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Abstract. A rigorous mathematical model and an efficient computational
method are proposed to solving the inverse elastic surface scattering problem

which arises from the near-field imaging of periodic structures. We demonstrate

how an enhanced resolution can be achieved by using more easily measurable
far-field data. The surface is assumed to be a small and smooth perturbation

of an elastically rigid plane. By placing a rectangular slab of a homogeneous
and isotropic elastic medium with larger mass density above the surface, more

propagating wave modes can be utilized from the far-field data which con-

tributes to the reconstruction resolution. Requiring only a single illumination,
the method begins with the far-to-near (FtN) field data conversion and utilizes

the transformed field expansion to derive an analytic solution for the direct

problem, which leads to an explicit inversion formula for the inverse problem.
Moreover, a nonlinear correction scheme is developed to improve the accuracy

of the reconstruction. Results show that the proposed method is capable of

stably reconstructing surfaces with resolution controlled by the slab’s density.

1. Introduction. Scattering problems have been studied extensively in the past
decades [16]. They have many significant applications in many science and engineer-
ing areas such as radar and sonar, medical imaging, and remote sensing. Especially,
the elastic wave scattering problems have practical applications in geophysics, seis-
mology, and nondestructive testing [1, 2, 3, 12, 6]. There are two kinds of problems:
the direct scattering problems are to determine the wave field from the differen-
tial equations governing the wave motion; the inverse scattering problems are to
determine the unknown medium, such as the geometry or material, from the mea-
surement of the wave field. In this paper we focus on the inverse elastic scattering
problem in periodic structures. The direct elastic scattering problem has been stud-
ied by many researchers [5, 4, 18, 20]. The uniqueness result of the inverse problem
can be found in [14]. The numerical study can be found in [19] and [21] for the
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inverse problem by using an optimization method and the factorization method,
respectively.

It is known that there is a resolution limit to the sharpness of the details which
can be observed from conventional far-field optical microscopy, one half the wave-
length, referred to as the Rayleigh criterion or the diffraction limit [17]. The loss
of resolution is mainly due to the ignorance of the evanescent wave components.
Near-field optical imaging is an effective approach to obtain images with subwave-
length resolution. The inverse scattering problems via the near-field imaging for
acoustic and electromagnetic waves have been undergoing extensive studies for im-
penetrable infinite rough surfaces [8], penetrable infinite rough surfaces [10], two-
and three-dimensional diffraction gratings [7, 9, 15, 22], bounded obstacles [25],
and interior cavities [24]. The two- and three-dimensional inverse elastic surface
scattering problems have been investigated by using near-field data in [26, 27, 28].
However, there exits some difficulties of near-field optical imaging in practice, for
example, it requires a sophisticated control of the probe when scanning samples
to measure the near-field data. Recently, a rigorous mathematical model and an
efficient numerical method are proposed in [11] to over the aforementioned obstacle
in near-field imaging. The novel idea is to put a rectangular slab of larger index of
refraction above the surfaces and allow more propagating wave modes to be able to
propagate to the far-field regime. This work is devoted to the inverse elastic surface
scattering problem with far-field data. We point out that this is a nontrivial ex-
tension of the method from solving the inverse acoustic surface scattering problem
to solving the inverse elastic surface scattering problem, because the latter involves
the more complicated elastic wave equation due to the coexistence of compressional
and shear waves propagating at different speeds.

In this paper, we develop a rigorous mathematical model and an efficient nu-
merical method for the inverse elastic surface scattering with far-field data. The
scattering surface is assumed to be a small and smooth perturbation of an elasti-
cally rigid plane. A rectangular slab of homogeneous and isotropic elastic medium
is placed above the scattering surface. The slab has a larger mass density than that
of the free space, and has a wavelength comparable thickness. The measurement
can be took on the top face of the slab, which is in the far-field regime. The method
makes use of the Helmholtz decomposition to consider two coupled Helmholtz equa-
tions instead of the elastic wave equation. It consists of two steps. The first step is
to do the far-to-near (FtN) field data conversion, which requires to solve a Cauchy
problem of the Helmholtz equation in the slab. Using the Fourier analysis, we
compute the analytic solution and find a formula connecting the wave fields on the
top and bottom faces of the slab: a larger mass density of the slab allows more
propagating wave modes to be converted stably from the far-field regime to the
near-field regime. The second step is to solve an inverse surface scattering problem
in the near-field zone by using the data obtained from the first step. Combining
the Fourier analysis, we use the transformed field expansions to find an analytic
solution for the direct problem. We refer to [13, 29, 30, 31, 23] for the transformed
field expansion and related boundary perturbation methods for solving direct sur-
face scattering problems. A general account of theory on scattering by random
rough surfaces can be found in [32]. Using the closed form of the analytic solution,
we deduce expressions for the leading and linear terms of the power series solu-
tion. Dropping all higher order terms, we linearize the inverse problem and obtain
explicit reconstruction formulas for the surface function. Moreover, a nonlinear
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Figure 1. The problem geometry.

correction scheme is also developed to improve the reconstruction. The method
requires only a single illumination and is implemented efficiently by the fast Fourier
transform (FFT). Numerical examples show it is effective and robust to reconstruct
the scattering surfaces with subwavelength resolution.

