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Abstract

This paper gives a brief survey of recent developments on mathematical modeling and

analysis of the open cavity scattering problems, which arise in diverse scientific areas and

have significant industrial and military applications. The scattering problems are studied

for the two-dimensional Helmholtz equation corresponding to the transverse magnetic or

electric polarization, and the three-dimensional time-harmonic and time-domain Maxwell

equations. Since these problems are imposed in open domains, a key step of the analysis

is to develop transparent boundary conditions and reformulate them equivalently into

boundary value problems in bounded domains. The well-posedness of weak solutions are

shown for the associated variational problems by using either the Lax–Milgram theorem

or the Fredholm alternative.
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1. Introduction

The phenomenon of electromagnetic scattering by open cavities has received much attention

by many researchers in the engineering and applied mathematics communities. An open cavity

is a bounded domain embedded in the ground with its opening aligned with the ground surface.

Given the cavity, the direct scattering problem is to determine how the wave is scattered by the

cavity. The inverse problem is to answer what information can be extracted about the cavity

from the measured wave field. The open cavity scattering problems arise in diverse scientific

areas and have significant industrial and military applications. For instance, the radar cross

section (RCS) measures the detectability of a target by a radar system. Deliberate control in

the form of enhancement or reduction of the RCS of a target is highly important. The cavity

RCS caused by jet engine inlet ducts or cavity-backed antennas can dominate the total RCS. A

thorough understanding of the electromagnetic scattering characteristic of a target, particularly

a cavity, is necessary for successful implementation of any desired control of its RCS.

The time-harmonic problems were introduced and studied firstly by engineers [22–25, 32,

34, 43]. Mathematical analysis of the problems were done in three fundamental papers [2–4],

where transparent boundary conditions, based on the Fourier transform, were proposed on the

opening. As the applied mathematics community has begun to work on these problems, there

has been a rapid development of the theory, analysis, and computational techniques in this

area. The mode matching method was developed to find analytic solutions for rectangular

cavities [7, 14]. The analytic solutions provide a good understanding of the highly oscillatory
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nature of the large cavity problem, which is a perfect example for the long-standing high

frequency scattering problems. Tremendous effort was made to develop various fast and accurate

numerical methods to solve the large cavity problem [1, 11, 17, 18, 26, 27, 40, 41, 44, 45]. The

challenging mathematical issue is to establish the stability estimates with explicit dependence

on the high wavenumber [12,13,27], which help us gain a deeper understanding on high frequency

problems. To include the analysis for more complex geometries, the overfilled cavity problems

were investigated in [16, 31, 42], where the inhomogeneous medium filling the cavity interior

was allowed to protrude into the space above the ground surface; the multiple cavity scattering

problem was studied in [30], where the cavity was consisted of finitely many disjoint components.

The inverse cavity scattering problem is clearly challenging due to the nonlinearity and lack

of stability, i.e., small variations in the data may give rise to large errors in the reconstructions.

In the inverse problem community, it seems that more attention is paid on inverse medium,

obstacle, or source scattering problems than on the inverse cavity scattering problem. Hence

it is less studied. The results on uniqueness and local stability may be found in [6, 19, 28, 33].

Related optimal design problems can be found in [8–10], which was to design the shape of the

cavity so as to minimize the RCS. We also refer to [5, 15] for the study on the electromagnetic

field enhancement by interacting subwavelength cavities.

The time-domain electromagnetic scattering problems have attracted much attention due

to their capability of capturing wide-band signals and modeling more general material and

nonlinearity. Comparing with the time-harmonic problems, the time-domain problems are

also less studied due to the additional challenge of the temporal dependence. The transient

cavity scattering problems were examined in [20, 21, 35–39], where the focus was on temporal

discretization and the analysis of the finite element method. A theoretical analysis can be found

in [29] for the transient electromagnetic scattering from a three-dimensional open cavity.

The goal of this paper is to give a brief survey of recent developments on mathematical

modeling and analysis of the open cavity scattering problems. Particular emphasis is on the

formulation of the mathematical models, which include the two-dimensional Helmholtz equation

corresponding to the transverse magnetic and electric polarizations and the three-dimensional

time-harmonic and time-domain Maxwell equations. Since the problems are imposed in open

domains, a key step of the analysis is to develop transparent boundary conditions and reformu-

late them equivalently into boundary value problems in bounded domains. The well-posedness

of the weak solutions are presented for the associated variational problems by using either the

Lax–Milgram theorem or the Fredholm alternative.

