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Abstract

Consider the scattering of a time-domain acoustic plane wave by a bounded
elastic obstacle which is immersed in a homogeneous air or fluid. This paper con-
cerns the mathematical analysis of such a time-domain acoustic—elastic interaction
problem. An exact transparent boundary condition (TBC) is developed to reduce
the scattering problem from an open domain into an initial-boundary value prob-
lem in a bounded domain. The well-posedness and stability are established for the
reduced problem. A priori estimates with explicit time dependence are achieved
for the pressure of the acoustic wave field and the displacement of the elastic wave
field. Our proof is based on the method of energy, the Lax—Milgram lemma, and
the inversion theorem of the Laplace transform. In addition, a time-domain absorb-
ing perfectly matched layer (PML) method is introduced to replace the nonlocal
TBC by a Dirichlet boundary condition. A first order symmetric hyperbolic system
is derived for the truncated PML problem. The well-posedness and stability are
proved. The time-domain PML results are expected to be useful in the computa-
tional air/fluid—solid interaction problems.

1. Introduction

Let a time-domain acoustic plane wave be an incident on a bounded elastic
obstacle which is immersed in an open domain occupied by a homogeneous, com-
pressible, and inviscid air or fluid. The elastic obstacle is assumed to be made of a
homogeneous and isotropic medium. When the incident wave hits on the surface of
the obstacle, the scattered acoustic wave will be generated in the open air/fluid and
propagate away from the obstacle. Meanwhile, an elastic wave is induced inside the
obstacle due to the excitation of the incident wave on the surface. This scattering
phenomenon leads to an air/fluid—solid interaction problem. The surface divides the
whole space into the interior and exterior of the obstacle in which the elastic wave
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and the acoustic wave reside, respectively. The governing acoustic and elastic wave
equations are coupled on the surface through two continuity conditions. The first
kinematic interface condition is imposed to ensure that the normal velocity of the
air/fluid on one side of the boundary matches the accelerated velocity of the solid
on another side. The second one is the dynamic condition which results from the
balance of forces on two sides of the interface. The dynamic interaction between
a structure and surrounding compressible and inviscid air/fluid medium is encoun-
tered in many areas of engineering and industrial design and identification, such as
detection of submerged objects, vibration analysis for aircrafts and automobiles,
and ultrasound vibro-acoustography [22,23,37,39].

This paper concerns the mathematical analysis of such a time-domain acoustic—
elastic interaction problem. The goal of this work is threefold:

(1) Prove the well-posdeness and stability of the problem,;

(2) Obtain a prior estimates of the solution with explicit time dependence;

(3) Establish the well-posedness and stability of the perfectly matched layer for-
mulation of the problem.

This problem can be categorized into the class of obstacle scattering problems,
which are of great interest to physicists, engineers, and applied mathematicians
due to their significant applications in diverse scientific areas [14,15,46], such as
radar and sonar, geophysical exploration, medical imaging, nondestructive test-
ing, and near-field and nano- optics. The time-domain scattering problems have
recently attracted considerable attention due to their capability of capturing wide-
band signals and modeling more general material and nonlinearity [4,32,34,41,48].
Compared with the time-harmonic scattering problems, the time-domain problems
are less studied due to the additional challenge of the temporal dependence. The
analysis can be found in [7,47] for the time-domain acoustic and electromagnetic
obstacle scattering problems. We refer to [35] and [25] for the analysis of the time-
dependent electromagnetic scattering from an open cavity and a periodic structure,
respectively.

The acoustic—elastic interaction problems have received much attention in
both the mathematical and engineering communities [16,19,28-30,36]. Many ap-
proaches have been attempted to solve numerically the time-domain problems such
as coupling of boundary element and finite element with different time quadratures
[20,24,43]. Some numerical studies have been done for the inverse problems aris-
ing from the fluid—solid interaction such as reconstruction of surfaces of periodic
structures or obstacles [31,49]. However, the rigorous mathematical study is open
at present.

The perfectly matched layer (PML) method was introduced by Berenger in 1994
[2]. It has been widely used to simulate wave propagation in unbounded media since
then. Spurious wave reflections from the boundary of the computational domain
are avoided by adding a fictitious layer in which the waves rapidly decay regardless
of the frequency and incident angle. This feature makes PML an effective approach
for modeling a variety of wave phenomena [3,11,13,45]. After the application to
electromagnetic waves, various PML formulations have been introduced for acous-
tic wave propagation in fluids [40] and elastic wave propagation in solids [1,10,33].
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The studies of the PML method for two heterogeneous fluids and two or more solid
media are reported in [33,42,50]. We refer to [9] for the convergence analysis of
the PML method for a two-layered background medium, but fewer PML formula-
tions are reported to have effectively truncated the air/fluid—solid domains near their
interface. The two media need to be modeled by different equations with appro-
priate interface coupling boundary conditions. Comparing with the PML method
for the time-harmonic scattering problems, the rigorous mathematical analysis is
very rare for the time-domain PML method due to challenge of the dependence
of the absorbing medium on all frequencies. For the time-domain PML method
for acoustic waves, the planar PML method in one space direction is considered
in [27] for the wave equation. In [17,18], the PML system with a point source is
analyzed based on the Cagniard-de Hoop method. In [6], the convergence of the
time-domain PML method with circular absorbing layer is proved by using the
exponential decay estimate of the modified Bessel functions. In [8], a rectangle
PML method is presented and the stability and convergence are obtained. To our
best knowledge, the time-domain PML analysis is lacking for the air/fluid—solid
interaction problem.

In this work, we intend to answer the mathematical questions on well-posedness
and stability of the time-domain acoustic—elastic interaction problem in an open
domain. The problem is reformulated equivalently into an initial-boundary value
problem in a bounded domain by adopting an exact transparent boundary condition
(TBC). Using the Laplace transform and energy method, we show that the reduced
variational problem has a unique weak solution in the frequency domain. We also
obtain the stability estimate for the solution in the time-domain. We achieve a pri-
ori estimates with explicit time dependence for the pressure of the acoustic wave
and the displacement of the elastic wave by considering directly the time-domain
variational problem and taking special test functions. In addition, we introduce
the PML method in the rectangle domain and give the PML formulation for the
fluid—solid heterogeneous media. By designing special PML medium property, we
derive a first order symmetric hyperbolic system for the truncated PML problem.
We show that the system has a unique strong solution and obtain the stability
of the solution by using an energy function method. The time-domain PML re-
sults are expected to be useful for the computational air/fluid—solid interaction
problems.

The paper is organized as follows. In Section 2, the mathematical model is
introduced for the acoustic—elastic interaction problem. The time-domain TBC is
developed to equivalently reduce the scattering problem into an initial-boundary
value problem in a bounded domain. Section 3 is devoted to the analysis of the
reduced problem, where the well-posdeness and stability are established in both
the frequency domain and time-domain. Moreover, a priori energy estimates are
obtained with explicit dependence on the time. In Section 4, the time-domain PML
formulation is introduced for the scattering problem. A first order symmetric hy-
perbolic system is deduced for the truncated PML problem. The well-posedness
and stability are established. The paper is concluded with some remarks and future
work in Section 5.
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Fig. 1. Geometry of the acoustic—elastic interaction problem

2. Problem Formulation

In this section, we introduce model equations for the acoustic and elastic waves,
present an interface problem for the acoustic—elastic interaction, and give some
properties of the modified Bessel function. In addition, an exact time-domain trans-
parent boundary condition is introduced to reformulate the scattering problem into
an initial-boundary value problem in a bounded domain.

2.1. Problem Geometry

We consider an acoustic plane wave incident on a bounded elastic solid im-
mersed in a homogeneous air/fluid in two dimensions. The problem geometry is
shown in Fig. 1. Due to the wave interaction, an elastic wave is induced inside
the solid, while the scattered acoustic wave is generated in the air/fluid. This pro-
cess leads to an air/fluid—solid interaction problem. The solid’s surface divides the
whole space into the interior domain and the exterior domain where the elastic
wave and the acoustic wave occupies, respectively. Let the solid D € R? be a
bounded domain with Lipschitz boundary d D. We assume that D is occupied by an
isotropic linearly elastic medium which is characterized by a constant mass density
p2 > 0 and two Lamé constants u, A satisfying u > 0, A + u > 0. The exterior
domain D¢ = Rz\l_), which is assumed to be connected and filled with a homoge-
neous, compressible, and inviscid air/fluid with a constant density p; > 0. Denote
by Bg = {r = (x,y)" € R?: |[r| < R} the circle with the boundary d B, where
R > 0 is sufficiently large such that D C Bg. Let Q = Bg\D be the bounded
region between d D and d Bg. Denote by n p the unit normal vector on d D directed
from D into D€.

2.2. Acoustic Wave Equation

The acoustic wave field in the air/fluid is governed by the conservation and the
dynamics equations in the time-domain

Vpr,t)=—p1dv(r, 1), oV v, t)=—dp(r, 1), reD >0,
(2.1
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where p is the pressure, v is the velocity, p; > 0 and ¢ > 0 are the density and
wave speed in the air/fluid, respectively. Eliminating the velocity v from (2.1), we
obtain the wave equation for the pressure p:

Ap(r,t) — cizafp(r, 1)=0, reD t>0. (2.2)
Let

pPr.ty=fd-r—ct), reD, >0
be a plane incident wave, where f is assumed to be a CX(k > 3) smooth function
and d is the unit propagation direction vector. It is clear to note that the incident

wave satisfies acoustic wave equation (2.2). The scattered field p** = p — p'™ is

required to satisfy the outgoing radiation condition
9. ps¢ 1 sc __ —1/2 _
PP+ —pT =o(r”), r=lr[—> o0, 1>0. (2.3)
c

The system is assumed to be quiescent at the beginning and the homogeneous initial
conditions are prescribed:

pr.n|_,=0, 0p@r.0)|_,=0, reD"

2.3. Elastic Wave Equation

The elastic wave in a homogeneous isotropic solid satisfies the linear elasticity
equation

V.o @u(r, 1) — pd’u@r,t)=0, reD, >0, (2.4)

where u = (u, uz)T is the displacement vector, pp > 0 is the density, and the
symmetric stress tensor o (#) is given by the generalized Hook law

o(u) =2ue(m) +rr(e(m))I, em)= % (Vu + (Vu)T) . (2.5)

Here A, pu are the Lamé parameters satisfying © > 0,A +p > 0, I € R2%Z jg

the identity matrix, € (u) is the strain tensor, and Vu is the displacement gradient

tensor
Vu = 3xu1 8yu1
Oxuz  Oyup |’

Substituting (2.5) into (2.4), we obtain the time-domain Navier equation for the
displacement u:

pAu(r, )+ + VYV -u(r,t) — ppdlu(r,t) =0, reD,t>0. (2.6)

Since the whole system is assumed to be quiescent, the displacement vector is
constrained by the initial conditions

u(r, t)’t=() =0, ou(r, t)}t=0 =0, rebD.



GANG BAO ET AL.