The remaining part of the paper is organized as follows. The mathematical model
problem is formulated in Section 2. Sections 3 and 4 introduce the Helmholtz de-
composition and the transparent boundary condition, respectively. In Section 5,
we show how to convert the measured elastic wave data into the scattering data
of the scalar potentials introduced from the Helmholtz decomposition. In Section
6, a reduced problem is modeled in the slab and the analytic solution is obtained
to accomplish the FtN field data conversion. In Section 7, the transformed field
expansion and corresponding recursive boundary value problems are presented. We
give the reconstruction formulas for the inverse problem in Section 8. Numerical
experiments are presented in Section 9 to demonstrate the effectiveness of the pro-
posed method. Finally, we conclude some general remarks and directions for future
research in Section 10.

2. Model problem. Let us first introduce the problem geometry, which is shown
in Figure 1. Consider an elastically rigid surface Γf = {x = (x, y) ∈ R2 : y =
f(x), 0 < x < Λ}, where f is a periodic Lipschitz continuous function with period
Λ. The scattering surface function f is assumed to have the form

(1) f(x) = εg(x),

where ε > 0 is a sufficiently small constant and is called the surface deformation
parameter, g is the surface profile function which is also periodic with the period
Λ. Hence the surface Γf is a small perturbation of the planar surface Γ0 = {x ∈
R2 : y = 0, 0 < x < Λ}. Let a rectangular slab of homogeneous and isotropic
elastic medium be placed above the scattering surface. The bottom face of the slab
is Γb = {x ∈ R2 : y = b, 0 < x < Λ}, where b > maxx∈(0,Λ) f(x) is a constant
and stands for the separation distance between the scattering surface and the slab.
The top face of the slab is Γa = {x ∈ R2 : y = a, 0 < x < Λ}, where a > b
is a positive constant and stands for the measurement distance. Denote by Ω the
bounded domain between Γf and Γb, i.e., Ω = {x ∈ R2 : f < y < b, 0 < x < Λ}.
Let R be the domain of the slab, i.e., R = {x ∈ R2 : b < y < a, 0 < x < Λ}. Finally,
denote by U the open domain above Γa, i.e., U = {x ∈ R2 : y > a, 0 < x < Λ}.
Inverse Problems and Imaging Volume 13, No. 4 (2019), 721–744
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In this paper, we assume for simplicity that the Lamé parameters µ, λ are con-
stants satisfying µ > 0, λ + µ > 0; the mass density ρ is a piecewise constant,
i.e.,

ρ(x) =

{
ρ0, x ∈ Ω ∪ U,
ρ1, x ∈ R,

where ρ0 and ρ1 are the density of the free space and the elastic slab, respectively,
and they satisfy ρ1 > ρ0 > 0. Define

κ1 = ω

(
ρ0

λ+ 2µ

)1/2

, κ2 = ω

(
ρ0

µ

)1/2

,

which are known as the compressional wavenumber and the shear wavenumber
in the free space, respectively. We comment that the method also works for the
case where µ, λ take different values in the free space and the elastic slab. Let
λj = 2π/κj , j = 1, 2 be the corresponding wavelength of the compressional and
shear waves.

Let uinc be a time-harmonic plane wave which is incident on the slab from
above. The incident plane wave can be taken as either the compressional wave
uinc(x) = deiκ1x·d or the shear wave uinc = d⊥eiκ2x·d, where d = (sin θ,− cos θ)>

is the unit incident direction vector, θ ∈ (−π/2, π/2) is the incident angle, and

d⊥ = (cos θ, sin θ)> is an orthonormal vector to d. In this work, we use the com-
pressional incident plane wave as an example to present the results, which are similar
and can be obtained with obvious modifications for the shear incident plane wave.
Practically, the simplest configuration is the normal incidence for experiments, i.e.,
θ = 0. Hence we focus on the normal incidence since our method requires only a
single illumination. Under the normal incidence, the incident field reduces to

(2) uinc(x) = (0,−1)>e−iκ1y.

It can be verified that the incident field uinc satisfies the elastic wave equation:

(3) µ∆uinc + (λ+ µ)∇∇ · uinc + ω2ρ0u
inc = 0 in U.

A transmission problem can be formulated due to the interaction between the
elastic wave and the interfaces Γa and Γb. Let u,v,w be the displacements of
the total field in the domains U,R,Ω, respectively. They satisfy the elastic wave
equations:

µ∆u + (λ+ µ)∇∇ · u + ω2ρ0u = 0 in U,(4)

µ∆v + (λ+ µ)∇∇ · v + ω2ρ1v = 0 in R,(5)

µ∆w + (λ+ µ)∇∇ ·w + ω2ρ0w = 0 in Ω.(6)

In addition, the total fields are connected by the continuity conditions:

u = v, µ∂yu + (λ+ µ)(0, 1)>∇ · u = µ∂yv + (λ+ µ)(0, 1)>∇ · v on Γa,(7)

v = w, µ∂yv + (λ+ µ)(0, 1)>∇ · v = µ∂yw + (λ+ µ)(0, 1)>∇ ·w on Γb.(8)

Since Γf is elastically rigid, we have the homogeneous Dirichlet boundary condition:

(9) w = 0 on Γf .

In the open domain U , the total field u consists of the incident field uinc and the
diffracted field ud:

(10) u = uinc + ud,

Inverse Problems and Imaging Volume 13, No. 4 (2019), 721–744



Inverse elastic surface scattering 725

where ud is required to satisfy the bounded outgoing wave condition.
Throughout, we assume that the measurement distance a = O(λj) and the sep-

aration distance b � λj , i.e., a is comparable with the wavelength and Γa is put
in the far-field region; b is much smaller than the wavelength and Γb is put in the
near-field region. Now we are ready to formulate the inverse problem: Given the
incident field uinc, the inverse problem is to determine the scattering surface f from
the far-field measurement of the total field u on Γa.