The paper is outlined as follows. In Section 2, the two-dimensional Helmholtz equations

are introduced for the two fundamental polarizations. Section 3 and 4 are concerned with the

three-dimensional time-harmonic and time-domain Maxwell equations, respectively. Topics are

organized to present model problems, transparent boundary conditions, and well-posedness of

weak solutions corresponding to each of these three sections. The paper is concluded with some

general remarks and directions for future research in Section 5.

2. The Helmholtz Equation

We begin with a simpler model for the open cavity scattering problem and consider the two-

dimensional Helmholtz equation by assuming that the structure is invariant along the z-axis.
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2.1. Model problems

Let us first specify the problem geometry shown in Figure 2.1. Let D ⊂ R
2 be the cross

section of a z-invariant cavity with a Lipschitz continuous boundary ∂D = S ∪ Γ. Here the

cavity wall S is assumed to be a perfect electric conductor and the cavity opening Γ is aligned

with the perfectly electrically conducting infinite ground surface Γg. The cavity is filled with

some inhomogeneous medium, which may be characterized by the dielectric permittivty ε and

the magnetic permeability µ. Let B+
R and Γ+

R be the half-disc and semi-circle above the ground

surface with radius R. The exterior region Ωe = R
2
+ \ B̄+

R is filled with some homogeneous

material with a constant permittivity ε0 and a constant permeability µ0. Denote by Ω = B+
R∪D

the bounded domain in which our reduced boundary value problem will be formulated.

S

Γ
+

R

ν

ν

ν

eρ

Γg Γg

D

B+

R

Ω
e

Γ

Fig. 2.1. A schematic diagram of the open cavity scattering problem geometry.

Since the structure is invariant in the z-axis, the problem can be decomposed into two

fundamental polarizations: transverse magnetic (TM) and transverse electric (TE). The three-

dimensional Maxwell equations can be reduced to the two-dimensional Helmholtz equation. In

the TM polarization, the magnetic field is transverse to the z-axis, the nonzero third component

of the total electric field u satisfies
{

∆u + κ2u = 0 in D ∪ R
2
+,

u = 0 on S ∪ Γg,
(2.1)

where κ = ω(εµ)1/2 is the wavenumber and ω is the angular frequency. In the TE polarization,

the electric field is transverse to the z-axis, the nonzero third component of the total magnetic

field u satisfies
{

∇ · (κ−2∇u) + u = 0 in D ∪R
2
+,

∂νu = 0 on S ∪ Γg,
(2.2)

where ν is the unit outward normal vector on S ∪ Γg.

Let an incoming plane wave uinc = ei(αx−βy) be incident on the cavity from above, where

α = κ0 sin θ, β = κ0 cos θ, θ ∈ (−π/2, π/2) is the angle of incidence with respect to the positive

y-axis, and κ0 = ω(ε0µ0)
1/2 is the free space wavenumber. Due to the perfectly electrically

conducting ground surface, the reflected field in the TM polarization is uref = −ei(αx+βy), while

the reflected field in the TE polarization is uref = ei(αx+βy). The total field can be split into

the incident field, the reflected field, and the scattered field:

u = uinc + uref + us,

where the scattered field us is required to satisfies the Sommerfeld radiation condition:

∂ρu
s − iκ0u

s = o(ρ−1/2) as ρ = |r| → ∞. (2.3)
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2.2. TM polarization

It can be verified that the scattered field us satisfies the Helmholtz equation

∆us + κ2
0u

s = 0 in Ωe,

which can be written in the polar coordinates

∂2us

∂ρ2
+

1

ρ

∂us

∂ρ
+

1

ρ2
∂2us

∂θ2
+ κ2

0u
s = 0, ρ > R. (2.4)

It follows from the radiation condition (2.3) that the solution of (2.4) has a Fourier series

expansion

us(ρ, θ) =

∞
∑

n=0

H
(1)
n (κ0ρ)

H
(1)
n (κ0R)

(an sin(nθ) + bn cos(nθ)), (2.5)

where H
(1)
n is the Hankel function of the first kind with order n. Using the fact that u = 0 and

uinc + uref = 0 on Γg, we have us(ρ, 0) = us(ρ, π) = 0, which gives bn = 0 in (2.5) and

us(ρ, θ) =

∞
∑

n=1

H
(1)
n (κ0ρ)

H
(1)
n (κ0R)

an sin(nθ). (2.6)

Evaluating (2.6) at ρ = R and using the orthogonality of the sine functions, we obtain

an =
2

π

∫ π

0

us(R, θ) sin(nθ)dθ.