Next we introduce the Helmholtz decomposition in order to derive a first order
system in the PML formulation in Section 4. Let u = (u1, u>) T and u be a vector
and scalar function, respectively. Introduce a scalar curl operator and a vector curl
operator

curlu = dyus — dyuy, curlu = (dyu, —dyu) ' .
For any solution of the Navier equation (2.6), the Helmholtz decomposition reads
u = Vo + curlps, 2.7

where @1 and ¢, are two scalar potential functions. Substituting (2.7) into (2.6)
yields

V (20201 — 0+ 20 A1) + eurl (02920, — ndg2) =0,
which is fulfilled if ¢; and ¢, satisfy the wave equations

1. 1.
Apr — 0791 =0, Apr— 0792 =0, (2.8)
ol )

where

()»4—2#)1/2 <M>1/2
cl1 = , o= |— .
P2 02

2.4. Interface Conditions

To couple the acoustic wave equation and the elastic wave equation, the kine-
matic interface condition is imposed to ensure the continuity of the normal com-
ponent of the velocity on 9 D:

np-v(r,t)=np-ou(r,t), reoD, t>0. 2.9)
Noting —p10,v(r, t) = Vp(r, t), we have from (2.9) that
dnpp(r.t)y=np-Vpr,1)=—pinp-d2u(r,1), redD, t>0.
In addition, the following dynamic interface condition is also required:

—pr,t)np = poppu(r,t) + A+ w)(V-u(r,t))np, reaiD, t>0.
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2.5. Laplace Transform and Some Functional Spaces

We first introduce some properties of the Laplace transform. Forany s = s1+1is7
with s; > 0 and i = +/—1, define by (s) be the Laplace transform of the vector
field u(t), that is,

i(s) = L) s) = foo eSu(r)dr.
0

Using the integration by parts yields
t
f u(t)dr = 27 s (),
0

where 2! is the inverse Laplace transform. It can be verified form the formula
of the inverse Laplace transform that

u(t) = 7 (N L) (s1 +is2))

where .# ~! denotes the inverse Fourier transform with respect to s;. Recall the
Plancherel or Parseval identity for the Laplace transform (cf. [12, (2.46)])

i/ u(s)v(s)dsy =/ e Muyv)dr, Vs > Lo, (2.10)
27 Joo 0

where # = Z(u), v = £ (v) and ¢ is abscissa of convergence for the Laplace
transform of u and v.

Hereafter, the expression a < b stands for a < Cb, where C is a positive
constant and its specific value is not required but should be always clear from the
context.

The following lemma (cf. [44, Theorem 43.1]) is an analogue of Paley—Wiener—
Schwarz theorem for Fourier transform of the distributions with compact support
in the case of Laplace transform:

Lemma 2.1. Let it(s) denote a holomorphic function in the half-plane s1 > &o,
valued in the Banach space E. The two following conditions are equivalent:

(1) there is a distribution he D; (E) whose Laplace transform is equal to it(s);
(2) there is a real ¢ with {y < ¢ < oo and an integer m = 0 such that for all
complex numbers s with Re s = s1 > {1, it holds that |h(s)||g S (1 + [s])™,

where D', (E) is the space of distributions on the real line which vanish identically
in the open negative half line.

Let @ C R? be a bounded Lipschitz domain with boundary 9. Denote by
H'(Q) = {D“u e L2(Q) forall |a| < v}

the standard Sobolev space of square integrable functions with the order of deriva-
tives up to v. Denotes by H"(9S2) the trace functional space, where v € R. It is
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clear to note that the dual space of H'/?(3Q) is H~'/2(dQ) under the L>(3)
inner produce

(u, v)sg =/ uvdy.
90

Here the bar denotes the complex conjugate.

Let H'(2)? and H'/2(32)? be the Cartesian product spaces equipped with
the corresponding 2-norms of H'(Q2) and H'/2(3), respectively. For any u(r) =
(u1(r), uz(r)) " € H'(Q)?, define

5 1/2
IVull 2 = Z/ |Vu,|*dr
j=17%
A simple calculation gives
Va7 g + 1V - 172y S I8l 31 g0 (2.11)

2.6. The Modified Bessel Function

To describe the TBC operator for the acoustic wave equation, we introduce a
modified Bessel function. For n € 7Z, the modified Bessel function K, (z), z € C s
the solution of the ordinary differential equation

- f d/

2 2 2

—L 4L n 0.
Ttz (" +n)f

This satisfies the following asymptotic behavior:

b
Kn(z) ~ ,lz—zefz as |z| — oo.

The following lemma is proved in [6, Lemma 2.10]:
Lemma 2.2. Let R > 0,n € Z, s = s + iso with s; > 0. It then holds that

_Re (M) >0
KiGsR)) =

2.7. Transparent Boundary Condition

In this subsection, we introduce an exact time-domain TBC to formulate the
acoustic—elastic wave interaction problem into the following coupled initial-
boundary value problem:

Ap—5dtp=0 inQ, >0,
AU+ o+ VYV - u — prdtu =0 inD, t >0,
P|t:O:a’p|t:0:0 in €2,
u}t:O:8;u|t:0=O in D,
BnDpz—,ol(nD~3t2u), —pnp = puoppu +A+ ) (V-uw)np ondD, t >0,
orp=Ip+p, ondBg, t > 0,

2.12)
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where 7 is the time-domain TBC operator on dBg, p = 9,p™™ — 7 p'™. In
what follows, we derive the formulation of the operator .7 and present some of its
properties.

Let p(r,s) = Z(p)(r,t) and u(r, s) = Z(u)(r, t) be the Laplace transform
of p(r,t) and u(r, t) with respect to z, respectively. Recall that

L@ p)=sp(.s) = p(,0), L@7p)=s>p(,s)—sp(-,0) —p(,0),
L) = si(-,s) —u(-,0), L) =s%u(,s)—su(-,0) — du(-,0).

Taking the Laplace transform of (2.12) and using the initial conditions, we obtain
the time-harmonic acoustic—elastic wave interaction problem in s-domain

Ap—5p=0 inQ,
uAl+ A+ p)VV it — pas?it =0 in D,
BnDﬁ:—plsan~12, —pnp = woppit + (A +w)(V-w)np  ondD,
05 = Bp+p on 8B,

where s = 51 +isy withs; > 0, p = Z(p), and A is the TBC operator on d Bg in
the s-domain satisfying .7 = .~ 0o B o Z.

In order to deduce the TBC operator, we consider the Helmholtz equation with
a complex wavenumber:

52

Aﬁ—c—2ﬁ=o in R?\ Bg. (2.13)

Since pi"® = Z(p™™°) satisfies (2.13), the scattered field p* = Z(p*°) also
satisfies

2
AP — zﬁ“ =0 inR*\Bg, (2.14)

©

together with the radiation condition (see (2.3))
05 + 25 = o(r| 77, 1 =Ir| > .
C

In the domain R2\ Bg, it follows from (2.14) and above radiation condition that

IACIESY

nez

Kn(ir)
Ky (3R)

. 1 % .
I;ZC(R)elne’ ﬁZC(R) — E/ pSC(R’O)eflnede'
0

A simple calculation yields
s K, (GR)

< SC inf
- (R)e. (2.15)
nez ¢ K"(CR)

0 (. 0)]yp, =
For any function u defined in R?\ Bg with the series expansion

. 1 2 )
I/t(r, 9) = Zun(r)elne, un(r) = E/ I/l(}", e)e*mGde’
0

nez
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we define the Dirichlet-to-Neumann (DtN) operator % : H'/2(dBg) — H™'/?
(0BR):

— s 1n9
Bu(R,0) = du(R,0) = Z K ( R) un(R)e (2.16)
It follows from (2.15) that the total field p satisfies
0,p=%Bp+p ondBg, 2.17)

where p = 9, pi"® — 2", Taking the inverse Laplace of (2.17) yields the TBC
in the time-domain

orp(r,t) = T p(r,t)+ p(r,t) ondBg.
Lemma 2.3. It holds that
—Re(s ' Bw, w)sp, 20, Yw e HY?(Bg).
Proof. Given w € Hl/z(BBR), we have

w(R,0) = Z wy (R)e™ .

nez

It follows from (2.16) and Lemma 2.2 that
27 R K/ (iR
—Re(s~ ' Buw, W)gB, = s —Re "(§ )
c Kn(zR)

nez

>|wn<R>|2 >0,

which completes the proof. O

Lemma 2.4. Forany w(r,t) € L2 (O, T; H1/2(8BR)) with initial value w(-, 0) =
0, it holds that

T
—Re/ (Tw, dw)yp,dt = 0.
0

Proof. Let w(r,t) be the extension of w(r, t) with respect to ¢ in R such that
w(r,t) = 0 outside the interval [0, T']. Using the Parseval identity (2.10) and
Lemma 2.3, we get

T T
—Re/ eI Ty, drw)gppdt = — Re/ e_zsltf (Zw)d;wdydt
0 0 dBg

w —_
=— Re/ / e (T W), wdrdy
dBgr J0

1 o0 v v

=— | Re(%’w,sw)aBRdsz
1 2 1 gzs =

= IYI Re(s™ 2w, w)ypgdsz = 0,
o

which completes the proof after taking s; — 0. O
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The following trace theorem is useful in our subsequent stability estimates and
the proof can be found in [21]:

Lemma 2.5. (trace theorem) Letr Q@ C R? be a bounded Lipschitz domain with
boundary 3. The trace operator # : H"(Q) — H'1/2(3Q) is bounded for
1/2 <v <3/2.

3. The Reduced Problem

In this section, we present the well-posedness, prove the stability, and present
a priori estimates for the reduced problem.

3.1. Well-posedness in the s-domain

Consider the reduced boundary value problem
2

Ap — %p:o ne,  (3.la)
WA+ (h 4 VY - it — pysit = 0. inD, (3.1b)
Inph=—p15°np -it, —pnp = pdnyit+ O+ (V-inp ondD, (3.1c)
0 p=Bp+p, on dBg. (3.1d)

We introduce a variational formulation for the problem (3.1) and give a proof of
its well-posedness in the space HY(Q) x HY(D)2.

Multiplying (3.1a) and (3.1b) by the complex conjugate of a test function
g € H'(Q) and a test functional v € H'(D)?, respectively, using the integra-
tion by parts and boundary conditions, which include the TBC (3.1d), kinematic
interface condition and dynamic interface condition (3.1c), we arrive at the varia-
tional problem of finding (p, 1) € H'(2) x H'(D)? such that

1_. __ s ._ NI o
=Vp-Vg+ —5pq|dr—(s" Bp,qlopy —p1s | (np-u)qdy
Q \s c aD
= ;(,5, q)9Bg (3.2)
and
1 .o y , U
/ <; (u(Va : Vo) + (A + )V -u)(V - v)) + past - v) dr
D
1 . -
o -say <o, (33)
§ Jap
where A : B =tr (AB T) is the Frobenius inner product of square matrices A and
B.

We multiply (3.3) by pi1 s |2 and add it to (3.2) to obtain an equivalent variational
problem: To find (p, ) € H'(Q2) x H'(D)? such that



GANG BAO ET AL.