3. The Helmholtz decomposition. In this section, we introduce the Helmholtz
decomposition for the total fields by using scalar potential functions, and deduce
the continuity conditions for these scalar fields. Let u = (u1, u2)> and u be a vector
and a scalar function, respectively. Introduce the scalar and vector curl operators:

curlu = ∂xu2 − ∂yu1, curlu = (∂yu,−∂xu)>.

For any solution u = (u1, u2)> of (4), the Helmholtz decomposition reads

(11) u = ∇φ1 + curlφ2,

where φj , j = 1, 2 are two scalar potential functions. Explicitly, we have

(12) u1 = ∂xφ1 + ∂yφ2, u2 = ∂yφ1 − ∂xφ2.

Substituting (11) into (4) yields

∇
(
(λ+ 2µ)∆φ1 + ω2ρ0φ1

)
+ curl

(
µ∆φ2 + ω2ρ0φ2

)
= 0,

which is fulfilled if φj satisfies

(13) ∆φj + κ2
jφj = 0 in U.

Combining (13) and (11), we obtain

φ1 = − 1

κ2
1

∇ · u, φ2 =
1

κ2
2

curlu,

which give

(14) ∂xu1 + ∂yu2 = −κ2
1φ1, ∂xu2 − ∂yu1 = κ2

2φ2.

For any solution v = (v1, v2)> of (5), we introduce the Helmholtz decomposition
by using scalar functions ψj :

(15) v = ∇ψ1 + curlψ2,

which gives explicitly that

(16) v1 = ∂xψ1 + ∂yψ2, v2 = ∂yψ1 − ∂xψ2.

Plugging (15) into (5), we may have

(17) ∆ψj + η2
jψj = 0 in R,

where η1 and η2 are the compressional and shear wavenumbers in the elastic slab,
respectively, and are given by

(18) η1 = ω

(
ρ1

λ+ 2µ

)1/2

, η2 = ω

(
ρ1

µ

)1/2

.

Combing (17) and (15), we get

ψ1 = − 1

η2
1

∇ · v, ψ2 =
1

η2
2

curlv,

Inverse Problems and Imaging Volume 13, No. 4 (2019), 721–744
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which give

(19) ∂xv1 + ∂yv2 = −η2
1ψ1, ∂xv2 − ∂yv1 = η2

2ψ2.

Since Γa is a horizontal line, it is easy to verify from the continuity condition (7)
that

(20) uj = vj , ∂yuj = ∂yvj .

Using (14), (19)–(20), we deduce the first continuity condition for the scalar poten-
tials on Γa:

(21) κ2
jφj = η2

jψj .

It follows from (12), (16), and (20) that we deduce the second continuity condition
for the scalar potentials on Γa:

(22) ∂yφ1 − ∂xφ2 = ∂yψ1 − ∂xψ2, ∂yφ2 + ∂xφ1 = ∂yψ2 + ∂xψ1.

Similarly, for any solution w = (w1, w2)> of (6), the Helmholtz decomposition is

(23) w = ∇ϕ1 + curlϕ2.

Substituting (23) into (6), we may get

∆ϕj + κ2
jϕj = 0 in Ω.

Noting (8), we may repeat the same steps and obtain the continuity conditions on
Γb:

(24) η2
jψj = κ2

jϕj

and

(25) ∂yψ1 − ∂xψ2 = ∂yϕ1 − ∂xϕ2, ∂yψ2 + ∂xψ1 = ∂yϕ2 + ∂xϕ1.

Finally, it follows from the boundary condition (9) and the Helmholtz decomposition
(23) that

(26) ∂xϕ1 + ∂yϕ2 = 0, ∂yϕ1 − ∂xϕ2 = 0 on Γf .

4. Transparent boundary condition. It follows from (3), (4), and (10) that the
diffracted field ud also satisfies the elastic wave equation:

(27) µ∆ud + (λ+ µ)∇∇ · ud + ω2ρ0u
d = 0 in U.

Introduce the Helmholtz decomposition for the diffracted field ud:

(28) ud = ∇φd
1 + curlφd

2 ,

Substituting (28) into (27) may yield

(29) ∆φd
j + κ2

jφ
d
j = 0 in U.

It follows from the uniqueness of the solution for the direct problem that φd
j is a

periodic function with period Λ and admits the Fourier series expansion:

(30) φd
j (x, y) =

∑
n∈Z

φd
jn(y)eiαnx,

where αn = 2nπ/Λ. Plugging (30) into (29) yields

(31) ∂2
yyφ

d
jn(y) + β2

jnφ
d
jn(y) = 0, y > a,

Inverse Problems and Imaging Volume 13, No. 4 (2019), 721–744
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where

βjn =

{
(κ2
j − α2

n)1/2, |αn| < κj ,

i(α2
n − κ2

j )
1/2, |αn| > κj .

Here we assume that βjn 6= 0 to exclude possible resonance.
Using the bounded outgoing wave condition, we may solve (31) analytically and

obtain the solution of (29) explicitly:

(32) φd
j (x, y) =

∑
n∈Z

φd
jn(a)ei(αnx+βjn(y−a)),

which is called the Rayleigh expansion for the scalar potential function φd
j . Taking

the normal derivative of (32) on Γa gives

(33) ∂yφ
d
j (x, a) =

∑
n∈Z

iβjnφ
d
jn(a)eiαnx.

For a given periodic function u(x) with period Λ, it has the Fourier series expan-
sion:

u(x) =
∑
n∈Z

une
iαnx, un =

1

Λ

∫ Λ

0

u(x)e−iαnxdx.