Taking the partial derivative of (2.6) with respect to ρ and evaluating it at ρ = R yields

∂ρu
s(R, θ) = κ0

∞
∑

n=1

H
(1)′

n (κ0R)

H
(1)
n (κ0R)

an sin(nθ).

Given any u ∈ L2
TM(Γ+

R) = {u ∈ L2(Γ+
R) : u(R, 0) = u(R, π) = 0}, it has the Fourier series

expansion

u(R, θ) =

∞
∑

n=1

an sin(nθ), an =
2

π

∫ π

0

u(R, θ) sin(nθ)dθ.

We introduce a boundary operator

(BTMu)(R, θ) = κ0

∞
∑

n=1

H
(1)′

n (κ0R)

H
(1)
n (κ0R)

an sin(nθ). (2.7)

Define the trace functional space Hs
TM(Γ+

R) = {u ∈ L2
TM(Γ+

R) : ‖u‖Hs
TM

(Γ+

R) < ∞}, where the

Hs
TM(Γ+

R) norm is characterized by

‖u‖2
Hs

TM
(Γ+

R)
=

∞
∑

n=1

(1 + n2)s|an|2.

It is clear to note that the dual space of Hs
TM(Γ+

R) is H−s
TM(Γ+

R) with respect to the scalar

product in L2
TM(Γ+

R) defined by

〈u, v〉Γ+

R
=

∫

Γ+

R

uv̄ds.
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It is shown (cf. [42, Lemma 3.1]) that the operator BTM : H
1/2
TM(Γ+

R) → H
−1/2
TM (Γ+

R) is continuous.

Using the boundary operator (2.7), we obtain the transparent boundary condition for the

TM polarization on Γ+
R:

∂ρu
s = BTMus,

which can be equivalently written for the total field u:

∂ρu = BTMu+ f on Γ+
R, (2.8)

where f = ∂ρ(u
inc + uref)− BTM(uinc + uref).

In the TM polarization, the open cavity scattering problem can be reduced to the following

boundary value problem:











∆u+ κ2u = 0 in Ω,

u = 0 on S,

∂ρu = BTMu+ f on Γ+
R,

(2.9)

which has the variational formulation: Find u ∈ H1
S(Ω) = {u ∈ H1(Ω) : u = 0 on S} such that

aTM(u, v) = 〈f, v〉Γ+

R
for any v ∈ H1

S(Ω), (2.10)

where the sesquilinear form

aTM(u, v) =

∫

Ω

(∇u · ∇v̄ − κ2uv̄)dxdy − 〈BTMu, v〉Γ+

R
.

Since the sesquilinear form aTM is not coercive in HS(Ω), the Lax–Milgram theorem cannot

be applied to show the well-posedness of the weak solution for the variational problem (2.10).

The following result follows from the Fredholm alternative (cf. [42, Theorem 3.2]).

Theorem 2.1. The variational problem (2.10) has a unique weak solution in H1
S(Ω).

2.3. TE polarization

Using the perfectly electrically conducting boundary condition for the TE polarization, we

have ∂yu = 0 and ∂y(u
inc + uref) = 0 on Γg, which gives ∂θu

s(ρ, 0) = ∂θu
s(ρ, π) = 0. It follows

from (2.5) that

us(ρ, θ) =

∞
∑

n=0

H
(1)
n (κ0ρ)

H
(1)
n (κ0R)

bn cos(nθ), ρ ≥ R. (2.11)

Evaluating (2.11) at ρ = R and using the orthogonality of the cosine functions, we obtain

b0 =
1

π

∫ π

0

us(R, θ)dθ, bn =
2

π

∫ π

0

us(R, θ) cos(nθ)dθ, n ≥ 1.

A simple calculation from (2.11) yields

∂ρu
s(R, θ) = κ0

∞
∑

n=0

H
(1)′

n (κ0R)

H
(1)
n (κ0R)

bn cos(nθ).
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Given u ∈ L2
TE(Γ

+
R) = {u ∈ L2(Γ+

R) : ∂θu(R, 0) = ∂θu(R, π) = 0}, it has the Fourier series

expansion

u(R, θ) =

∞
∑

n=0

bn cos(nθ), b0 =

∫ π

0

u(R, θ)dθ, bn =
2

π

∫ π

0

u(R, θ) cos(nθ)dθ, n ≥ 1.