1
a(p,it;q,v) = —(p, Qapg, Y(g,v) € H(Q) x H(D)?, (3.4

s
where the sesquilinear form
.. I, - s
a(p.u;q,v) = -Vp-Vg+ —5pq|dr
Q \S C
+ [ 015 i Vo) + 0 (7 (T 5
D
+p1pas]s | - f)) dr

s\ BB, qhasg + o1 /BD G(pnp) - — sG(np - i) dy.
3.5)

Theorem 3.1. The variational problem (3.4) has a unique weak solution (p, t) €
H'(Q) x HY(D)?, which satisfies

1+ s]

VP22 + IsPli2g S 12" 120 8)» (3.6)

14 |s|
s1ls]

IVallL2pyex2 + IV - @ll2py + sl 2py < 15" N 12 @Bg- BT

Proof. Using the Cauchy—Schwarz inequality and Lemma 2.5, we have

la (p,it;q,v) | = |?l|||vﬁ”L2(Q)2||V5]||L2(§2)2 + %Hﬁllm(sz)lmllm(m
+ p1ls| (lIVEE] L2 pyex2 VOl L2 py2c
FO AWV il 2 IV - vl 2 )
+ 01/02|S|3||1V4||L2(D)2 ||”||L2(D)2
1

+
|51

I8Pl a-1728) 19 | 1723 BR)

+ p1lsl (lprpll =122 101 g1/2¢0 Dy

+gll gi2@py D - @l g-123py)
S IPl e @ llgl g + @l g py2llvll gy

+ 1 g20m) 191l 1725

+ 1P 2epy vl mv2@pye + g1 g26p) 181 126Dy
S Il @ llgl g g + @l g pyellvll g py

+ 1Pl a1 @ gl g @)

H 1P @ vl gy + 11g g @1l g o2,

which shows that the sesquilinear form is bounded.
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Letting (g, v) = (p, &) in (3.5) yields

. 1. S .
a(p.iv; p.it) = /(—IVPIZJr—zIpIZ)dr
Q \S c
+/ (p1§ (M(Vﬁ : Vﬁ)+(A+M)IV~i¢|2)
D

20512 ol s = =

+ p1p2sls|©|ul )d" (s %P»P)E)BR‘FPI/ (S(P”D)'”

aD
—spp - 12)) dy. (3.8)

Taking the real part of (3.8) and using Lemma 2.3, we obtain

Re(a(ﬁ,ft;ﬁ,ft))=/ <| |2|V PP + | |>dr

+ pisi (unv&nizw)zxz + A IV il ) )

+ p1pasilsPlil}s . — Rels ™ BP, p)ony
51 o o
> W (V512 g2 + s P20

51 (V8132 s+ IV - @3y + st ) -
3.9)

It follows from the Lax—Milgram lemma that the variational problem (3.4) has a
unique solution (p, &t) € H(Q) x H' (D).
Moreover, we have from (3.4) and the definition of p that
L y
W ol g-1208) ISPl 1208,

v

la(p,w; p, )| <

P li2@p ISPl )

| |2I|

_1+ls| 12
N | |2 ”me”Hl/z(aBR) (”vP”Lz(Q)z + ||5P||L2(Q))

(3.10)
Combing (3.9) and (3.10) leads to

o (19512 + IsPlag)) S latp, s . )|

1+ 5]
S |S|2 ||Pmc||H1/2(33R)

o2 o2 1/2
”VPHLZ(Q)Z + ”SPHLZ(Q) )

which completes the proof of (3.6) after applying the Cauchy—Schwarz inequality.
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Similarly, we get from (3.9) and (3.10) that

2 -2 " "
5P (1VE 2y + IV - 22 )+ 1320 )

152 (V@I 2 pyosr + IV 12, + st 20

s> L. L+1s| .
S —la(p,u; p,a)| < P
S1 S1

inc

L+ s| . o <
L L LT VB2 0p + IsPl2q)

172
152 (V@2 s + IV 132y + ||si¢||iz(,))2)> .

Applying the Cauchy—Schwarz inequality again, we obtain

1+ |s]
s1ls]

IVall2pyex2 + IV - @l 2py + lIstll2py2 <

which completes the estimate of (3.7). O

3.2. Well-Posedness in the Time-Domain

We now consider the reduced problem in the time-domain

1
Ap——=dip=0 inQ, r>0,
c
MAu+(A+u)VV~u—p28,2u:O inD, t >0,
P‘t:():atPL:O:O iIlQ,
u}t=0=81u|;=0=0 in D,
dpp = —pinp - 3 ondD, t >0,
—pnp = wop,u+ A+ w)(V-unp ondD, t >0,
p=Tp+p on dBg, t > 0.

o2 - 1/2
”H]/z(aBR) <||Vp”L2(Q)2 + ||SP||L2(Q)>

||ﬁlnc||H1/2(aBR),

(3.11a)

(3.11b)
(3.11¢)
(3.11d)
(3.11e)
(3.11f)
(3.11g)

To show the well-posedness of the reduced problem (3.11), we make the following

assumption for the incident field:

pi“C (r,t)isa Ck(k 2 3) smooth function with respect to ¢ for any r € ]Rz\D,

which is satisfied since we assume that f is a C*(k > 3) smooth function.

(3.12)

Theorem 3.2. The initial-boundary value problem (3.11) has a unique solution

(p(r,t),u(r,t)), which satisfies
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p(r, 1) € L (o, T Hl(SZ)) NnH! (0, T LZ(Q)) ,
u(r,1) € L2 (o, T Hl(D)2> nH' (0, T LZ(D)z) :
and the stability estimates
max. (12 pllz@) + 193 plli22)
S el a-1208r) + 02X 1192151723 8)
187011 (0.7: 11720 84)) (3.13)

;2[1(?))7("] (||8tu||L2(D)2 + ||V . u||L2(D) + ”Vu”LZ(D)ZXZ)

S lellpio.r:m-12084) max, 10: 01l 71723 BR)

+ 107 o1l 1 (0,75 51200 (3.14)

Proof. First for the pressure p, we have
T
/0 (IV P12 + 18122, ) d
T
fo 21 (19l g + 10122 g ) d
T
_ T /0 e (IVpIa gy + 1010132 ) dr

o0
< /0 e (IV DI g + 1P 12 gy ) dr.

Similarly, we have for the elastic displacement u that

[IA

T
2 2 2
/0 (Hatu”Lz(D)z + ”Vu”LZ(D)sz + ”V : u”LZ(D)) dt

* 2 2
S / e Aglt<||alu”L2(D)2
0

+ ||Vu||%2(D)2><2 + ”v : u”iZ(D)>dt'

Hence it suffices to estimate the integrals

oo
[ e (1901 g+ 1001 )

and

o0
fo e B (||atu||iz(mz FIVE]F 2 pa + 1V - u||§2(D)) dr.

Taking the Laplace transform of (3.11), we obtain the reduced acoustic—elastic
interaction problem in the s-domain (3.1). It follows from Theorem 3.1 that p
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and u satisfy the stability estimate (3.6) and (3.7), respectively. It follows from
[44, Lemma 44.1] that p and & are holomorphic functions of s on the half plane
s1 > o > 0, where ¢y is any positive constant. Hence we have from Lemma 2.1
that the inverse Laplace transform of p and & exist and are supported in [0, c0),
that is, the initial-boundary value problem (3.11) has a unique solution (p, u).

It follows from the estimate (3.6)—(3.7) and the trace theorem in Lemma 2.5
that

2
IV B2 qp + P20 S 1 +2's' 1™ 02,1209 5
(@) (%) 52 (@Br)

1+ |S|2 “inc |2
! " ) <1"‘|S|2 vinc 2
||Vu||L2(D)2X2 + ||V . ”||L2(D) + ||Su||L2(D) ~ S%|S|2 ”p ”HI/Z(BBR)
1+ |s|?

< E 1551y (3:16)

Using the Parseval identity (2.10) and the stability estimate (3.15), we have

oo
/0 e (VP12 gy + 100PI 2 g ) 0

1 o . o
= — f (V5122 e + s 1 g ) ds2

N
_‘h
S
—
—
e
3
S
B
+
=
e
3
S
E
N——"
o
172
(8]

Il
o)

o2 [ (12 D™ 1 g + 120 P )1y ) 2

o0
w . .
<5y / 2 (1™ 1 gy + 100 ™ 2 ) i,
0
which shows that
p(r, 1) e L (0, T Hl(sz)) NH! (0, T LZ(Q)) .

Since it = £ (u) = .% (e *''u), where .Z is the Fourier transform with respect
to s2, we have from the Parseval identity (2.10) and the stability estimate (3.16)
that

o
/0 e (Ili%ulliz(D)2 + IVl e + 1V ll||iz(D)) <
- L /oo <||s12||22 2 V]2, g + IV - i3, )d”
27 oo L2(D) L2(D) Lo

B . §
<) / (15131 gy + N5 5™ 131 ) ds2

oo
—00
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00 . .
=57 f (||$p‘“0||§,1(9) + ||$<atpm°)||§,l(m) dsa

—00

o0
St /O 2 (1™ 121 gy + 10 P™ W1 gy ) .
It follows from (2.11) that
w(r. 1) € L? (o, T Hl(D)z) nH' (o, T LZ(D)Z) .

Next we prove the stability. Taking the partial derivative of (3.11b), (3.11d),
and (3.11f) with respect to ¢ yields

1A@w) + A+ )V - (u) — prd} (diu) =0 inD, >0,

dul,_y=0, 3u|_y=py" (wAu+OG+wVV-uw)|,_y=0 inD,

—0rpnp = wop, (Oru) + (A + w)(V - dru)np ondD, t > 0.
(3.17)

For any 0 < t < T, consider the energy function
E() = E1(1) + E2(1),

where
Ev®) = 120 p1Paoy + 1901
c L“(R) L=(2)

and

1/2
Ex(t) = [[(p102) 2071322 + 0y 04+ 02V - @) 12,
+ 11 2V @) 132y

It is easy to note that
t t
E(t) — E0) = f E'(v)dt = / (Ei () + Eé(l’)) dr. (3.18)
0 0
It follows from the integration by parts and (3.11a), (3.11c), (3.11e), (3.11g) that
t 1 1
/ E\(v)dt = 2Re/ / (—za,zp 9:p+ V(o p) - Vﬁ) drdr
0 0 Ja \¢
t
= 2Re/ / (Ap 0:p + V(9 p) - Vp)drdr
0 Ja

t
=f /2Re(—Vp~V(3t]3)+V(8,p)~V[3)drdt
0 JQ

' '
+ 2Re/ / oy p d; pdydr — 2Re/ f Onpp 9 pdydt
0 JaBg 0 Jap

t t
= 2Re/ / (T p) o pdydr + 2Re/ / p 0; pdydr
0 JoBg 0 JoaBg
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t
+ 2Re/ / o1(np - 3%u) 3, pdydr
0 JoaD
t t
= 2Re/ (7 p, 9rpapedt + 2Re/ (p, 9z p)oprdt
0 0
t
+ 2Re/ p1(np - 3%u, 9 p)ypdr. (3.19)
0
Similarly, we have from (3.17) and the integration by parts that
t t
/ E)(t)dt = ZRe/ / 010202 (d-u) - 32adrdr
0 0 JD
+ 2Re/ / 010+ (V- 32u)(V - 8gt) + p1n(Vo2u) : (Vo iw)drdr
0 JD
t
= 2Re/ / o1 (WA u + (A + w)VYV - 0;u) - 02 adrdr
0 JD
+ 2Re/ / p1(A + p)(V - afu)(v - 0qu) + pl,u(Vafu) . (Vozu)drdr
0 D
t
- 2Re/ / - (plp,(VB,u) L (VO2iR) + pr(h 4 (Y - deu)(V - afa)) drde
0 JD
+ 2Re/ / 010+ (V- 32u)(V - 8zt) + p1u(Votu) : (Vo iw)drdr
0 JD
t
+2Re / P1{Bny, (30) + O+ 10)(V - S, 02u)pdt
0
t
= —2Re/ 01(8: p, np - 9%u),pdr. (3.20)
0

Since E(0) = 0, combining (3.18)—(3.20) and using Lemma 2.4 and Lemma 2.5,
we obtain

t

t
E(t) =2Ref (T p, 0:plapgdr +2Ref (0, drp)apgdr
0 0
t t
= 2Re/ (p, 0rplappdr = 2/ o1l 1723 Bp) 197 Pl 1172 (9 By AT
0 0

t
< 2/0 o1l 1723 By 107 P Il 11 (2ydT

<
~ 2;;?(%);] ||arp||H1(g2)||P||L1((),T;H71/2(aBR))~ (3.21)
Using Young’s inequality, we obtain
(11220 + 19213202 ) S E® S € max (10132 + 19013202
L2(%) 12@p) ~ 5~ € B L2(%) L2(2)?