We define the boundary operator:

(Tju)(x) =
∑
n∈Z

iβjnune
iαnx.

It is easy to verify from (33) that

(34) ∂yφ
d
j = Tjφ

d
j on Γa.

Recalling the incident field (2), we may also consider the Helmholtz decomposi-
tion for the incident field:

(35) uinc = ∇φinc
1 + curlφinc

2 ,

which gives

φinc
1 = − 1

κ2
1

∇ · uinc = − i

κ1
e−iκ1y, φinc

2 =
1

κ2
2

curluinc = 0.

A simple calculation yields

∂yφ
inc
1 = −e−iκ1a, T1φ

inc
1 = e−iκ1a,

which gives

(36) ∂yφ
inc
1 = T1φ

inc
1 + g1, ∂yφ

inc
2 = T2φ

inc
2 + g2.

Here g1 = −2e−iκ1a and g2 = 0.
Letting φj = φinc

j + φd
j and recalling u = uinc + ud, we get (11) by adding (35)

and (28). Moreover, we obtain the transparent boundary condition for the total
scalar potentials by combing (34) and (36):

(37) ∂yφj = Tjφj + gj on Γa.

It follows from (21)–(22) that

∂yφ1 = ∂yψ1 − ∂xψ2 + ∂xφ2 = ∂yψ1 − ∂xψ2 +

(
η2

2

κ2
2

)
∂xψ2

Inverse Problems and Imaging Volume 13, No. 4 (2019), 721–744



728 Huai-An Diao, Peijun Li and Xiaokai Yuan

= ∂yψ1 +

(
η2

2 − κ2
2

κ2
2

)
∂xψ2,

∂yφ2 = ∂yψ2 + ∂xψ1 − ∂xφ1 = ∂yψ2 + ∂xψ1 −
(
η2

1

κ2
1

)
∂xψ1

= ∂yψ2 −
(
η2

1 − κ2
1

κ2
1

)
∂xψ1.(38)

Combining (37)–(38) and (21) yields the boundary condition for ψj on Γa:

∂yψ1 +

(
η2

2 − κ2
2

κ2
2

)
∂xψ2 =

(
η2

1

κ2
1

)
T1ψ1 + g1,

∂yψ2 −
(
η2

1 − κ2
1

κ2
1

)
∂xψ1 =

(
η2

2

κ2
2

)
T2ψ2 + g2.(39)

Let u be a periodic function of x with period Λ. It admits the Fourier series
expansion:

u(x) =
∑
n∈Z

une
iαnx, un =

1

Λ

∫ Λ

0

u(x)e−iαnxdx.

Define the boundary operator on Γa:

(T u)(x) =
∑
n∈Z

i

 ω2β1n

α2
n+β1nβ2n

µαn − ω2α2
n

α2
n+β1nβ2n

ω2α2
n

α2
n+β1nβ2n

− µαn ω2β2n

α2
n+β1nβ2n

une
iαnx.

It is shown in [26] that α2
n+β1nβ2n 6= 0 for n ∈ Z and the diffracted field ud satisfies

the transparent boundary condition:

µ∂yu
d + (λ+ µ)(0, 1)>∇ · ud = T ud on Γa.

A simple calculation yields that

µ∂yu
inc + (λ+ µ)(0, 1)>∇ · uinc = iκ1(λ+ 2µ)(0, 1)>e−iκ1a

and

T uinc = −iκ1(λ+ 2µ)(0, 1)>e−iκ1a.

Hence we obtain the boundary condition for the total displacement field u:

µ∂yu + (λ+ µ)(0, 1)>∇ · u = T u + h on Γa,

where h = 2iκ1(λ+ 2µ)(0, 1)>e−iκ1a. Noting the continuity condition (7), we have

µ∂yv + (λ+ µ)(0, 1)>∇ · v = T v + h on Γa.

5. Scattering data. We assume that the total field u is measured on Γa, i.e.,
u(x, a) = (u1(x, a), u2(x, a))> is available for x ∈ (0,Λ). In this section, we show
how to convert u(x, a) into the scattering data of the scalar potentials φj(x, a).

Evaluating (12) on Γa, we have

(40) ∂xφ1(x, a) + ∂yφ2(x, a) = u1(x, a), ∂yφ1(x, a)− ∂xφ2(x, a) = u2(x, a).

Let φj(x, a) admit the Fourier series expansion

(41) φj(x, a) =
∑
n∈Z

φjne
iαnx.

It suffices to find all the Fourier coefficients of φjn in order to determine φj(x, a).

Inverse Problems and Imaging Volume 13, No. 4 (2019), 721–744
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Taking the derivative of (41) with respect to x yields

(42) ∂xφj(x, a) =
∑
n∈Z

iαnφjne
iαnx.

It follows from the transparent boundary condition (37) that

(43) ∂yφj(x, a) =
∑
n∈Z

iβjnφjne
iαnx + gj .

Substituting (42) and (43) into (40), we obtain a linear system of equations for the
Fourier coefficients φjn:

(44) i

[
αn β2n

β1n −αn

] [
φ1n

φ2n

]
=

[
p1n

p2n

]
,

where p1n = u1n − g2n, p2n = u2n − g1n and ujn are the Fourier coefficients of uj ,
i.e.,

ujn =
1

Λ

∫ Λ

0

uj(x, a)e−iαnxdx

and

g1n =

{
−2e−iκ1a for n = 0,

0 for n 6= 0,
g2n = 0 for n ∈ Z.

