelBaony = = [ #2(0(0. 0 + fo(1, 0,
0

oo

16
o1 = galeomy = 3 | (O + (1, ).
0

Proof. Letting & € R with |¢| = &, we multiply e % on both sides of (1.1) and obtain
e %y (2, k) + KZe T %u(z, k) = e T f () + e %o (2) W,
Since
(e7%/ (z, k) = e 77U (2, k) — ile "/ (2, K),
we have
(55 (k) = 75 (@) + €S0 (@)W — k2 u(e, 1) — i~ 5 (2, ). (3.1)

Integrating (3.1) over (0,1) with respect to x yields

1

1
e/ (1, k) — (0, n):/ —ieT () dac—i—/ Tigry
0

0
1
IiQ/ 8%z, k)da —15/ —i&wy (2, k) da. (3.2)
0
It follows from the integration by parts that
1 1
—if/e‘igwu'(ac,/i)dx = —i€e Cu(1, k) +iu(0, K +/~€2/ —ikzy, dx. (3.3)
0 0

Substituting (3.3) into (3.2), we get
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1 1

U (1,0) +i€e (1)~ 0 (0,0) — i€u(0,0) = [ fla)da+ [ e

0 0

which gives after applying the outgoing wave conditions (1.2) that

1 1
i(k 4+ e Cu(l, k) +i(k — Eu(0, k) = /e*i‘fwf(a:)dx + /e*igma(a?)dWm.
0 0

Taking the expectation on both sides of (3.4), we obtain

1

/e_ifxf(x)dx = i(k +&)e CBu(l, k) +i(k — )Bu(0,£), |£] =k € (0,00).

0
Since f; is assumed to have a compact support in [0, 1], we have from (3.5) that

oo

fj(f) = / e_if’”fj(x)dx =i(k + f)e‘ifEuj(l, k) +i(k —§Eu;(0,k), [¢ =k € (0,00),

which gives
GEFAGE / e S (fi(2) = fa(2))dz = i(k + &) (Bui (1, k) — Eua(1, £))

+i(k — &)(Eui(0,k) — Euz (0, k), [£] =k € (0,00).

Hence we have

PN A

fi(=k) — fa(—k) = 2ik(Eu1(0, k) — Eug(0, k)) = 2ikv(0, )

and

PN A

fi(k) = fa(r) = 2ie " k(Buy (1, 5) — Bua(1, k) = 2ike o (1, k).

It follows from the Plancherel theorem that

1~ Folaon) = 5 /m £)2de
=;/V1 - e %+—ﬂh AGIR:

— 5 [ 15 >ﬁ<QM+—/m )P

30

0
o0 2 o
/Ii2|v(0,/€)|2di€+ —/li2|’l}(17l<v)|2dl<;.
™
0 0

(3.5)
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Noting

1 1 1
. 2 . .
E(/ e_lf'"”o(:c)de;) = /6_215”302(33)(135 = /6_21£mg<$)d$,
0 0 0

we have from (3.4) that

/ e g(x)dr = V (i(s + e u(l, k) +i(s — u(0, %)), |¢] = x € (0,00). (36)
0

Since g; has a compact support in (0,1), we get from (3.6) that

5,20 = [ g (@)de = V(ils + e uy(1,0) + il - uy(0.0). 1 =k € 0,0)
which gives
029 - 32(26) = [ ¢ (01(2) - gal)de

= V(I(H + g)e_igul(]-a H) + i(’{ - g)ul (07 KZ)) - V(I(H + 5)6_i§u2(17 K) + i(ﬂ - E)UZ(Oa ﬁ))
Hence we have
91(—2k) — §2(—2k) = (2ik)*(Vu1 (0, k) — Vus(0, k) = (2ik)*w(0, k)
and
91(26) — 92(2) = (2ik)%e™ 2" (Vuy (1, k) — Vua(1,K)) = (2ik)*e > w(1, k).

Using the Plancherel theorem again yields

g1 — 920172000y = / 191(8) — §2(&)PdE = = / 191(26) — §2(26)[7d¢

17 17
=+ [1a1-20) = ga(-20)Pds + - [ 131(20) - ga(20) P
0

16 [ 16 [
= — [ &*w(0,K)|*drk + —/52|w(1,/ﬁ)|4d/£,
7

0 0

which completes the proof. O
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Lemma 3.2. Let f;,g; € L*(0,1),j = 1,2. We have

4210 (0, k)| = 6“"(]‘1(93) — fa(x))dz

)

:

o

1
162 0(1, m)? = / (o () — fola))da|
: 1(@) = fala))da| |
0

2

)