We introduce a boundary operator

(BTEu)(R, θ) = κ0

∞
∑

n=0

H
(1)′

n (κ0R)

H
(1)
n (κ0R)

bn cos(nθ). (2.12)

Define the trace functional space Hs
TE(Γ

+
R) = {w ∈ L2

TE(Γ
+
R) : ‖w‖Hs

TE
(Γ+

R) < ∞}, where the

Hs
TE(Γ

+
R) norm is characterized by

‖u‖2
Hs

TE
(Γ+

R)
=

∞
∑

n=0

(1 + n2)s|bn|2.

It can be shown (cf. [42, Lemma 3.3]) that the operator BTE : H
1/2
TE (Γ+

R) → H
−1/2
TE (Γ+

R) is

continuous. Using the boundary operator (2.12), we obtain the transparent boundary condition

for the TE polarization:

∂ρu = BTEu+ g on Γ+
R, (2.13)

where g = ∂ρ(u
inc + uref)− BTE(u

inc + uref).

In the TE polarization, the open cavity scattering problem can be reduced to the following

boundary value problem:











∇ · (κ−2∇u) + u = 0 in Ω,

∂νu = 0 on S,

∂ρu = BTEu+ g on Γ+
R,

(2.14)

which has the variational formulation: Find u ∈ H1(Ω) such that

aTE(u, v) = 〈g, v〉Γ+

R
for any v ∈ H1(Ω), (2.15)

where the sesquilinear form

aTE(u, v) =

∫

Ω

(κ−2∇u · ∇v̄ − uv̄)dxdy − 〈BTMu, v〉Γ+

R
.

Similarly, the well-posedness of the weak solution can be shown from the Fredholm alternative

(cf. [42, Theorem 3.4]).

Theorem 2.2. The variational problem (2.15) has a unique weak solution in H1(Ω).

3. Time-harmonic Maxwell’s Equations

In this section, we consider the electromagnetic open cavity scattering problem for the time-

harmonic Maxwell equations and present the well-posedness of the solution for its variational

formulation.
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3.1. A model problem

Let us still use Figure 2.1 to illustrate the problem geometry. Denote by D ⊂ R
3 the open

cavity with a Lipschitz continuous boundary consisting of the perfectly electrically conducting

cavity wall S and the opening Γ, which is aligned with the infinite perfectly electrically conductor

ground plane Γg. The medium inside the cavity is characterized by the dielectric permittivity

ε and the magnetic permeability µ. Let B+
R and Γ+

R be the half-ball and hemisphere above the

ground plane, where the radius R is large enough to completely cover the possibly overfilled

cavity. The exterior region Ωe = R
3
+ \ B̄+

R is filled with some homogeneous material with a

constant permittivty ε0 and a constant permeability µ0. From now on, we assume for simplicity

that ε0 = µ0 = 1. Denote Ω = B+
R ∪D with boundary ∂Ω = S ∪ Γ+

R.

Consider the time-harmonic Maxwell equations in R
3
+ ∪D:

∇×E = iωµH, ∇×H = −iωεE, (3.1)

where ω > 0 is the angular frequency, E and H are the electric field and the magnetic field,

respectively. Since the ground plane and the cavity wall are perfect electrical conductor, we

have

ν ×E = 0 on Γg ∪ S, (3.2)

where ν is the unit outward normal vector on Γg and S.

Let (Einc,H inc) be the electromagnetic plane waves that are incident upon the cavity from

the above, where

Einc = teiωq·x, H inc = seiωq·x, s =
q × t

ω
, t · q = 0.

Here t and s are the polarization vectors, the propagation direction vector q = (α1, α2,−β) =

(sin θ1 cos θ2, sin θ1 sin θ2,− cos θ1), and θ1, θ2 are incident angles satisfying 0 ≤ θ1 < π/2, 0 ≤
θ2 < 2π. Evidently, the incident fields (Einc,H inc) satisfy the time-harmonic Maxwell equation

(3.1) in Ωe. Due to the perfectly electrically conducting ground plane, the reflected fields

(Eref ,Href) can be explicitly written as

Eref = −teiωq∗·x, Href = −t× q∗eiωq∗·r,

where q∗ = (α1, α2, β). It is easy to verify that

ν × (Einc +Eref) = 0 on Γg.