Using Cramer’s rule, we obtain the unique solution of (44):

(45) φ1n = −i

(
αnp1n + β2np2n

α2
n + β1nβ2n

)
, φ2n = i

(
αnp2n − β1np1n

α2
n + β1nβ2n

)
.

Hence, we may assume that φj(x, a), j = 1, 2 are measured data. From now on,
we shall only work on the potential functions.

6. Reduced problem. Recall the continuity condition (21) and the boundary
condition (39). Given the data φj on Γa, we consider the Cauchy problem for ψj :

∆ψj + η2
jψj = 0 in R,(46)

ψj =

(
κ2
j

η2
j

)
φj on Γa,(47)

∂yψ1 +

(
η2

2 − κ2
2

κ2
2

)
∂xψ2 =

(
η2

1

κ2
1

)
T1ψ1 + g1 on Γa,(48)

∂yψ2 −
(
η2

1 − κ2
1

κ2
1

)
∂xψ1 =

(
η2

2

κ2
2

)
T2ψ2 + g2 on Γa.(49)

Since ψj is a periodic function of x, it has the Fourier series expansion

(50) ψj(x, y) =
∑
n∈Z

ψjn(y)eiαnx.

Substituting (50) into (46)–(49), we obtain a final value problem for the second
order equation in the frequency domain:

∂2
yyψjn(y) + γ2

jnψjn(y) = 0, b < y < a,(51)

ψjn(a) =

(
κ2
j

η2
j

)
φjn, y = a,(52)

Inverse Problems and Imaging Volume 13, No. 4 (2019), 721–744
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∂yψ1n(a) + iαn

(
η2

2 − κ2
2

κ2
2

)
ψ2n(a) = iβ1n

(
η2

1

κ2
1

)
ψ1n(a) + g1n, y = a,(53)

∂yψ2n(a)− iαn

(
η2

1 − κ2
1

κ2
1

)
ψ1n(a) = iβ2n

(
η2

2

κ2
2

)
ψ2n(a) + g2n, y = a,(54)

where φjn is given in (45) and

γjn =

{
(η2
j − α2

n)1/2, |αn| < ηj ,

i(α2
n − η2

j )1/2, |αn| > ηj .

Again we assume that γjn 6= 0 to exclude possible resonance.
Using the continuity condition (21) again, we may further reduce (51)–(54) into

the following final value problem:

∂2
yyψjn(y) + γ2

jnψjn(y) = 0, b < y < a,(55)

ψjn = φ̂jn, y = a,(56)

∂yψjn − iβ̂jnψjn = ĝjn, y = a,(57)

where

φ̂jn =

(
κ2
j

η2
j

)
φjn, β̂jn =

(
η2
j

κ2
j

)
βjn

and

ĝ1n = g1n − iαn

(
η2

2 − κ2
2

η2
2

)
φ2n,

ĝ2n = g2n + iαn

(
η2

1 − κ2
1

η2
1

)
φ1n.

It follows from Lemma (A.1) that the final value problem (55)–(57) has a unique
solution which is

ψjn(y) =(2γ−1
jn )

(
(γjn + β̂jn)φ̂jn − iĝjn

)
e−iγjn(a−y)

+ (2γjn)−1
(

(γjn − β̂jn)φ̂jn + iĝjn

)
eiγjn(a−y).(58)

Evaluating (58) at y = b yields

ψjn(b) =(2γjn)−1
(

(γjn + β̂jn)φ̂jn − iĝjn

)
e−iγjn(a−b)

+ (2γjn)−1
(

(γjn − β̂jn)φ̂jn + iĝjn

)
eiγjn(a−b).(59)

where ψjn(b) are the Fourier coefficients of ψj(x, b). Taking the partial derivative
of (58) with respect to y and evaluating it at y = b, we obtain

∂yψjn(b) =
i

2

(
(γjn + β̂jn)φ̂jn − iĝjn

)
e−iγjn(a−b)

− i

2

(
(γjn − β̂jn)φ̂jn + iĝjn

)
eiγjn(a−b).(60)

We point out that (59) gives the far-to-near (FtN) field data conversion formula.
We observe from (59) that it is stable to convert the far-field data for the propagating
wave components where the Fourier modes satisfy |αn| < ηj ; it is exponentially
unstable to convert the far-field for the evanescent wave components where the
Fourier modes satisfy |αn| > ηj . Thus it is only reliable to make the near-field
data by converting the low frequency far-field data φjn with |αn| < ηj . Noting
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ρ1 > ρ0 in the elastic slab, we are allowed to include more propagating wave modes
to reconstruct the surface than the case without the slab, which contributes to a
better resolution.

It follows from the continuity condition (24) that

(61) ϕjn(b) =

(
η2
j

κ2
j

)
ψjn(b).

Using the continuity conditions (24)–(25) on Γb, we obtain

∂yϕ1 = ∂yψ1 − ∂xψ2 + ∂xϕ2 = ∂yψ1 − ∂xψ2 +

(
η2

2

κ2
2

)
∂xψ2

= ∂yψ1 +

(
η2

2 − κ2
2

κ2
2

)
∂xψ2,

∂yϕ2 = ∂yψ2 + ∂xψ1 − ∂xϕ1 = ∂yψ2 + ∂xψ1 −
(
η2

1

κ2
1

)
∂xψ1

= ∂yψ2 −
(
η2

1 − κ2
1

κ2
1

)
∂xψ1,

which give in the frequency domain that

∂yϕ1n(b) = ∂yψ1n(b) + iαn

(
η2

2 − κ2
2

κ2
2

)
ψ2n(b),

∂yϕ2n(b) = ∂yψ2n(b)− iαn

(
η2

1 − κ2
1

κ2
1

)
ψ1n(b).(62)

Combining (61) and (62), we get

(63) (∂y − iβjn)ϕjn = τjn,

where

τ1n = ∂yψ1n(b)− iβ̂1nψ1n(b) + iαn

(
η2

2 − κ2
2

κ2
2

)
ψ2n(b),

τ2n = ∂yψ2n(b)− iβ̂2nψ2n(b)− iαn

(
η2

1 − κ2
1

κ2
1

)
ψ1n(b).(64)

Here the Fourier coefficients ψjn(b) and ∂yψjn(b) are given in (59) and (60), respec-
tively.