166 w(0,5)[> = | [ €% (g1(z) — ga(x))da

2
1654 [w(L, &)|? = \

e (gy(x) — go())da

/
/

Proof. It follows from (1.3) that the solution of (1.1)—(1.2) is

1 1
ik, (1, ) = / 1ol £ () dy + / erle=vl, ()W,
0 0

which gives

1 1
2iku;(0,K) = /ei”fj(x)da:Jr/ei”cfj(a:)sz,
0 0
1 1
2iku;(1, k) = /ei“(lfx)fj(x)dx—l—/ei“(lfz)aj(x)dW;t.
0 0

Taking expectation of (3.7) and (3.8), we may obtain

2ikv(0,k) = [ € (fi(x) — fo(x))da

2ikv(1, k) = [ "7 (fi(x) — fo(x))da

/
/

Taking the variance of (3.7) and (3.8) yields

—4r%w(0, K)

1
/ 2% (g, () — go(a))da,

—4k*w(1, K) /621“(1 2 (g1 (x) — go(z))de,
0

which completes the proof by taking square of the amplitudes on both sides of the above four equations.
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Let

c\

1

+/ /e_mx fi(x) = fo(w)

O\H

( [ty = oz | [ [ e T = s | a
0 0

e (fi(a) — fo(x))dz | d,

0 \o
! 1
O/ ( 0/ (g1 (@) — gl O/ T | s
+/S / 2mz g1(z) — g2(2))da /e2immdw de.
0 0

879

(3.10)

The integrands in (3.9) and (3.10) are entire analytic function of k. The integrals with respect to x can be

taken over any path joining points 0 and s in the complex plane. Thus I;(s) and I5(s) are entire analytic

functions of s = s1 + is9, 81,82 € R.

Lemma 3.3. Let f;,g; € L*(0,1),5 = 1,2. We have for any s = s1 + isa, 51, s2 € R that

1
IL1(s)] < 2[se?t! / fu(@) — fola)Pda,
0

1
()] < 26l [ lga(2) = gala) P
0
Proof. Let k = st,t € (0,1). A simple calculation yields

=5 /1 /1 e (fr(x) —

e*lstf f2( ))dl‘

0

Noting that [e*15t*| < el*2| for all € (0, 1), we have

1
h(9)] <2 / / i)  fola) o)t < 22 [ [1i0)
0

Similarly, we can show that

1
()] < 26l [ lga(2) = gala) P
0

which completes the proof. O

dt

1
!
0 0 0

fo(z) 2.
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Lemma 3.4. Let f;,g; € H™(0,1),suppf;,suppg; C (0,1),5 =1,2. We have for any s > 0 that
[oe]

4 / B2 ([0(0, M) + [o(1, 1)) dss < 25~ £ = follpcon,

S

oo

16/H4(IW(0, AP + w(L, m)1?)ds < 257 Vlgr = gl 0.1)-

S

Proof. It follows from Lemma 3.2 that we have

oo oo

4/%2|U(O,H)|2dli+4/H2|U(1,Ii)|2dﬂ

S

= 7‘/leim(f1($) —f2(x))d:c’2d/<a+7‘/1(1’”@1(@ — fo(2))da Qdﬁ
s 0 s 0

Using integration by parts and noting suppf; C (0,1), we obtain

1eiim ) — fo(x))dx = ! 1eiim ™) (2) — £ (2))da
0/ (@)~ folx))d (im)n()/ (@)~ 17 @),

which gives

1

‘/eim(ﬁ(x) - f2($))dx’2 < w2 - f2n)||§1”(0,1)

0

Hence we get

oo

co 1
/‘/eim(fl( ) — fa(x dx‘ dr < ||F™ - (n)\\%{"(o,l)/“_%d“
0

S S

—(2n—
S n n
= s )||f1 " 5" o)

Again, we have from Lemma 3.2 that

16/ﬁ4|w(0, m)|2dn+16/n4\w(1,n)|2df<¢

7‘/162““ — g2z dx’ dk + /’/ 25 (g (1) — go(x))da 2d/~;.
0

S

Similarly, we have

1 1
IK,QZ' 1 ikT n n
0 0
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which gives

1

[ (@) - ga(o)ie

0

2
| < @07 gl = 8 I 0.0

Therefore, we get

o0

co 1
) 2
/’/ei21nz(g1(x) *QQ(’I))dx‘ dk < ”gin) 795”)“%"(071) /(2I$)*2nd/‘l
0

S S

—(2n—1)
S n n
= Tor _ 1\An llg1 ) _95 )”%{n(o;)’

(2n—1)4
which completes the proof. O

The following lemma is proved in [6].