The total electric and magnetic fields can be decomposed into the summation of the incident

fields, the reflected fields, and the scattered fields:

E = Einc +Eref +Es, H = H inc +Href +Hs.

The scattered fields (Es,Hs) are required to satisfy the Silver–Müller radiation condition:

Es −Hs × r̂ = o(|r|−1) as |r| → ∞, (3.3)

where r̂ = r/|r|.
To make the survey self-contained, we collect some properties of the spherical harmonics

and define some functional spaces in the following two sections. They will be used in sub-

sequent analysis for both the time-harmonic and time-domain Maxwell equations, especially

when introducing transparent boundary conditions.
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3.2. Spherical harmonics on hemisphere

The spherical coordinates (ρ, θ, ϕ) are related to the Cartesian coordinates r = (x, y, z) by

x = ρ sin θ cosϕ, y = ρ sin θ sinϕ, z = ρ cos θ, with the local orthonormal basis {eρ, eθ, eϕ}:

eρ = (sin θ cosϕ, sin θ sinϕ, cos θ),

eθ = (cos θ cosϕ, cos θ sinϕ, − sin θ),

eϕ = (− sinϕ, cosϕ, 0),

where θ and ϕ are the Euler angles.

Let {Y m
n (θ, ϕ), |m| ≤ n, n = 0, 1, 2, . . .} be an orthonormal sequence of spherical harmonics

of order n on the unit sphere. Explicitly, the spherical harmonics of order n is

Y m
n (θ, ϕ) =

(

2n+ 1

4π

(n− |m|)!
(n+ |m|)!

)1/2

P |m|
n (cos θ)eimϕ,

where the associated Legendre functions are

Pm
n (t) := (1− t2)m/2 d

mPn(t)

dtm
, m = 0, 1, . . . , n.

Here Pn is the Legendre polynomial of degree n. Define a sequence of rescaled spherical har-

monics of order n:

Xm
n (θ, ϕ) =

√
2

R
Y m
n (θ, ϕ).

It is shown (cf. [31, Lemma 3.1]) that {Xm
n : |m| ≤ n, n ∈ N, m + n = odd} forms a com-

plete orthonormal basis in L2(Γ+
R). For convenience, we take the following notation for double

summations:

∑

|m|≤n

um
n :=

∞
∑

n=1

n
∑

m=−n

um
n ,

odd
∑

|m|≤n

um
n :=

∞
∑

n=1

n
∑

m=−n
m+n=odd

um
n ,

even
∑

|m|≤n

um
n :=

∞
∑

n=1

n
∑

m=−n
m+n=even

um
n .

Define two sequences of tangential fields

Xm
n (θ, ϕ) =

1
√

n(n+ 1)
∇Γ+

R
Xm

n (θ, ϕ) and Y m
n (θ, ϕ) = eρ ×Xm

n (θ, ϕ),

where ∇Γ+

R
is the tangential gradient on Γ+

R. It is shown (cf. [31, Lemma 3.2]) that the vector

spherical harmonics {Xm
n : |m| ≤ n, n ∈ N, m+n = odd} and {Y m

n : |m| ≤ n, n ∈ N, m+n =

even} form a complete orthonormal basis in L2
t (Γ

+
R) = {u ∈ L2(Γ+

R)
3 : eρ · u = 0}.

3.3. Functional spaces

Given any u ∈ L2(Γ+
R), it has the expansion

u(θ, ϕ) =

odd
∑

|m|≤n

um
n Xm

n (θ, ϕ).
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Denote Hs(Γ+
R) = {u ∈ L2(Γ+

R) : ‖u‖Hs(Γ+

R) < ∞}, where the norm is characterized by

‖u‖2
Hs(Γ+

R)
=

odd
∑

|m|≤n

(1 + n(n+ 1))
s |um

n |2.

Introduce three tangential trace spaces:

Hs
t (Γ

+
R) =

{

u ∈ Hs(Γ+
R), eρ · u = 0, eθ × u(π/2, ϕ) = 0

}

,

H−1/2(curl, Γ+
R) =

{

u ∈ H
−1/2
t (Γ+

R), curlΓ+

R
u ∈ H−1/2(Γ+

R)
}

,

H−1/2(div, Γ+
R) =

{

u ∈ H
−1/2
t (Γ+

R), divΓ+

R
u ∈ H−1/2(Γ+

R)
}

,

where curlΓ+

R
and divΓ+

R
are the surface scalar curl and the surface divergence on Γ+

R.