1 2
+ g”’O”LI(O,T;H’I/Z(QBR))' (322)
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Since the right-hand side of (3.22) contains the term Vo, p, which can not be
controlled by the left-hand side of (3.22), hence we need to consider a new reduced
system.

Taking the first partial derivative of (3.11a), (3.11c), (3.11e) and (3.11g), and
the second partial derivative of (3.11b), (3.11d) and (3.11f) with respect to ¢, re-
spectively, we get

Aa,p—}za?(a,p)zo inQ, >0,
wAZu + (4 VY - 87u — p2d7 (87u) = 0 inD, t >0,
3 pl,_g=0. 3r2P|,:o=c'2Ap|,:0=0 inQ,

07ul,_y =0, %W = p; ' (LA@GW) + G+ VYV - @) |,y =0 in D,

np (0 p) = —p1np - 97 (dyu) ondD, >0,
—~Fpnp = dnp, (07w) + O+ (V- 2w)np ondD, t >0,
3 (3 p) = T (3 p)+0p ondBg, t > 0.

We consider the energy function
F(1) = Fi(1) + F2(1),
where
Lo 2 2
Fl(t) = ”Zat p”LZ(Q) + ||V8tp||L2(Q)2s
and
1/2
Fa(t) = 1(p192) 220|352 + oy > O+ 02V - (07w 122,
o1 PV @71 72 -
It is clear to note that F(0) = 0.

Similarly, as with Lemma 2.4, we may show that

t
Re/ (T0:p, 92p)appdr <0. (3.23)
0

In fact, let p be the extension of p with respect to ¢ in R such that p = 0 outside
the interval [0, ¢]. Using the Parseval identity (2.10) and Lemma 2.3, we get

t t
Re [ e (Tocp 2t =Re [ e [ (7o) Zpayar
0 0 9Br

00 ] 1 o] . .
= Re/ / e B (T 0, p) 82 p dydr = _/ Re(sZBp, s°P)apgdsa
3Bg JO 27 J oo

o0
=— Is|*Re(s ' Bp, p)apyds2 <0,
27 J_ o

which implies (3.23), after taking s; — 0.
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Following the same steps to prove the inequality (3.21), we obtain from (3.23)
and integration by parts that

t

t
F() S2Re | (@ep. 07 planydt + 2Re f (T3 p. 02p)apydt

0
t
§2Re/ /arp 92 pdrdy
dBr JO

t
=2Re/ atp(ﬂr)afﬁ(’ T)|€)_2Re\/~ (a‘%pv a‘L’p)BBRdT
dBp 0
2
S 2;2?(?,’}] ”atp“Hl(Q) <tg[1031”;] ||an0||H71/2(aBR) -+ l9; p”Ll(O,T;H‘/Z(BBR))) .
(3.24)

Combining (3.22) and (3.24), using Young’s inequality, we have

(001220 + 19011220 ) S EW + F(1)

S 2 n[lgx (001 P13 200y + IV P12 )

2
+ - ”:OHLI (O,T;H’l/z(aBR))

1
+o, max 19: o115

€ te[O H12(@Br)

”a 'OHLI(OT H— 1/2(3BR)) (325)

Hence we choose € > 0 small enough such that 2¢ < 1/2, for example, € = 1/8.
It follows from (3.25) and the Cauchy—Schwarz inequality that

g[lélx (||3tl7||L2(Q) + ||V3tp||L2(Q)2) §<||p||L1(0,T;H1/2(aBR))

+ max ||d —172¢;
10T 10: 01l 1/2(3Bg)

2
+ 119; :0||L‘(0,T;H_1/2(BBR))>’

which completes the estimate (3.13).
For the elastic displacement u, we can also obtain that

(N02ul2 2o + IV - B2 ) + 1V B2y 002

+ (18P 122g) + V0PI g0 )

S EW +F@) £ 26 max (101 P13 20y + 1V P12 )
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1 2
+ E ||'O||LI(O,T;H71/2(HBR))

1 2 1 2 12
+ E lg[l()a:)]('] ||at10||H—1/2(BBR) + E”at p”LI(O,T;H_I/Z(BBR))‘

Using Young’s inequality again, we obtain

212 2 2
max. (1201222 + IV - Q)3 ) + IV B2y 02

2 2
/S ”'OHLI(O,T;H*I/Z(BBR)) + [g[l(?:);,] ||3t,0|| H—I/2(aBR)

+ ”atzpnil(O’T;H—l/z((‘)BR))‘ (326)
For any 0 < ¢ < T, using the Young inequality leads to
2 ' 2 2 T 22
ol 2 = /0 D l3ett s D2 ot < €T 113 o + — 1701 o

Here we choose € small enough such that €eT" < 1, for example, € = % Hence,
we have

19172 2 < 2T2 11070117 12 S 1078117215 (3.27)
Similarly, we can obtain
IV - ulfapy S T2V - @)l T2 pye IV ppo S TIV@@IT2 -
(3.28)

Combining (3.26)—(3.28), we have

2 2 2
tg[l&);] (Ilazulle(D)z + V- u”LZ(D) + ”Vu||L2(D)2X2)

2 2
S ||P ”Ll (O,T;H’I/Z(SBR)) + l‘g[l(i);] ||8tp ||H—1/2(3BR)
2 2
+ ” 8[ 1Y ”Ll (O,T;H*I/Z(SBR)) s
which shows the estimate (3.14), after applying the Cauchy—Schwarz inequality.

]

3.3. A Priori Estimates

In this section, we derive a priori stability estimates for the pressure p and the
displacement # with a minimum regularity requirement for the data and an explicit
dependence on the time.
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We consider the elastic wave equation of d;u in order to match the interface
conditions when deducing the stability estimates. Taking the partial derivative of
(3.11b), (3.11d), and (3.11f) with respect to ¢, we obtain a new reduced problem:

Ap—cizatzp:O inQ, t>0
p=Ip+p on dBg, t >0,
8,,Dp:—p1nD~8,2u, ondD, t >0,
Pli—o=3p|_o=0. in 2, (3.29)
pA@u) + b+ w)VV - (du) — p232@u) =0  inD, t >0, '
du|,_, =0, in D,

Pu|_,=py" (WAU+ O+ wVV -u)|_,=0 inD,

—0;pnp = Wop, (;u) + (A + w)(V - du)np ondD, t > 0.

The variational problem of (3.29) is to find (p, u) € H'(Q)x € H'(D)? for all
t > 0 such that

1
/—zaqu'drz—/vp-vqcir
Q¢ Q
+/ Brpédy—/ Onpp qdy
dBR oD

~[vp-vaars [ Tp+o aay
Q dBR

n /HD pi(np - 92w) Gdy, Vg € H'(Q), (3.30)
/Dpzaf(a,u) cvdr = — /D (uV(@Qu) : Vo + (A + w)(V - (Qu))(V - v))dr
+ /aD(uanD(azu) + (A 4+ w)(V - du)np) - vdy
- /D (WY @w) - Vi + (L + @)(V - Qu))(V - b)) dr

—/ @ p)(np - v)dy, Yve H' (D). (3.31)
aD

To show the stability of its solution, we follow the argument in [44] but with a
careful study of the TBC. The two lemmas that follow are useful for the subsequent
analysis.

Lemma 3.3. Given 0 > 0 and p(-,t) € H' () with p(-,0) = 0, it holds that

0 t
Re/ / (f T p(, ‘L’)d‘L’) p(-,0)drdy <0.
dBgr J0O 0

Proof. Let p be the extension of p with respect to ¢ in R such that p = 0 outsider
the interval [0, 6]. We obtain from the Parseval identity (2.10) and Lemma 2.3 that

Re/ / 2“(/ T p(-, t)dt) p(-, n)dedy
9Bg
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00 t _
= Re/ / e 21! </ Tp(, ‘L')dl') p(-, )dedy
aBx Jo 0

[} t —
= Re/ / e 2t (/ L Vo Bo Lh(, r)dr) p(, t)drdy
dBgr J0 0

o0 -
:Re/ / e*zw(.,sﬂflo(s*lﬁ)o.zﬁ(-,t) ;3(~,t)) drdy
9Bg JO

1 o0 ¢ v
=— | Re(s™'Bp, plopydss S0,
27 J_ o

where we use the fact that
t
/ P vde =27 (s7 ).
0
The proof is completed after taking the limit s; — 0. O

Lemma 3.4. Given 6 > 0 and p(-,t) € HY(Q) with p(-,0) =0, it holds that

6 t
Re/ / (/ %tp(-,r)dr) 3 p(-, Hdrdy < 0.
dBRr JO 0

Proof. Similarly to the above proof, we have

0 '
Re/ / e B </ To.p(, ‘L')d‘L'> o, p(-, t)dedy
3Bk JO 0
o0 t _
=Ref / e~ 21! <f ﬁ&tﬁ(~,r)dr) 3 (-, Hdedy
3Bk JO 0

00 t _
:Re/ [ e~ <f f_lo%ofafﬁ(~,r)dr) 3 p(-, Hdrdy
dBRr JO 0

w —_
- Re/ f il (3—1 o (s™\B) o Lo p( 1) (-, t)) drdy
dBRr JO

1 o0 v S
L [Tke f S~ B, 5) B, 5)dyds:
27T —00 BBR
OO 92 “
=— [ Is’Re(sT'Zp, p)opedsr <0,
27 J_ o

which completes the proof after taking the limit s; — 0. 0O

Theorem 3.5. Let (p,u) € H'(Q) x H'(D)? be the solution of (3.30)—(3.31).
Given f € CK(k = 3), it holds for any T > 0 that

Pl .7:22(0)) T IV PllLo(0.7:22(2)2)
S Tlellipio.rm-1208x) + 1901 L1 (0.7: #1723 BR)) (3.32)
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0l Lo 0,7, L2(p)2) + VUl Lo, 1; L2(D)2x2) + IV - Ul 0,7 L2(D))

ST Npllo.r:m-12680) + T 1000 L1 (0.7: 112380 (3.33)
P20, 20y T IVPIL20.7:22(02)2)

ST Plpllpo.r:m-12080) + T2 100101 0.7: 5120 81))- (3.34)
0wl 20, 7;22(p)2) + VUl 2200, 7;22(Dy2<2) + IV - wll 220, 7,22 (D))

f, T7/2||P||L1(0,T;H71/2(33R)) + T5/2||3:P||L1(0,T;H71/2(33R))~ (3.35)
Proof. Let 0 < 6 < T and define an auxiliary function
0
Y (r, 1) :/ pr,t)dr, reQ, 05r<0.
t
It is clear to note that
Yi(r,0) =0, oyi(r,1)=—p(r,1). (3.36)

For any ¢ (r, 1) € L? (0, 0; L2(Q)), we have

% 6 t
/ ¢(r, t)1/71 (r,n)dt = f <f ¢(r, r)dr) p(r, t)dt. 3.37)
0 0 0

Indeed, using integration by parts and (3.36), we have

/qus(r,t)&](r,t)dt =f09 <¢(r,t) /6[3(r, r)dr) dt
f / p(r. 1)drd ( / o(r. g)dg)
=/t p(r, f)dr/ $(r. )dgly + / </ o(r, g)d§> pr,ndr
:/o </o o(r, r)d‘r) p(r,t)dz.