Lemma 3.5. Denote S = {z =z +1iy € C: —% < argz < T}. Let J(2) be analytic in S and continuous in S
satisfying

|J(z)| <€, z€(0, L],
J(2)| <V, ze€b,
[J(0)] = 0.

Then there exits a function p(z) satisfying

1

p(z) > 1L, ze (L, 25 L),
> %((%)4 - 1)7%7 Z € (2ZL7 OO)
such that
|J(2)| < Ve Vze (L, o).

Lemma 3.6. Let f;,g; € Car. Then there exists a function pu(z) satisfying
(3.11)

such that
II1(s)| < CM2e¥ ) |I(s)| < CM2eP5 29 s € (K, ).

Proof. We only show the proof of the estimate for I;(s) since the proof is the same for I5(s). It follows from
Lemma 3.3 that

|I1(s)e ™| < CM?, VseS.

Recalling (2.3), (3.9), and Lemma 3.2, we have
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|I1(s)e™%| <€}, se€]0, K]
A direct application of Lemma 3.5 shows that there exists a function u(s) satisfying (3.11) such that
|I1(s)e™ 35| < CM2e*, Vs e (K, ),
which completes the proof. O
Now we show the proof of Theorem 2.1.

Proof. Tt suffices to show the estimate (2.1) since the proof is similar for the estimate (2.2). We can assume
that €; < e~ !, otherwise the estimate is obvious. Let

L Ki|lng|i, 2i(3m)3K3 < |lnels,
§= (3m)3 1 1 1
K, |Ine;| <21(3m)35 K3.

1

If 2%(3%)51(% < |lnel|i, then we have

2 1
‘STKSHHGHZ*M(%F

ne s _1
II1(s)] < OM2e3e= 5 G =D72 < oM2Zeent
_ CMQ@—Q(%)%K%|lnel\%(l—%ﬂnelr%)
1
Noting 3| Ine| 3 < 1, (2)® > 1 we have
2 1
11(s)| < CMPe K Imal?,
Using the elementary inequality

(6n — 3)!
- x3(2n—1) ’

—X

z >0,

we get

CM?

3\ 2n—1"
K?|lne |2
(6n—3)3
1

If |Ine;| < 23(3n)3 K3, then s = K. We have from (2.3), (3.9), and Lemma 3.2 that

[L(s)] <

[11(s)| < €.
Hence we obtain from Lemma 3.4 that
4/&2 (|’U(0,I{)|2 + |v(1,/{)|2) dk
0

CM? 11 = F2ll3m 0.0
2n—1 1
(K2|lne13%) (z_i(E}ﬂ')_%K%HnellZ)

2n—1-
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By Lemma 3.1, we have

M? M?
3\ 2n—1 + 2 1\ 2n—1
K2|Ineg|2 K3|lne |4
(6n—3)3 (6n—3)3

Since K3|Iney |3 < K2|Ine;|? when K > 1 and |Ine;| > 1, we obtain the stability estimate. O

1 f1— f2HL2 ©01) = c 5%"‘

4. Proof of Theorem 2.3

Lemma 4.1. Let f; € L*(0,1),j = 1,2 be real functions. We have for all k € (0, 0o) that

1
2kERev(0, k) /sm kx)(fi(x) — fo(z))de
0

Proof. It can be easily obtained from (1.3) that

1

1
2iku; (0, k) = /eimfj(x)dx—l-/eimaj(x)dWx.
0

0

Taking the expectation of the above equation gives

1

2ikEu;(0,K) = /ei"“”fj(x)dw

0

Noting that f;,j = 1,2 are real functions, we have

1
2kEReu; (0, k) /sm kx) fi(z)dz,
0

which completes the proof. O

Lemma 4.2. Let || f1 — fal[12(0,1) < M. There exists a function p(k) satisfying

{#(H)Z%’ , Ke(l’l 2h) (4.1)
nw) = Lt = 1)7b, ke (2), o),

such that

1
)/sin(/ix)(fl(x) — fa(z))dz ’ < C’M2e4”ei”('{), Vi € (1, o0).
0
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Proof. Let k = k1 + k2, k1, k2 € R. It is easy to show that

1

[ sinta) (o) = fata)da] < 1A = oliaony

0

Noting |k2| < k1 for k € S, we have

—2;@

1
2
/ (kx)(f1(= fz(l‘))dw‘ < e lel*2!|| fy = fall 20,1y
0

<e " fi = folleo1) < M.