For any tangential field u ∈ Hs
t (Γ

+
R), it can be represented in the series expansion

u =

odd
∑

|m|≤n

um
1n X

m
n (θ, ϕ) +

even
∑

|m|≤n

um
2n Y

m
n (θ, ϕ).

Using the series coefficients, the norm of the space Hs
t(Γ

+
R) can be characterized by

‖u‖2
Hs

t (Γ
+

R)
=

odd
∑

|m|≤n

(1 + n(n+ 1))
s |um

1n|2 +
even
∑

|m|≤n

(1 + n(n+ 1))
s |um

2n|2;

the norm of the space H−1/2(curl, Γ+
R) can be characterized by

‖u‖2
H−1/2(curl,Γ+

R)
=

odd
∑

|m|≤n

1
√

1 + n(n+ 1)
|um

1n|2 +
even
∑

|m|≤n

√

1 + n(n+ 1) |um
2n|2;

and the norm of the space H−1/2(div, Γ+
R) can be characterized by

‖u‖2
H−1/2(div,Γ+

R)
=

odd
∑

|m|≤n

√

1 + n(n+ 1) |um
1n|2 +

even
∑

|m|≤n

1
√

1 + n(n+ 1)
|um

2n|2.

Clearly, the dual space of H−1/2(curl, Γ+
R) is H−1/2(div, Γ+

R) under the scalar product in

L2
t (Γ

+
R), which is defined by

〈u, v〉Γ+

R
=

∫

Γ+

R

u · v̄ds.

Introduce two functional spaces

H(curl, Ω) =
{

u ∈ L2(Ω), ∇× u ∈ L2(Ω)
}

,

HS(curl, Ω) =
{

u ∈ H(curl, Ω), ν × u = 0 on S
}

,

which are Sobolev spaces with the norm:

‖u‖H(curl,Ω) =
(

‖u‖2L2(Ω) + ‖∇× u‖2L2(Ω)

)1/2

.
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3.4. Reduced problem

Given a tangential field u ∈ L2
t (Γ

+
R), it has the expansion

u =
odd
∑

|m|≤n

αm
n Xm

n +
even
∑

|m|≤n

βm
n Y m

n .

We introduce a boundary operator

BTHu =
odd
∑

|m|≤n

iωRαm
n

1 + rn(ωR)
Xm

n +
even
∑

|m|≤n

(1 + rn(ωR))βm
n

iωR
Y m

n , (3.4)

where

rn(t) =
t (h

(1)
n )′(t)

h
(1)
n (t)

. (3.5)

Here h
(1)
n is the special Hankel function of the first kind with order n. It is shown (cf. [31, Lemma

4.1]) that the operator BTH : H−1/2(curl, Γ+
R) → H−1/2(div, Γ+

R) is continuous.

Given a vector field u ∈ Γ+
R, denote by uΓ+

R
= −eρ× (eρ×u) the tangential component of u

on Γ+
R. With the use of the boundary operator, we obtain the following transparent boundary

condition

(∇×E)× eρ = iωBTHEΓ+

R
+ f , (3.6)

where

f = iω
(

(H inc +Href)× eρ − BTH(H
inc +Href)

)

.

Under the help of the transparent boundary condition (3.6), we may eliminate the magnetic

field from the Maxwell equations and derive a boundary value problem for the electric field:











∇× (µ−1∇×E)− ω2εE = 0 in Ω,

ν ×E = 0 on S,

(∇×E)× eρ − iωBTHEΓ+

R
= f on Γ+

R.

(3.7)

which is equivalent to find E ∈ HS(curl, Ω) such that

aTH(E,w) = 〈f ,w〉Γ+

R
for all w ∈ HS(curl, Ω), (3.8)

where the sesquilinear form

aTH(E,w) =

∫

Ω

µ−1(∇×E) · (∇× w̄)− ω2

∫

Ω

εE · w̄ − iω〈BTHEΓ+

R
, w〉Γ+

R
.

It is more sophisticated to prove the well-posedness of the variational problem (3.8) for

Maxwell’s equations than the variational problem (2.10) or (2.15) for the Helmholtz equation.