Next, we take the test function ¢ = v in (3.30) and get
1 5, - - _
—07pyndr =— | Vp Vyidr+ (7 p+p) Yndy
Qc Q dBR
+ / oinp - 2uydy. (3.38)
aD

It follows from (3.36) and the initial condition (3.11d) that
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Re/ / 3t2p1[/1dxdt Re// 8, 8tp1/f1)+8,pp)dtdr
0

=Re [ = (ap o] + 210 ) dr
_ ch tP 10 2p 0

L

It is easy to verify that

0 6
Re f / pr(np - 92u) Jrdyds = Re f / o1 (0 (e - ) 1)
0 oD aD JO
+(np - dyu) ) drdy

- |0
=Re/ p1(\(rp - 0m) Yi|,)d
A CERDEAY
0
+Re// p1(np - o;u) pdydt
o Jap
0
:Re// p1(np - o;u) pdydt.
0 JoD

Integrating (3.38) from r = 0 to t = 6 and taking the real parts yields

1 1 0 _
= pCL )2 +Re/ /Vp~V1ﬁ1drdt
L 2@ A

RN 1 il
_EHZP( )||L2(Q) z ollo P(',Z) t

0 0
:Ref (Tp+p, w1>aBRdr+Re// pr(up - 52w) rdydr
0 0 oD

dr

0 0
=Re/0 (Tp+p, 1/f1>aBRdt+Ref0 fd pi(np - d;u) pdyd:r.  (3.39)
9D
We define another auxiliary function
0
Yo(r, 1) =/ d;u(r,t)dr, reD, 05r<0<T.
t

Clearly, we have
Yo(r,0) =0, 0Y,(r,t) =—0u(r,t). (3.40)

Using a proof similar to that for (3.37), for any ¢(r,?) € L? (O, 0, LZ(D)Z), we
may show that

0 0 t
/¢(r,t)~1_02(r,t)dt:/ <f ¢(r,t)dr)-8tf¢(r,t)dt.
0 0 0
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Taking the test function v = ¥, in (3.31), we can get
/D 207 (dyu) - Prpdx = — /D (V@) : VI + O+ w)(V - @) (V- ¥y)) dr
- / @) (np - F2)dy. (3.41)
aD
It follows from (3.40) and the initial condition in (3.29) that
0 _ 6 _
Re/ f 202 (dyu) - ¥pdxds = Re/ / P (8;(8314 W)+ 0Pu - a,a) drdr
0 D D JO
2 7 0 1 210
=Re [ po | @fu- 2o+ F10ml]y | dr
D

J2)
S0t Oz

and
0 -
Re/ / (9 p)(np - ¥)dydt
o Jap
0 —_
—Re /a ) /0 (0 (p (up - ) + p (np - 3,) dedy
B 0
= Re/ (p (np - 1//2)) ‘gdy +Re/ f p (np - o,u)dydt
3D o Jap

0
= Re/ / p (np - 0:u)dydz.
o Jap

Integrating (3.41) from ¢t = 0 to = 6 and taking the real parts yields

9 -
22 oy, 0) 3y + Re /0 /D (LY B 1) V(1)
+ O+ 0 (V- @, 0))(V - Py, 1)) drdr
P 1 0
2
)dr

0
:—Ref/ p (np - d,iw)dydt, (3.42)
0 oD

2

L2 (D)2><2

0
+ A+ ’/ V- (0u(-, t))dt
0

where we have used the fact that

2

0 0 0
’/ V(du(-, 1)dt :=/ V(a,u(~,t))dz:/ V(3,a(-, 1))dt.
0 0 0

L2 (D)2x2
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Multiplying (3.42) by p; and then adding it to (3.39) gives

2
11 2 1 ¢ £2p1 2
§H;Ph9ﬂuam-%5lJ1;Vp0th ar -+ 223, 01 e
L1 o ?
- (u‘ | v
D 0 L2(D)2x2

2
)dr
6 0
—Re [ (Tp+poiandrRe [ [ prinp ) payar
0 0 oD

0
—Re/ / p1p (np - o;u)dydt
o Jap

0 6
=Re/ (T p, 1//1)33Rdt+Re/ / p Yridydr. (3.43)
0 0 dBR

0
+(h+ 1) '/ V- (u(-, 1)dt
0

In what follows, we estimate the two terms on the right-hand side of (3.43)
separately. Using (3.37) and Lemma 3.3, we obtain

6 2] _
Re/o (T p.Y1)oppdt = Re[ T pyridydr

o JoaBg
0 t
=Re / ([ T p(, r)dr) p(-, Hdedy 0.
dBr JO 0

(3.44)

For0 <t £ 0 < T, we have from (3.37) that

0 6 t
Re/ / pvndy dt =Re/ (/ / p(-,t)dydr) (-, t)de
0 JdBR 0 0 JOBg

0 pt
5/0 /0 loC O a-1208) 1PC O 17258, dTdE

0 pt
S / / loC O a-1208) IPC Ol g1 (dTds
o Jo

0 0
S (/o loC, l)||H1/2(aBR)df> </o ||P('J)||H1(sz)df>-

(3.45)

Substituting (3.44) and (3.45) into (3.43), we have for any 6 € [0, T] that

1 1 2 P2P1 2

5“;1’(, G)HLZ(Q) + T”atu('a G)HLZ(D)Z
<LLlconr : Gv d 2d
S S IoPC O 5 ||| Vpenar ar
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P201
2

Pl ( 0
+ = 2 ‘f V(Ou(-, t))dt
2 Jp 0

0
++ ) ‘/ V- (0u(-, t))dt
0

+ =19, 017 e

2

L2(D)2><2

2

)dr
0 0

S (/0 o, t)IIH—I/z(aBR)df> (/0 lpC, t)IIHI(sz)df>~ (3.46)

Since the right-hand side of (3.46) contain the term

o 1/2
f f (1VpC 0P+ 1pC.nar) " dr,
0 JQ

we may want to control the term ||V p||%2 @2

the Young inequality. Thus, we consider new test functions

by the left-hand side after applying

0
w3(r,t)=/ dpr,r)dr, reQ, 05t<0<T
t
and
0
¢4(r,t)=f 2u(r,tydr, reD, 0S5t <O<T
t

for the system

Adp — 507@p) =0 inQ, t >0,
wAPu+ O+ w)VV - 32u — p292(3%u) = 0 inD, t >0,
8,p|t:0=0, 3,2p|t:0=c2Ap|t:0=0 in €,
oful,_, =0, in D,

8 (07w) = p; ' (RA@W) + (A +WVV - @u)) [,y =0 in D,

Onp, (0rp) = —p1np - 97 (Oru) ondD, t >0,

—afan = ua,,D(afu) + A+ (V- afu)nD ondD, t >0,

3 (0rp) = T (0rp) + 0rp on dBg, t > 0.
(3.47)

Following the same steps as those used when proving the inequality (3.39), we
obtain for (3.47) that
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1 1 0 .
=3 pC. 02 +Re/ f 8,(Vp) - Vidrds
2 c t LZ(Q) o o t

2
dr

1
2
1
§|
% %
=Re/0 <93tp+8fp,1/f3>aBRdt+Re/0 /B pi(np - 37u)d; pdydr.
P (3.48)

1
2 2
| atp('a Q)HLZ(Q) + E”Vp(3 Q)HLZ(Q)Z

1 ) 1 o
Ea’p("9)||L2(9)+§/Q ‘/0 9 (Vp(-, 1)dt
1

c

Similarly, we have
P2\ 42 2 ’ 2 ey
SNt O +Re [ | (kY @2uC. 1) : V1)

+ 0410 (V- @FuC )V - Pal,1) ) ) drs

0
P2, a2 2 1 2
= ?Hatu('ae)”LZ(D)Z +§/VD <M‘L V(at u(-,t))dt

2
)dr

02 1
= ?HB,Zu(, G)Hiz(D)z + E,u”vatu(a 0)”%‘2(D)2x2

2

LZ(D)ZXZ

%
O ) V V- 02, n)dr
0

1
+ SO IV - a0z,

0
=—Re// &p (np - 3u)dydr. (3.49)
0 JaD

Combining (3.48)—(3.49), we deduce
11 1 P12
S1=3pC Oy + S1VPC D2 gp + = 1978¢, Oy
Pl 2
+ ?/"anafu(a 9)“L2(D)2><2

%
L1
+ 204 IV - 3, 01 ) = Re/0 (T3 p. Y3)amedi

6
+ Re / / 8 p Y3dydr. (3.50)
0 JdBR

For the first term on the right-hand side of (3.50), we derive from Lemma 3.4 that
0 6 t

Re/ (T 0 p, V3)oppdt = Re/ / (/ T p(-, t)dr> & p(-, 0)dt = 0.
0 dBg JO 0

(3.51)

For the second term on the right-hand side of (3.50), it follows from the integration
by parts and the trace theorem that
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6 0 pt
Re/ / 8;,01/_/3dydt = Re/ / </ ap(-, r)dy) dt o, p(-, t)dt
0 dBpr 0 0 dBRr
6

t
= Re/ ((/ dep (-, T)AT) p(, t))
aBr \ Jo 0

]
Re f / 8,0 (.15, )dydr
0 0Bgr

0
5/0 l19: -, t)||H—1/2(BBR)||p(" t)”Hl/Z(aBR)dt

dy

6
< fo 130G Dllg-120050 1P Ol epde. (3.52)

Combing the estimates (3.46), (3.50)—(3.52), we obtain

6
PG )72y + IVPC 720 S ( / o, r)nHuz(aBR)dt)
0

0
(/0 ||P('J)||Hl(sz)df)

]
+ /O 100G+ Dl 120 PG Dl g1y
(3.53)

Taking the L°°-norm with respect to 6 on both side of (3.53) yields
2 2
||P||L00(0!T;L2(Q)) + ”Vp”Loo(O’T;LZ(Q)Z)

S Tlelizio.r; m-12080) 1Pl 0.7: 11 ()

+ 0ol L 0.7 m-1208)) 1Pl Lo (0.7, 11 (2)) -
Using the e-inequality, we obtain
2 2 2 2
||p||LOO(O,T;L2(Q)) + ||Vp||Loc(0‘T;L2(Q)2) S T ||10||L1 (O,T;H_]/Z(BBR))
2
+ ”atp”Ll (O,T;H_I/Z(BBR))’

which implies the estimate (3.32) after applying the Cauchy—Schwarz inequality.
For the elastic wave, it follows from (3.46) and (3.50)- (3.52) that

1072, 0172y + IV O T2 o + IV - 80 )72,
PG 72 + IVPC 072

0 0
§(/O ”p('vt)”Hl/Z(aBR)dt) </o ”p('»t)”Hl(Q)dt>

0
+/ 10:0C O =128 PG5 DIl 1 ()de (3.54)
0
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Forany 0 <t < T, since d:u(r,0) = 0, using the Young inequality yields