Using the boundary conditions (26) and (63), we may consider the following
reduced boundary value problem for the scalar potential ϕj in Ω:

∆ϕj + κ2
jϕj = 0 in Ω,(65)

∂xϕ1 + ∂yϕ2 = 0, ∂yϕ1 − ∂xϕ2 = 0 on Γf ,(66)

∂yϕj = Tjϕj + τj on Γb,(67)

where the Fourier coefficients of τj are given in (64). The inverse problem is refor-
mulated to determine the periodic scattering surface function f from the Fourier
coefficients ϕjn(b) for n ∈Mj = {n ∈ Z : |αn| < ηj}.

7. Transformed field expansion. In this section, we introduce the transformed
field expansion to derive an analytic solution to boundary value problem (65)–(67).
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7.1. Change of variables. Consider the change of variables:

x̃ = x, ỹ = b

(
y − f
b− f

)
,

which maps Γf to Γ0 but keeps Γb unchanged. Hence the domain Ω is mapped into
the rectangular domain D = {(x̃, ỹ) ∈ R2 : 0 < x̃ < Λ, 0 < ỹ < b}. It is easy to
verify the differential rules:

∂x =∂x̃ − f ′
(
b− ỹ
b− f

)
∂ỹ,

∂y =

(
b

b− f

)
∂ỹ,

∂2
xx =∂2

x̃x̃ + (f ′)2

(
b− ỹ
b− f

)2

∂2
ỹỹ − 2f ′

(
b− ỹ
b− f

)
∂2
x̃ỹ

−
[
f ′′
(
b− ỹ
b− f

)
+ 2(f ′)2 (b− ỹ)

(b− f)2

]
∂ỹ,

∂2
yy =

(
b

b− f

)2

∂2
ỹỹ.

We introduce a function ϕ̃j(x̃, ỹ) in order to reformulate the boundary value
problem (65)–(67) using the new variables. Noting (65), we have from the straight-
forward calculations that ϕ̃, upon dropping the tilde for simplicity of notation,
satisfies

(68)
(
c1∂

2
xx + c2∂

2
yy + c3∂

2
xy + c4∂y + c1κ

2
j

)
ϕj = 0 in D,

where

(69)


c1 = (b− f)2,

c2 = [f ′(b− y)]
2

+ b2,

c3 = −2f ′(b− y)(b− f),

c4 = −(b− y)
[
f ′′(b− f) + 2(f ′)2

]
.

The boundary condition (66) becomes
(70)[(

1− b−1f
)
∂x − f ′∂y

]
ϕ1 + ∂yϕ2 = 0, ∂yϕ1 −

[(
1− b−1f

)
∂x − f ′∂y

]
ϕ2 = 0.

The boundary condition (67) reduces to

(71) ∂yϕj =
(
1− b−1f

)
(Tjϕj + τj).

7.2. Power series expansion. Noting the surface function (1), we resort to the
perturbation technique and consider formal power series expansion of ϕj in terms
of ε:

(72) ϕj(x, y; ε) =

∞∑
k=0

ϕ
(k)
j (x, y)εk.

Substituting (1) into (69) and plugging (72) into (68), we may obtain the recurrence

equations for ϕ
(k)
j in D:

(73) ∆ϕ
(k)
j + κ2

jϕ
(k)
j = u

(k)
j ,
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where

(74) u
(k)
j = D

(1)
j ϕ

(k−1)
j + D

(2)
j ϕ

(k−2)
j .

Here the differential operators are

D
(1)
j =b−1

[
2g∂2

xx + 2g′(b− y)∂2
xy + g′′(b− y)∂y + 2κ2

jg
]
,

D
(2)
j =− b−2

{
g2∂2

xx + (g′)2(b− y)2∂2
yy + 2gg′(b− y)∂2

xy

−
[
2(g′)2 − gg′′

]
(b− y)∂y + κ2

jg
2
}
.

Substituting (1) and (72) into (70), we obtain the recurrence equations for the
boundary conditions on Γ0:

∂xϕ
(k)
1 + ∂yϕ

(k)
2 = p(k), ∂yϕ

(k)
1 − ∂xϕ(k)

2 = q(k),

where

(75) p(k) =
(
b−1g∂x + g′∂y

)
ϕ

(k−1)
1 , q(k) = −

(
b−1g∂x + g′∂y

)
ϕ

(k−1)
2 .

Substituting (1) and (72) into (71), we derive the recurrence equations for the
transparent boundary conditions on Γb:

(∂y −Tj)ϕ
(k)
j = r

(k)
j ,

where

(76) r
(0)
j = τj , r

(1)
j = −b−1g(Tjϕ

(0)
j + τj), r

(k)
j = −b−1gTjϕ

(k−1)
j .