It follows from Lemma 4.1 that

1
72“ / n(kx)(fi(x) — fo(x))dz| < e, &€ (0,1].
0

We conclude from Lemma 3.5 that there exists a function p satisfying (4.1) such that

1
| [ st (@) - @)e < CMED, ne 1, o),
0

which completes the proof. O

Lemma 4.3. Let f; € H"(0,1),suppf; C (0,1),5 =1,2. It holds that

o0
Z 2§7)*ERev(0, j7)|? <
=T

< Tgn = 11 = ol (0.0)-

Proof. It follows from Lemma 4.1 that

1

24 §m)2|ERev (0, j)|? = Z‘/sin(jm:)(fl(x) — fo(x))dz
=T

J=T 5
Noting that f; has a compact support in (0,1), we have from the integration by parts that

1

[ sintim)(fi(e) - fala))da

0

sin(jre + nm/2) (£ () — £ (@))da]

(V]

I
—
<.

N | =
=
3
O\H

1
< W”fl - f2||§{n(0,1)'

Combining the above estimates yields
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> 4(jm)?[ERen(0, jm)|* < Z RED 11 = F2ll3m 0.1
j=T T

= | [ e | 15— Rl
0
1 1

<2n 1)7’(’2” T2n— 1||f1 f2||H"(O 1)
which completes the proof. O

Now we show the proof of Theorem 2.3.

885

Proof. We can assume that €3 < 1, otherwise the estimate is obvious. Applying Lemma 4.1 and the Parseval

identity, we have

/ 1) — Fa(a) Pz = 3 4(Gm)2 R0 0, )

j=1
T e’}
= 4(jm)?[ERev(0,jm)]> + > 4(jm)*[ERev(0, jm)|”
Jj=1 j=T+1
Let
[N4|h’164|$], N%<2§ 2|h’154|97
= 67
N, N%Z §12|1n64|9
2613

Using Lemma 4.2 leads to

1
2
\/ sin(ra) (f1(x) = fo(@))dz| < OMPete™) < CMZetre2nl el

0

1 _
< CM264ne (n —1)7 2| ln eq| < CM264K—%H 2] In eq]

»l>|>—‘

< CMQE_;K7 |lne4\(1—27r53|1n54|71)’ VK e ( OO)

Hence we have

1
1

2 _ _
‘/sin(fw)(fl(x) — folz))dz| < OM2e 3T Imal(-2r"Tmel™) v o e (25 Trl.

0

If N¥ < —Lo|Iney|s, then 27473 | Iney| ! < 1 and
26 T3

o

7 1
9 2 2% Inegy 9N

2 | In eq] 2 |ln ey
- _
I =3 3 2 e

2 |lney = 3 P) - 3
e == 12 <e N2llnel9 e N2 <e

1.3
NS :e—647r|1n54|9N4.

Combining (4.2) and (4.3), we obtain

(4.2)
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1
2 2 -2 3 -1
| [sintu)(1(0) — olode] < Captem BT Al )
0

s 13
SOMngng \1n54|SCM267327T|1n64|9N4, VKE(Q

N
~
A,

It is easy to note that

6n — 3)!
_z_>%é%;j%_ ibrx:>0.
We have
1
2 1
| [sintima) (@) - fatonas| < onr? ot j=1...T
ey 3N
0 6n—3)°
Consequently, we obtain
T 1 9 T
S| [sintime) (i) - aenda] < 2Py
=1 u)
6n—3)3
Ni|lneyls 1
2 2
< oM 1 9\ 2n—1 < oM 2 3\ 2n—1
|Iney|3N4 |Iney|9 N2
T(6n—3)7 ~(6n-3)"
<OoM? !

2n—1"
13
|Ines|9 N2
(6n—3)3

Here we have noted that |Ines| > 1 when N¥ < —2—|Iney|s. If N§ < —1|Ines|s, we also have
2673 2673

1 ) 1
2n—1 — 2n—1"
([|1ne4|%N%]+1) (|1ne4|%N%)

If N¢ > —1|Iney|s, then T = N. It follows from Lemma 4.1 that

5 2
26113

i’/sin(jﬂx)(fl(x) — fg(ac))dav’2 =el

j=1 0
Combining the above estimates, we obtain
1
2 1
| [sintwo)(i(a) - fa(o)is| < €8+ Cr?
0 | In 4] 5 N%
T6n—3)3

(Q%W% )2n71

1,,3 - -\ 2n—1"
(Inesf5N7) (|1n64|éN§)

+CM?
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oo

Noting that N§ < N
above estimates. O

IA

< N?% and 2673 < (6n — 3)3, Vn € N. The proof is completed by combining the
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