%
10, O)122 0 = /0 0., D2 et

T
< :na?u(-, N2 pye + €TI0 T2y (359

Choosing € = %, we have from (3.55) that
18 O S T2N07UC, 2o (3.56)

Similarly, we have

IV, 0172 pyoe S T2V, )72 pyosas

IV - w52y S TV - 80,0172 - (3.57)
It follows from (3.54)—(3.57) that

192, O 172 py2 + 1V8C, O 72 pyoa + IV - w02,
+T2pC O + T2IVPC 072 g

< T2<||3;2u(" 9)||iz(1))2 + || Vosu(-, 9)||iz(D)2><2

IV -, O3y + 1PC O 72 + 1VPC, 9>||iz(m)

0 0
S ([ 100l 2ma) ([ 106 0m @)
0 0

0
472 /0 100G D120 PG Ol 11y (3.58)

Taking the L°°-norm with respect to 6 on both sider of (3.58) yields

2 2 2
”atu”Loc(O’T; LZ(D)Z) + ”Vu”Loo(O,T; LZ(D)ZXZ) + ”V : u”LOO(O’T; LZ(D))

+ T2 (1210 11260 + 1VP 0120002 )
S T3”p”Ll(O,T;H*l/Z(BBR))||p||L°°(O,T;H1(Q))
+ T2||8t:0||L1(O,T;H*I/Z(aBR)) ||P||Loo(0,T;H1(gz))-
Using Young’s inequality again, we get

2 2 2
”alu”Lm(O’T; LZ(D)Z) + ”Vu”LOO(O,T; L2(D)2><2) + ”V : u”Loo(O,T; LZ(D))
2 2 2
+ (T - 6) (”p”LOC(O’T;LZ(Q)) + ”Vp”Loc (0,T;L2(9)2)>

1 6 2 4 2
S . (T ||p”L'(0,T;H—‘/2(BBR)) +T ”alp”Ll(O’T;H—I/Z(aBR))) .
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Letting € to be a small enough positive constant gives

2 2
1313 w0 7 122 F 1V e 0 1 12022y + IV - llT e 0 7 1200
0,T; L=(D)*) (0,T; L=(D)=*<) 0,T; L=(D))
6 2 4 2
Sz T ||p”L'(0,T;H—1/2(BBR)) + T ”8t’0”L1(O,T;H_]/Z(BBR))’

which shows the estimate (3.33) after applying the Cauchy—Schwarz inequality.
Integrating (3.53) with respect to 6 from O to 7" and using the Cauchy—Schwarz
inequality, we obtain

2 2
||P||L2(0’T;L2(Q)) + ” VP ||L2(0,T;L2(Q)2)
3/2
ST ol m-1208) 1Pl2 07511 2)

172
+ T 20100l 2107 512080 1P 20,7 11 (2))-
Using the Young equality yields
Pl +11Vpli7 S Tllpllio,r -1
L2(0,T;L2(RQ)) Pl ri02@2) < PILY©,1:H=1/2(9BR))
+ Tl0oll Lo, H-1720Bg))

which gives the estimate (3.34) by using the Cauchy—Schwarz inequality.
For the elastic wave u, integrating (3.58) with respect to € and using the Cauchy—
Schwarz inequality yields

2 2 2
”81u ||L2(0,T;L2(D)2) + ” Vll ”LZ(O,T;LZ(D)ZXZ) + ” V. u ||L2(O,T;L2(D))

2 2 2
+ T <||p||L2(0yT;L2(Q)) + ||VP||L2(0’T;L2(Q))>
7/2
ST / ||P||L1(0,T;H—1/2(3BR))||P||L2(0,T;H‘(sz))

2
+ 1% 10: ol Lro. 7 H-1720Br) 1Pl L200.7: HY (@)

Using the Young inequality leads to
2 2 2
||atu ||L2(0,T;L2(D)2) + ” Vll ”LZ(O,T;LZ(D)ZXZ) + ” V. u ”LZ(O,T;LZ(D))
2 2 2
+ (T - 6) (”p”LZ(O’T;LZ(Q)) + ”Vp”LZ(O’T;LZ(Q)))
1 7 2 5 2
rg E (T ”p”Ll(O,T;H*V?(aBR)) +T Hatp||L1((),T;H*1/2(8BR)))'

Similarly, we choose € small enough and obtain
19;u]17 + IVl IV - ull;
1N L20,1:L2(D)?) L2(0,T;L*(D)**?) L2(0,T;L*(D))
7 5
S TolellLo.rm-1208r) + T N0 L1 0. 7:H-1/2(3BR)»

which implies the estimate (3.35) by using the Cauchy—Schwarz inequality again.
O
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4. The Time-Domain PML Problem
In this section, we introduce the absorbing PML formulation for the acoustic—

elastic interaction problem, and establish the well-posedness and stability of the
PML system.

4.1. The PML Equations and Well-Posedness

It follows from the Helmholtz decomposition in (2.7) that the reduced problem
(3.11) can be written into

Ap— 5d9p=0 in Q, r>0,
Apr — éatzwl =0, in D, t>0,
A¢2—é3f2¢1=0, in D, 1>0,
Plig=3p|_o=0 . ?n Q, @1
‘pj|z=0 = at%"z:o =0, j=1,2 in D,
npp = —pinp - (V(3791) + curl(37¢2)) on dD, 1> 0,
—pnp = (op, (Vo1 + curlpy) + (A:“%’” afgolnD on 3D, >0,
op=Tp+p on dBg, t> 0.

Let

¢V = —0,®1, 2V = —0,P2,

The acoustic—elastic interaction problem (4.1) can be equivalently written into the
first order system

o p(r,t) = —c2p1V -v(r,t), ov(r,t) = —p;IVp(l‘, t) reDC >0,
hp1(r,t) = —c1V - ®(r,t), 0®1(r,t) =—c1Voi(r,t) rebD,t>0,

al(pZ(rat) Z_CZV'(I)Z(",I)7 afq>2(r’t) Z_CZV(PZ(",I) r e D’ t >07

pr.0)|,_y=0. v(r.n|_,=0 r e D,
@jr.n],_y=0, ®;(r.0|,_,=0, j=12 ren,
np-v(r,t) =np - (0;Voi(r,t) 4+ d:curlpy(r, t)) reoD, t>0,
—p(r,t)np = won, (Vor + curlgy) + O‘;F—%”)atzwlnl), reodD, t>0,

4.2)

where p and v are the pressure and the velocity field of the acoustic wave, ¢
and ¢, are the compressional and shear scalar potential functions for the elas-
tic wave field. We pick two positive numbers L1, L, which are sufficiently large
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QIIDML

OR;

Fig. 2. Geometry of the PML problem

such that the elastic solid D is contained in the interior of the rectangle R; =
{r:|x| <Li/2,|y| < Ly/2}. Let Ry = {r :|x| < L{/2+di,|y| < L2/2+ db}
be the rectangle which contains Ry, where di, d> are the thickness of the PML
region along x and y, respectively. The geometry of the PML problem is shown in
Fig. 2.

Let a1 (x) = 14 s lop(x), 22(y) = 1 + s loa(y) be the model medium
property which satisfy

oy if|y| > Ly/2,

0 ifyl = Ly/2,

51(x) oo if|x| > L1/2,
X) =
: 0 if x| < L/2,

o2(y) = {

where oy is a positive constant. Let # = (x, §) be the complex coordinates, where

X y
J?:/ o (t)dr, 5):/ ar(t)dT.
0 0

Clearly, we have g—f =, g_y = .

Taking the Laplace transform of the first equation in (4.2) and using the initial
conditions, we get

sp=—pV-9, st=—p 'Vp inR*\Ry. (4.3)

Let ]3 ¥ be the PML extensions of the pressure field p and the velocity field ¥ with
respect to the complex variable 7 in R*\ Ry, respectively. It follows from (4.3) and
the chain rule that

sP+ (o1 +02p+ 22 p = —2py (21 + 570201 + 0, (1 +57 o))
sU1 + 0101 = —p; P,

sUy + oo = —pl_layﬁ,
“4.4)
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where b = (13 1, 52)T. To introduce the first order system for the time-domain PML
problem, we define

N (4.5)

It follows from (4.5) that (4.4) becomes

sﬁ=—cm@<m+@vﬂwxm+m%ﬂ—«n+@m—ﬁﬂ
Slc)l = 3xp—0'1v1, (4~6)
sUy = —p; 3yP — oos.

Forr € Rz\ﬁl, let

. v=27'W) pr=270N. =270 @)

with the initial conditions

Ak A%

=0, p*|,_,=0., b =0, (4.8)

p|t =0 |t =0 — |I =0 —

N A ANT
where v* = (f)]", f)i")

Taking the inverse Laplace transform in (4.5)—(4.6) and using the initial condi-
tions (4.8), we have

&P =—c*p1 (0 (D1 + 0207) + 3y (02 + 0103)) — (01 + 02) p — p*,
dd1 = —py; 0P — o101, 802 =—p; ' dyp — oaia, 4.9
3113* = 0102135 atﬁ* = 1.

. A ANT
Define a new variable V = (Vl, V2) with

‘71 =10 + Uzﬁf, ‘72 =10y —|—0113>2'<. (4.10)
In R%\ R}, the PML system (4.9) can be written as
y

@ p=—c2p1@: V1 + 3y V2) — (01 + 02)p — p*,

dVi = —p; ' 0ep + (02 — o) (Vi — 020)),

V2= —p; l3yp + (01 — 02) (V2 — 1), (4.11)
8tﬁf = ‘71 — (Tzﬁik, 8tﬁ; = ‘72 — U]IA);,

9 p* = o102p.

The first order system (4.11) for ( ﬁ, AN glves the tlme domain PML
formulation for the acoustic wave field in ]Rz\Rl Since p = p, V = vondR,
(p, V) can be viewed as the extension of the solution (p, v) of the problem (4.2)
for the acoustic wave. Moreover, since o1 = 0, 0o = 0 inside the rectangle R,
if we set p = p, p* =0, V=90 = fé V (-, t)dt in Ri\D for t > 0. Then
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in D¢ = R2\D, (p, V, p*, v*) satisfies (4.11). Thus we deduce the time-domain
PML system

Wp+ (o1 +o)p+ pr+32pV-V =0, p*=0100p inD t>0,
WV =—p'Vp+ MV — AiArd*, 99" =V — Ard*  inDC, >0,
o1 = —c1V-®, ;P =—c Vg inD, t >0,
0pp = —2V - @y, 0;P2 = -2V inD, t >0,
Pl_y=0. V|_, =0, p*_,=0 *_,=0 in D¢,
Oil_g=0. @j_,=0 j=12 in D,
np-V=np- (0; Vo1 + 0scurl ) ondD, t >0,
—pnp = won, (Ve + curlgs) + (H“) d2pinp, ondD, t >0,
(4.12)

where the matrices A1 = diag ((o2 — 01), (01 — 02)) and A, = diag (03, 01).
The above discussion can be summarized in the following lemma:

Lemma 4.1. Let (p, v, ¢1, @1, 02, P2) be the solution of the first order system of
equations (4.2) which is extended to be (p, V o1, 1, @2, ®2) outside Ry according
to (4. 7) and (4.10). Let (p* A*) be defined in (4. 7)f0rr € R2\Ry, and (p*, v*) =
(0, fo V( t)dt) for r € Ri\D. Then (p, v, p*, 0%, @1, ®1, 02, ®2) satisfies the
PML system (4.12).