In all of the above recurrence equations, it is understood that ϕ
(k)
j , u

(k)
j , p(k), q(k),

r
(k)
j are zeros when k < 0. The boundary value problem (73)–(76) for the current

terms ϕ
(k)
j involve u

(k)
j , p(k), q(k), r

(k)
j , which depend only on previous two terms

of ϕ
(k−1)
j , ϕ

(k−2)
j . Thus, the boundary value problem (73)–(76) can be recursively

solved from k = 0.

7.3. Fourier series expansion. Since ϕ
(k)
j are periodic functions of x with period

Λ, they have the Fourier series expansions

(77) ϕ
(k)
j (x, y) =

∑
n∈Z

ϕ
(k)
jn (y)eiαnx.

Substituting (77) into the boundary value problem (73)–(76), we obtain a coupled
two-point boundary value problems:

∂2
yyϕ

(k)
1n + β2

1nϕ
(k)
1n = u

(k)
1n , 0 < y < b,

∂yϕ
(k)
1n = q(k)

n + iαnϕ
(k)
2n , y = 0,(78)

∂yϕ
(k)
1n − iβ1nϕ

(k)
1n = r

(k)
1n , y = b

and

∂2
yyϕ

(k)
2n + β2

2nϕ
(k)
2n = u

(k)
2n , 0 < y < b,

∂yϕ
(k)
2n = p(k)

n − iαnϕ
(k)
1n , y = 0,(79)

∂yϕ
(k)
2n − iβ2nϕ

(k)
2n = r

(k)
2n , y = b,

where u
(k)
jn , p

(k)
n , q

(k)
n , r

(k)
jn are the Fourier coefficients of u

(k)
j , p(k), q(k), r

(k)
j , respec-

tively.
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It follows from Lemma A.2 that the solutions of (78) and (79) are

ϕ
(k)
1n (y) =K1(y;β1n)(q(k)

n + iαnϕ
(k)
2n (0))

−K2(y;β1n)r
(k)
1n +

∫ b

0

K3(y, z;β1n)u
(k)
1n (z)dz,(80)

ϕ
(k)
2n (y) =K1(y;β2n)(p(k)

n − iαnϕ
(k)
1n (0))

−K2(y;β2n)r
(k)
2n +

∫ b

0

K3(y, z;β2n)u
(k)
2n (z)dz,(81)

where ϕ
(k)
jn (0) are to be determined. Evaluating ϕ

(k)
jn (y) at y = 0 in the above

equations and recalling Kj in Lemma A.2, we obtain

iβ1nϕ
(k)
1n (0) = (q(k)

n + iαnϕ
(k)
2n (0))− eiβ1nbr

(k)
1n +

∫ b

0

eiβ1nzu
(k)
1n (z)dz,

iβ2nϕ
(k)
2n (0) = (p(k)

n − iαnϕ
(k)
1n (0))− eiβ2nbr

(k)
2n +

∫ b

0

eiβ2nzu
(k)
2n (z)dz,

which yields a system of algebraic equations for ϕ
(k)
jn (0):

(82) i

[
β1n −αn
αn β2n

][
ϕ

(k)
1n (0)

ϕ
(k)
2n (0)

]
=

[
v

(k)
1n

v
(k)
2n

]
,

where

v
(k)
1n = q(k)

n − eiβ1nbr
(k)
1n +

∫ b

0

eiβ1nzu
(k)
1n (z)dz,

v
(k)
2n = p(k)

n − eiβ2nbr
(k)
2n +

∫ b

0

eiβ2nzu
(k)
2n (z)dz.

It follows from Cramer’s rule again that the linear system has a unique solution
which is given by

ϕ
(k)
1n (0) = −i

(
β2nv

(k)
1n + αnv

(k)
2n

α2
n + β1nβ2n

)
, ϕ

(k)
2n (0) = −i

(
β1nv

(k)
2n − αnv

(k)
1n

α2
n + β1nβ2n

)
.

Once ϕ
(k)
jn (0) are determined, ϕ

(k)
jn (y) can be computed from (80) and (81) explicitly

for all k and n.

7.4. Leading terms. For k = 0, it follows from (74), (75), and (76) that we obtain

u
(0)
j = p(0) = q(0) = 0, r

(0)
j = τj .

Their Fourier coefficients are

(83) u
(0)
jn = p(0)

n = q(0)
n = 0, r

(0)
jn = τjn.

Substituting (83) into (82) yields

v
(0)
jn = −eiβjnbτjn

and

ϕ
(0)
1n (0) =

(
iβ2ne

iβ1nb

α2
n + β1nβ2n

)
τ1n +

(
iαne

iβ2nb

α2
n + β1nβ2n

)
τ2n,
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ϕ
(0)
2n (0) =

(
iβ1ne

iβ2nb

α2
n + β1nβ2n

)
τ2n −

(
iαne

iβ1nb

α2
n + β1nβ2n

)
τ1n.(84)

Plugging (84) into (80)–(81), we get

ϕ
(0)
1n (y) = iαnK1(y, β1n)ϕ

(0)
2n (0)−K2(y, β1n)τ1n

= M
(n)
11 (y)τ1n +M

(n)
12 (y)τ2n,(85)

ϕ
(0)
2n (y) = −iαnK1(y;β2n)ϕ

(0)
1n (0)−K2(y;β2n)τ2n

= M
(n)
21 (y)τ1n +M

(n)
22 (y)τ2n,(86)

where

M
(n)
11 (y) = −

(
iα2
ne

iβ1nb

β1n(α2
n + β1nβ2n)

)
eiβ1ny +

ieiβ1nb

2β1n
(eiβ1ny + e−iβ1ny),

M
(n)
12 (y) =

(
iαne

iβ2nb

α2
n + β1nβ2n

)
eiβ1ny,

M
(n)
21 (y) = −

(
iαne

iβ1nb

α2
n + β1nβ2n

)
eiβ2ny,

M
(n)
22 (y) = −

(
iα2
ne

iβ2nb

β2n(α2
n + β1nβ2n)

)
eiβ2ny +

ieiβ2nb

2β2n
(eiβ2ny + e−iβ2ny).