The proof of the following theorem (cf. [31, Theorem 5.2]) is based on a combination of several

techniques including a unique continuation for Maxwell’s equations, a Hodge decomposition of

HS(curl, Ω), and a compact embedding result.

Theorem 3.1. The variational problem (3.8) has a unique weak solution in HS(curl, Ω).
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4. Time-domain Maxwell’s Equations

In this section, we consider the open cavity scattering problem for the time-domain Maxwell

equations. An initial-boundary value problem is formulated by using a time-domain transparent

boundary condition.

4.1. A model problem

The problem geometry is the same as the one for the time-harmonic Maxwell equations.

Let D ⊂ R
3 be an open cavity which is enclosed by the cavity wall S and the opening Γ aligned

with the ground plane Γg.

Consider the system of time-domain Maxwell equations in R
3
+ ∪D for t > 0:

{

∇×E(r, t) + µ∂tH(r, t) = 0,

∇×H(r, t)− ε∂tE(r, t) = J(r, t),
(4.1)

where E is the electric field, H is the magnetic field, and J is the electric current density

which is assumed to be compactly supported in D. The system is constrained by the initial

conditions:

E |t=0 = E0, H |t=0 = H0 in R
3
+ ∪D, (4.2)

where E0 and H0 are also assumed to be compactly supported in D. Assuming that the cavity

wall and the ground plane are perfectly electrical conducting, we have

ν ×E = 0 on Γg ∪ S, t > 0, (4.3)

where ν is the unit outward normal vector on Γg ∪S. In addition, we impose the Silver–Müller

radiation condition:

r̂ × (∂tE × r̂) + r̂ × ∂tH = o(|r|−1), as |r| → ∞, t > 0, (4.4)

where r̂ = r/|r|.
For any s = s1 + is2 with s1, s2 ∈ R, s1 > 0, define by ŭ(s) the Laplace transform of the

vector field u, i.e.,

ŭ = L (u)(s) =

∫ ∞

0

e−stu(t)dt.

The Laplace transform is our key tool to analyze the time-domain Maxwell equations.

4.2. Reduced problem

Since J is supported in D, the Maxwell equations (4.1) reduce to

∇×E + ∂tH = 0, ∇×H − ∂tE = 0 in Ωe, t > 0. (4.5)

Let Ĕ(r, s) = L (E) and H̆(r, s) = L (H) be the Laplace transforms of E(r, t) and H(r, t)

with respect to t, respectively. Recall that

L (∂tE) = sĔ −E0, L (∂tH) = sH̆ −H0.

Taking the Laplace transform of (4.5), and noting that E0,H0 are supported in D, we obtain

the time-harmonic Maxwell equations with complex parameters:

∇× Ĕ + sH̆ = 0, ∇× H̆ − sĔ = 0 in Ωe, s1 > 0. (4.6)
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Given a tangential field u ∈ L2
t (Γ

+
R), it has the expansion

u =

odd
∑

|m|≤n

αm
n Xm

n +

even
∑

|m|≤n

βm
n Y m

n .

We define a boundary operator

BTDu = −
odd
∑

|m|≤n

sR

1 + rn(isR)
αm
n Xm

n −
even
∑

|m|≤n

(1 + rn(isR))

sR
βm
n Y m

n , (4.7)

where rn(t) is defined in (3.5). It can be shown (cf. [29, Lemma 2.1]) that the operator BTD :

H−1/2(curl, Γ+
R) → H−1/2(div, Γ+

R) is continuous.

With the aid of the frequency domain boundary operator, we obtain the following transpar-

ent boundary condition imposed upon the hemisphere Γ+
R in the s-domain:

BTDĔΓ+

R
= H̆ × eρ, (4.8)

which maps the tangential component of the electric field to the tangential trace of the magnetic

field. Taking the inverse Laplace transform of (4.8) yields the transparent boundary condition

in the time-domain:

TTDEΓ+

R
= H × eρ, where TTD := L

−1 ◦ BTD ◦ L . (4.9)

Equivalently, we may eliminate the magnetic field and obtain an alternative transparent bound-

ary condition in the s-domain:

s−1(∇× Ĕ)× eρ + BTDĔΓ+

R
= 0 on Γ+

R. (4.10)

Correspondingly, by taking the inverse Laplace transform of (4.10), we may derive an alternative

transparent boundary condition in the time domain:

(∇×E)× eρ + CTDEΓ+

R
= 0 on Γ+

R, where CTD = L
−1 ◦ sBTD ◦ L . (4.11)

Using the transparent boundary condition (4.11), we may consider the following equivalent

initial-boundary value problem:























∇×E + µ∂tH = 0, ∇×H − ε∂tE = J in Ω, t > 0,

E |t=0 = E0, H |t=0 = H0 in Ω,

ν ×E = 0 on S, t > 0,

TTDEΓ+

R
= H × eρ on Γ+

R, t > 0.