Due to the exponential decay of the scattered field p* in R?\ R, we define
the following initial-boundary value problem for (p, V, p*, 0%, o1, @1, 92, ®2),
which is the truncated time-domain PML problem

Wp+ (o +o)p+p +EpV-V=0, 9p*=0100p inS, >0,
WV = —p 'V 4+ AV = AjAD*, 80 =V — Ad* inQ, 1 >0,
991 =—c1V- @, 9,0 = —c1V@p inD, t>0,
¢ = —c2V - &’2, at‘i’z = -V inD, t >0,
Pl_y=0. V|_, =0, p*_,=0. 9*_,=0 in Q,
0il_o=®jl_,=0. j=12 in D,
np-V=np- (8: V@1 + o;curl ¢,) ondD, t >0,
—pnp = oy, (V@) + curlgs) + ()‘Jr“) 32¢1np ondD, t >0,
p= Pinc ondRy, t >0,
4.13)

where Q, = Rz\D.
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Remark 4.2. It is clear to note that the solutions differ between the original PML
problem (4.12) and the truncated PML problem (4.13). For simplicity of notation,
we still take (p, v, P, 2%, @1, ®1, @2, ®2) to be the solution of the truncated PML
problem (4.13).

To show the well-posedness, we rewrite the PML system (4.13) into the vector
form

0rq = Az0xq + B20yq + Caq inD, t >0,
where the vectors
~ 7 A% Ak Ak T T
p= (P’Cplvl, cp1Va, p »Cplvl’CPlvz) , q = (p1, P11, P12, 02, P21, P22)

and Aj, B, j = 1, 2 are symmetric matrices given by

0 —c0000 0 —c;0 0 0 0
— 00000 —; 000 00
A _| 0 00000 4|0 000 00
'Z10 oo0000|" 710 000 -0}’
0 00000 0 0 0—cs 00
0 00000 0 000 00
00-—c000 0 0—c; 0 0 0
000000 000 00O
B, — —0 0000 By — ;00 00 0
000000}|" 000 00—l
000000 000 00O
000000 000 —20 0
and C, =0,
—(o1 + 02) 0 0 —1 0 0
0 o) — O] 0 0 02((72—(71) 0
Ci— 0 0 op—op 0 0 o1(o1 — o)
1= 0102 0 0 0 0 0
0 1 0 0 —0y 0
0 0 1 0 0 —0

Notice that the truncated PML system (4.14) is a first order real symmetric
hyperbolic system whose well-posedness follows from the standard theory (see for
example [5] or [26]). Here we state the well-posedness of the PML problem (4.13)
or (4.14) and omit the proof.

Theorem 4.3. The truncated PML system (4.13) is has a unique strong solution.
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4.2. The Stability of the PML System

In this subsection, we rewrite the first order elastic wave equation into the
second order Navier equation, and consider the stability of the initial-boundary
value problem of the following PML system:

Up+ (@1 +o0p+p +EpV-V =0, dp*=0i100p inQx(0,7),
WV =—p'VH+ AV — AjAD*, 80 =V — Ard*  inQ x (0, 7),
;LAu+(k+u)VV~u—p28,2u =0 inD x (0,7T),
Blig=0. Vly=0. 5| _y=0. "|_,=0. in £2
”|z:o:O’ 8f”|;:o =0 in D,
Vﬁ~nD=—p1nD~8t2u, ondD x (0,7),
—pnp = wdppu+ A+ p)(V-u)np, ondD x (0, T),
p = pinc ondRy x (0, T),
(4.15)

where p* = 0in R\ D. Denote Q"ML = R,\ R and

QE’ML _ {r e QML x| > Ly/2, Iyl < LZ/Z] )
QM = [r e @M x| < Li/2, Iyl > La/2).
QP = [r e @M x| > Li/2, Iyl > La/2).

The following theorem is the main result of this section and shows the stability
estimate of the PML system (4.15):

Theorem 4.4. Let (ﬁ, V., p*, v, u) be the solution of the PML problem (4.15)
and p™® € H*(0, T; H'(Q2)). Then we have the following stability estimate:

ax (Halﬁ”Lz(QQ) F 18Vl 202 + 18 P¥ Ly (920) + 13:0™ 112, )2

+ ||3tu||L2(D)2 + V- u||L2(D) + ||Vu||L2(D)2x2>

5 (I+ T)[g[l(i)l?] <||3;2Pm0||H1/2(3R2) + ||athC||H1/2(3R2) + ||Pmc||Hl/2(aR2)) .
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Before giving the proof of Theorem 4.4, we first consider the stability of an auxiliary
system with zero boundary condition on d R>. Consider the system

%+ (01 + 0P+ % + PV W = fi, %¢* = 01026 in Q2 x (0, 7),
(4.162)
W+ p; Vo — AW+ A MY = £y, GYT =W — Ayt inQp x (0.7),
(4.16b)
pwAu+ A+ )YV - u— prdlu =0 in D x (0,7),
(4.16¢)
lico=0. ¥[o=0. ¢"[,_g=0. ¥*|,o=0 in 2,
(4.16d)
u}t:():O, 3’”!;:020 inD,
(4.16¢)
Vo -np=—pinp - dtu ondD x (0, T),
(4.16f)
—¢np = popput + A+ p)(V-u)np ondD x (0,T),
(4.16g)
$=0 on Ry x (0, T),
(4.16h)

where f1 € H'(0,T:L2(Q)), f2 € H'(0.T;: L*(2)?), fa]yp = 0. and ¢* =
Jg Wdr, ¢* = 0in R\D.
Theorem 4.5. Let (¢, W, ¢*, ¥*, u) be the solution of the auxiliary system (4.16). We have

the following stability estimates:

2 ~
I (na, (1) + 506 C. Dl 20) + 19 ¥C. D 202

2
+ > lloow; (., r>||Lz(Q§ML))

J
S IAc, 0)”L2(Qz) +11f2(, 0)”L2(Qz)2

T
+ /0 (100 f1l 2y + 100 £2 + B0 2l 205202 ) @.17)
and
max (19l 2y + 1V w2 p) + Va2 oy )
5 ||f1('7 O)HLZ(QZ) + ||f2(', 0)||L2(Qz)2
T
[ (0012 + 10082+ G f 2l gy 0. (@.18)

where 6y is defined by (4.21).
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Proof. Taking the derivative of the first equation in (4.16a) with respect to ¢ and using the
second equation in (4.16a), we obtain

02 + (01 + 023 + 01029 + 2 p1V - (W) =3, f1 inQ x (0, T).  (4.19)

Multiplying (4.19) by 9;¢ + 6g¢ and integrating over 2, yields

d - - -
S hod+ Uo¢||iz(92) + /Qz (o1 + 02 = G0) 31 + 01020) (31 + GpP)dr
+ /Q o1V - (3%) (¢ + Gop)dr = /Q 0 f1(0r¢ + SGpp)dr, (4.20)
2 2
where
Go = 00 ImRAR 421
0 in R{\D.
Since
0  inR{\D,
oj+0y—60=10  inQMLyQIML
oo  in QPML,
we have

/ (o1 + 02 = G0) 3¢ + 0102¢) (3¢ + Go¢p)dr = Uo/ |19 + Gog|*dr = 0.
Q) QPML

Integrating (4.20) from O to ¢, and using the above inequality and Green’s first identity, we
get

1 - 2 ! 2 -
2100 450000, = [ [ 010w V010 + supraras
t
- f / 2 p13¥ - np(r + God)dydr
0 JoD
1 - 2 ! 2 -
= S106 0+ 506D la g —/0 /szf P13Y -V (0rb + God)drdr

t
- / / 2p1 (W - np)dpdyde
0 JoD

1 ! -
< 3090y + [ [ 901G+ dogarar. (4.22)

Here we have used the fact that 690 = 0 on 9D, ¢(-,0) = 0 and ¢|3R2 = 0. Since,

A1 = Ay =01in Ry\D and f2lap = 0, it follows from the first equation in (4.16b) and
the boundary condition (4.16f) that

%W -np=—p;'Vo-np=np-d2u ondD.

Thus (4.22) can be written into

1 . 2 ! 2 .
§||3t¢(ut)+00¢(‘J)||L2(92) —/0 /ch 010 - V(0 + o0¢)drdr
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t
—// Ap1op(np - 07u)dydr
0 JoD

1 ! -
< 08O Mgy + [ [ 100 +Gogarar (4.23)

Next, taking the derivative of the first equation in (4.16b) with respect to ¢, multiplying
the first equation (4.16b) by 6, and adding the two equations, we get

2V + py 'V (8¢ + Gog) + (Gol — AN + Ay (Ay — GoD)W
+ MMz (op] — A)Y* =3, f>
+60fo in Q7 x (0, 7). 4.24)

Multiplying (4.24) by ,o%c2 0; ¥ and integration over $27, we obtain
1402 + 2p1 V(3 + Go¢) - 0, %d
5 dr llco19; ”L2(§22)2 ch P1V(0r¢ + 60¢) - 3 ¥dr

+ [ Gor = Avlamarwar
Q)

2.2 ~

+/ ¢ piA1(Ap — oDV - ;W
Qo

+f ApIAI A (Gl — AP - 3 Wdr
Q0

:/Q Ao} @ fr+60f2) - dWdr. (4.25)

2

Since the matrix 6o/ — A1 = diag(6g + o1 — 02,60 + 02 — 01) is symmetric positive
definite in Q, that is, 69/ — A = 0, the third term on the left hand side of (4.25) satisfies

/ Gol — Ap)lcp19,%|2dr > 0. (4.26)
Q)

Note that A; = 0in R{\D and Ay — 69/ = O in QEML, the fourth term on the left hand
side of (4.25) can be written

/ pPA1(Ag — Go)W - 3, Wdr :/ +/ ZpPA1(Ag — GoD)W - 3, Wdr.
@ Q QML

PML
1

In QPML | by the definitions of o';, we have Aj = diag(—0p. ), Ay — &) = diag(—og, 0)
and

1d
2.2 o . 1 5
/QII)ML c“piA1(Ap — G )Y - 0, Wdr = 23 ||cp100\1/1||L2(Ql;ML), 4.27)

PML
In Qz

, it follows from A | = diag(og, —og) and Ay — 6ol = diag(0, —og) that
P A (Ay — G I)qt.aqtdr—linc oo |12 (4.28)
QZPML pPrATIA2 0 t T P100 Y2 Lz(QZPML), .

where ¥ = (¥q, \IIQ)T. For the fifth term on the left hand side of (4.25), it also holds that
Ap=0in R{\D and Ay — 69l =0in QCPML. Furthermore, we have that
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A1Ay = diag(0,03), 60— Ay = diag(op,0) in  QPME,

A1Ay = diag(od,0), o — Ay = diag(0,09) in QHML.

Thus it can be easily verified that
/ ApIAI A (G0l — AP - 3 Wdr = 0. (4.29)
Q)

Substituting (4.26)—(4.29) into (4.25) and integrating from O to 7, we obtain

2.2
c“py

2 2 2
> (IIBt‘I’(-, Dll72(q, T l100%1(, t)”Lz(Qll)ML) + lloo¥2 (-, t)IILz(szML)>

t
+// o1V (3¢ + 5o¢) - 0, Wdrdr
0 JQo

2.2

| 2
S TIIBzW(-,O)Ile(Qz)z

t
+ f / o3 f2 + 50 f2) - 9 Wdrdr. (4.30)
0 JQo

Adding (4.23) and (4.30) yields

1 . 2 ! 2 2
0.0+ 000 gy~ [ [ oo - Fudyar

'01

T

(”al‘l”( t)”LZ(Q )2+||00\p1( t)”L2(QPML)
+llogWa (., f)||L2(QPML)>
2p?
é 160, )72y + — 1A Ol T2 g, 0

+ / f 0 f1 (9 + God)drdr
0 JQo

t
+// o} @ fr+60f2) - dWdrdr. 4.31)
0 JQ
Let

1
G1(0) = S1%dC. 1) + 300 Dl 72q)

252
+ ?1 <||3t‘l’( t)”Lz(Q )2 + lloo W1 (-, t)”Lz (QPML)

+ lloo¥2 (-, 1) ”LQ(QPML)>
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It follows from (4.31) that
t
G1() < G1(0) + / / b fi (0 + God)drdr
0 JQ0»
t
+ / / o2 f2+50f2) - 9 Wdrde
0 JQ

t
+/ / 62p18,¢(nD . 8,2u)dydr. 4.32)
0 JoD
Next, taking the derivative of (4.16c), (4.16e), and (4.16g) with respect to ¢, we obtain

HA@u) + (A + wVV - Q) — p202(du) =0 in D x (0, 7),
dul,_g=0. Ful_y=0 in D, (4.33)
—(@trp)np = pwonp () + (A +w)(V-rw)np  onadD x (0, 7).
Define
G2 = 62% (””21/23!2"”12@)2 10+ w2V - @)l )
H 2V @) 125 2 - (434)

Note that G (0) = 0 due to the initial conditions in (4.33). It follows from (4.33) and (4.34)
that

t t
Gz(t):/ Gé(t)dr:/ / 10202 (du) - 07 udxdr
0 0 JD
! 2 2
[ ] o (00 - @R - @
0 JD
+u(V(©Pu)) (V(a,u))) drdr
t
= / / Eo1 (~u(V @) : (VW)
0 JD
—0+ (V- QP (Y - Gy ) drde
t
+/ / 2 p1 (1udn,, Brw) + (h + )(V - dyu)np) - 8 udydr
0 JoaD
! 2 2
[ o (0w - @R - @
0 JD
+u (V07w : (V(@w))) drd

t
=—/f ¢ p1(drpnp) - B udydr. (4.35)
0 JoD

Combining (4.32) and (4.35) gives

2

1079:C.1) + 606 (. D172, + 1 D720 + D l00W; ¢ D2 gown
. J
J

< G + Ga(0)
S 13 pC 072, + 13X 0725 0
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t
+ [ / 8[ f] (8,(]5 + 50¢)drdr
0 JQ

t
+/f o3 @ fy+60f2) - dWdrdr.
0 JQ»

It follows from the compatibility conditions in (4.16a), (4.16b) and the initial conditions
(4.164d) that

P (. 0) = f1(~ 00, 0¥|,_y= f2(.0). (4.36)
Using the Young inequality and (4.36), we have

max. 174 (. 1) + G0 (. Dl L2¢ay) + 19 ¥ Dl 12(2)2

2

+ 2 lo0%; ¢ Dl 2 gp
J

§ ||f1 (s O)”LZ(QZ) + ||f2('a O)HLZ(QZ)Z
T
+ /0 (000 f1 12y + 100 £2 + B0 2l 2202 ) -
For the elastic field u, we can also derive from (4.32) and (4.35) that
10781172y + 1V - @172 ) + IV @) 72y 2
2 ~ 2 2
+ ”at ¢(, t) + 00¢('a Z)”LZ(QQ) + ”E)f‘p(’ t)”Lz(Qz)z
2 2
S GO +Go®) SN0 2 gy + 10026, 01132 2

t
+// 0 f1(0¢p + op¢p)drdr
0 JQ»

t
+ / f 2020 f2 + G0f2) - 9 Wdrdr.
0 JQ
Using the Young inequality again, we can obtain
212 2 2
s (107l oy + 1V - Gl 2, + V@I 22
SIAC O gy + 1F26. 01172,
T 2 ~ 2
- /0 (100 £1122 )+ 100 £2 + 02122 2 ) -
Using Young’s inequality as in (3.27) and (3.28), we can obtain the estiamte
terr[l&% (||8,u||L2(D)2 IV ulp2py + ||Vu||Lz(D)2x2)

S NG, O)”LZ(QZ) +1f2C, O)”LZ(QZ)

T
—|—/0 (||3;f1 ||L2(g22) + ||atf2 + 60f2”L2(Qz)> dr.
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The following lemma is directly obtained from the Lemma 3.2 of [8]:
Lemma 4.6. It holds that

~ 2 < 3+ G
(e 601} 2(q,) = nax 19:¢ + 00l 12 (q,)-

Using Lemma 4.6, we have following stability of the PML problem:

Theorem 4.7. Let (¢, W, o*, P*, u) be the solution of the PML system (4.16). Given f| €
HY(0,T; L3(2)), fo € HY(0, T; L2(Q)?), for any T > 0, it holds that

max <||3t¢||L2(QZ) F100Wl 22 + 100 120y + 10097 1202
+ ||atu||L2(D)2 +IV- u||L2(D) + ||Vu||L2(D)2x2>
5||f1('7 O)”Lz(Qz) + ||f2(', 0)||L2(Q2)2
T ~
+ /(‘) <||3tf] ”LZ(QZ) +110: fo + 00f2||L2(Qz)2) dr. (4.37)

Proof. It follows from Lemma 4.6 that

s 0620y S max, 1060 + 509l 2y + max. 1001120y

IIN

2 max a ¢ + & (ﬁ . 4.38
1€[0.7] ” t 0 ”12(522) ( )
By the second equation in (4163), we have

||Bt¢*||L2(QZ) S 116odl < tg[lél)}] 10 + &0¢”L2(Qz)' (4.39)

Since in R{\D, 8;¢* = W, we only have to consider the estimate of 3;¥* in QPML 1
QIIDML, by the second equation in (4.16b), we have

Wyl =V, s =V —opys.

The estimate of ||8,1//f‘ Il L2(QPML) can be derived directly from (4.17). The estimate

|19¢ 1//5" I L2 (@M can be derived from (4.17) and the similar proof in Lemma 4.6. Similarly,

QSML

we can get the estimate [|0; ¢ * ||L2(QPML)2. In , we have
2

Wy =V —oo¥), 0y =W —op¥s.

The estimates of [|3; %} ll L2(qpmiy and |9 1 Il L2 (ML) can be derived from (4.17) and the
similar proof in Lemma 4.6. ¢ ¢

Combining (4.17), (4.38), (4.39), and the arguments for 9,9 *, we deduce the estimate
4.37). O

The proof of the following trace lemma can be found in [38, Lemma 2.5.3 and Lemma
2.54]:

Lemma 4.8. Let £ € HZ(O, T, H1/2(8R2)). Then there exists a function n € H2(0, T,
Hl(Qz)) suchthatn =0o0ndD x (0,T),n =& ondRy x (0, T), and
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max [1077ll 10y S max 7€l g1/2(5Ry)0
1€[0,T] 2 1€[0,T] 2

max |0, < max |0 o
[ 131l g1y S (e 1961 1729 ry)

max 1 < max 12 .
1e[0-T] ||77||H () ~ 1el0.T] ||$||H /2(dR3)

Now we turn to the proof Theorem 4.4.

Proof. Let 1 be a lifting function in €2 x (0, T) such that n = 0 on D and = p™™ on
d Ry . In fact, we can get a mollified lifting function n in Q3 x (0, T') such thatn = 0, Vi = 0
on dD and n = p™° on 9 Ry. We can choose n(-, 0) = 0. Let

t
d=p—n W=V, $"=p* —/ opoandr, ¥* =v* inQ x (0, 7). (4.40)
0

It can be verified that <¢3 V,d*, v*, u) satisfies (4.16) with homogeneous initial conditions

in R2, homogeneous Dirichlet boundary conditions on d Ry and the continuity conditions
on 0D, and

t
fi=- <3m + (o1 +02)7 +/0 Glazndr> . fa= —pflvn inQp x (0, 7).
(4.41)

Clearly,ifn € H2(0, T; L2(20))NH (0, T; H1(Q,)), thenwe get f; € H1(0, T; L2(Qy))
and f5 € H'(0, T; L?(Q)%). Furthermore, we have f5|,, =0, f1(-,0) = 0, f(-,0) =
0in 5.

Using Theorem 4.7, we have

19:@1l 122y + 19: VIl 200,02 + 18:8% 11 122y + 100% 111222
+ ||3t“||L2(D)2 + V- ulle(D) + ||V"||L2(D)2x2

T ‘
5/0 (H—az(azn-i-(al +Uz)n+f0 o1027dT)

L2(Q2)
HIV 3 + G0Vl 20,2 ) dt
T 2
S /0 (||8t ’7”L2(522) + ||3t77||L2(g22) + ||7I||L2(Qz)
+||V77||L2(§22)2 + ||V8t'7”L2(Qz)2) dr.

It follows from (4.40)—(4.41) that we obtain the following estimate for the solution
(p, p*, V,v*, u) of (4.15):

ter?(?XT](llazﬁlle(Qz) + 18Vl L2z + 18 P¥ Ly (20) + ||3tv*||L2(92)2

+ ||atu||L2(D)2 + V- u”LZ(D) + ||Vu||L2(D)2x2>

2
<A+ max (1970010 + 190012y + Il @)
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Using Lemma 4.8 gives
terr[lg%(llazﬁlle(szz) F 13 Vil L2y02 + 18 D¥ Ly (920) + 13:0™ 1 12, )2
+ ||8tu||L2(D)2 + ||V . uIILz(D) + ||Vu||L2(D)2x2)

SO+ max (1970 N agomy + 190 Vi gaomy + 17" 12y ) -

which completes the proof. O

5. Conclusion

We have studied the time-domain acoustic—elastic interaction problem in two dimen-
sions where the acoustic wave equation and the elastic wave equation are coupled on the
surface of the elastic obstacle. Using the exact TBC, we reduce the scattering problem from
an open domain into an initial-boundary value problem in a bounded domain. We study
the well-posedness and the stability for the variational problems in both the s-domain and
the time-domain. The main ingredients of the proofs are the Laplace transform, the Lax—
Milgram lemma, and the Parseval identity. We also obtain a priori estimates with explicit
time dependence for the acoustic pressure and elastic displacement by taking special test
functions to the time-domain variational problem. In addition, we introduce the PML formu-
lation for the scattering problem. Computationally, the PML problem is more attractive than
the original scattering problem because the nonlocal TBC is replaced by the local Dirichlet
boundary condition. We derive a first order symmetric hyperbolic system for the truncated
PML problem and show that the PML system is strongly well-posed. The stability of the
truncted PML problem is also achieved by considering special test functions for the coupled
acoustic and elastic wave equations.

The paper concerns only the two-dimensional problem. We believe that the method can
be extended to solve the three-dimensional problem where the spherical harmonics need to
be considered when deriving the TBC. The domain-time PML results are expected to be
useful in the computational air/fluid—solid interaction problems. In particular, the first order
symmetric hyperbolic system is readily to be solved numerically. It is also interesting to
investigate the error of the solutions between the original PML problem and the truncated
PML problem. We will report the work on the three-dimensional problem and numerical
analysis and computation elsewhere in the future.
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