(4.12)

To show the well-posedness of the reduced problem (4.12), we make some assumptions for the

initial and boundary data:

E0,H0 ∈ H(curl, Ω), J ∈ H1(0, T ;L2(Ω)), J |t=0 = 0.

The following result (cf. [29, Theorem 4.2]) shows the well-posedness of stability of the time-

domain Maxwell equations. The proof is based on the Lax-Milgram theorem and an abstract

inversion theorem of the Laplace transform.
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Theorem 4.1. The problem (4.12) has a unique solution (E,H) such that

E ∈ L2(0, T ;HS(curl, Ω)) ∩H1(0, T ;L2(Ω)),

H ∈ L2(0, T ;H(curl, Ω)) ∩H1(0, T ;L2(Ω)).

Moreover, they satisfy

max
t∈[0,T ]

(

‖∂tE‖L2(Ω) + ‖∇×E‖L2(Ω) + ‖∂tH‖L2(Ω) + ‖∇×H‖L2(Ω)

)

.‖E0‖H(curl,Ω) + ‖H0‖H(curl,Ω) + ‖J‖H1(0,T ;L2(Ω)).

Finally we present an a priori stability estimate for the electric field with a minimum regu-

larity requirement for the data and explicit dependence on the time variable. Eliminating the

magnetic field in (4.1) and using the transparent boundary condition (4.11), we consider the

initial-boundary value problem in a bounded domain:























ε∂2
tE = −∇× (µ−1∇×E)− F in Ω, t > 0,

E|t=0 = E0, ∂tE|t=0 = E1 in Ω,

ν ×E = 0 on S, t > 0,

(∇×E)× eρ + CTDEΓ+

R
= 0 on Γ+

R, t > 0,

(4.13)

where

F = ∂tJ , E1 = ε−1(∇×H0 − J0).

The variational problem is to find E ∈ HS(curl,Ω) for all t > 0 such that

∫

Ω

ε∂2
tE · w̄ dr =−

∫

Ω

µ−1(∇×E) · (∇× w̄) dr

− 〈CTDEΓ+

R
,wΓ+

R
〉Γ+

R
−
∫

Ω

F · w̄ dr for all w ∈ HS(curl,Ω). (4.14)

By taking a special test function, we can show the following stability estimate (cf. [29,

Theorem 4.4]).

Theorem 4.2. Let E ∈ HS(curl, Ω) be the solution of (4.14) for any t > 0. Given E0,E1 ∈
L2(Ω) and F ∈ L1(0, T ;L2(Ω)) for any T > 0, there holds

‖E‖L∞(0,T ;L2(Ω)) . ‖E0‖L2(Ω) + T ‖E1‖L2(Ω) + T ‖F‖L1(0,T ;L2(Ω)),

‖E‖L2(0,T ;L2(Ω)) . T 1/2‖E0‖L2(Ω) + T 3/2‖E1‖L2(Ω) + T 3/2‖F ‖L1(0,T ;L2(Ω)).

5. Discussions

A brief survey is given on the recent developments of mathematical modeling and analysis for

the scattering by open cavities, which offer rich and challenging mathematical problems. The

governing models are introduced for the two-dimensional Helmholtz equation and the three-

dimensional Maxwell equations. A key step is to develop transparent boundary conditions

which help to reduce the problems from open domains into bounded domains.

We point out some future directions along the line of this research. We assume that the

infinite ground plane is perfectly electrically conducting throughout the paper. Results are
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very rare for the impedance boundary condition of the infinite ground plane. It is well studied

on how to apply the perfectly matched layer (PML) techniques to truncated the unbounded

domain for the time-harmonic problems [31, 46, 47]. It is challenging to consider the PML for

the time-domain problems. Computationally, the variational approach leads naturally to a class

of finite element methods. As a time-dependent problem, a fast and accurate marching scheme

shall be developed to deal with the temporal convolution in the transparent boundary condition

for the time-domain Maxwell equations.
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