7.5. Linear terms. For k = 1, it follows from (74)–(76) that we obtain

u
(1)
j = b−1

[
2g∂2

xx + 2g′(b− y)∂2
xy + g′′(b− y)∂y + 2κ2

jg
]
ϕ

(0)
j ,

p(1) =
(
b−1g∂x + g′∂y

)
ϕ

(0)
1 ,

q(1) = −
(
b−1g∂x + g′∂y

)
ϕ

(0)
2 ,

r
(1)
j = −b−1g(Tjϕ

(0)
j + τj).

Using the convolution theorem and (85)–(86) yields

u
(1)
jn (y) =

∑
m∈Z

U
(n,m)
j (y)gn−m,(87)

p1n(y) =
∑
m∈Z

Pm(y)gn−m,(88)

q1n(y) =
∑
m∈Z

Qm(y)gn−m,(89)

r
(1)
jn (y) = −b−1

∑
m∈Z

(Rjm(y) + τjm) gn−m,(90)

where

U
(n,m)
j (y) = b−1

[
2(βjm)2M

(m)
j1 (y) + (α2

m − α2
n)(b− y)∂yM

(m)
j1 (y)

]
τ1m

+ b−1
[
2(βjm)2M

(m)
j2 (y) + (α2

m − α2
n)(b− y)∂yM

(m)
j2 (y)

]
τ2m,

Pm(y) = iαmb
−1
(
M

(m)
11 (y)τ1m +M

(m)
12 (y)τ2m

)
+ i(αn − αm)

(
∂yM

(m)
11 (y)τ1m + ∂yM

(m)
12 (y)τ2m

)
,
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Qm(y) = −iαmb
−1
(
M

(m)
21 (y)τ1m +M

(m)
22 (y)τ2m

)
− i(αn − αm)

(
∂yM

(m)
21 (y)τ1m + ∂yM

(m)
22 (y)τ2m

)
Rjm(y) = iβjm

(
M

(m)
j1 (y)τ1m +M

(m)
j2 (y)τ2m

)
.

When k = 1, recalling the expressions of ϕ
(1)
jn (0) and evaluating (80)–(81) at

y = b, we have

ϕ
(1)
1n (b) = K1(b;β1n)(q(1)

n + iαnϕ
(1)
2n (0))−K2(b;β1n)r

(1)
1n +

∫ b

0

K3(b, z;β1n)u
(1)
1n (z)dz

=
eiβ1nb

iβ1n
(q(1)
n + iαnϕ

(1)
2n (0))− eiβ1nb

2iβ1n
(eiβ1nb + e−iβ1nb)r

(1)
1n

+

∫ b

0

eiβ1nb

2iβ1n
(eiβ1nz + e−iβ1nz)u

(1)
1n (z)dz

=
eiβ1nb

(2iβ1n)(α2
n + β1nβ2n)

(
2β1nβ2nq

(1)
n + 2αnβ1np

(1)
n − 2αnβ1ne

iβ2nbr
(1)
2n

+ (α2
n − β1nβ2n)eiβ1nbr

(1)
1n − (α2

n + β1nβ2n)e−iβ1nbr
(1)
1n

+ 2αnβ1n

∫ b

0

eiβ2nzu
(1)
2n (z)dz − 2α2

n

∫ b

0

eiβ1nzu
(1)
1n (z)dz

+ (α2
n + β1nβ2n)

∫ b

0

(eiβ1nz + e−iβ1nz)u
(1)
1n (z)dz

)
,

and

ϕ
(1)
2n (b) = K1(b;β2n)(p(1)

n − iαnϕ
(1)
1n (0))−K2(b;β2n)r

(1)
2n +

∫ b

0

K3(b, z;β2n)u
(1)
2n (z)dz

=
eiβ2nb

iβ2n
(p(1)
n − iαnϕ

(1)
1n (0))− eiβ2nb

2iβ2n
(eiβ2nb + e−iβ2nb)r

(1)
2n

+

∫ b

0

eiβ2nb

2iβ2n
(eiβ2nz + e−iβ2nz)u

(1)
2n (z)dz

=
eiβ2nb

(2iβ2n)(α2
n + β1nβ2n)

(
2β1nβ2np

(1)
n − 2αnβ2nq

(1)
n + 2αnβ2ne

iβ1nbr
(1)
1n

+ (α2
n − β1nβ2n)eiβ2nbr

(1)
2n − (α2

n + β1nβ2n)e−iβ2nbr
(1)
2n − 2αnβ2n

∫ b

0

eiβ1nzu
(1)
1n (z)dz

− 2α2
n

∫ b

0

eiβ2nzu
(1)
2n (z)dz + (α2

n + β1nβ2n)

∫ b

0

(eiβ2nz + e−iβ2nz)u
(1)
2n (z)dz

)
.

Substituting (87)–(90) into (80)–(81) and evaluating at y = b, after tedious but
straight forward calculations, we obtain the key identities:

ϕ
(1)
1n (b) =

∑
m∈Z

eiβ1nb

(2iβ1n)(α2
n + β1nβ2n)(α2

m + β1mβ2m)
A

(n,m)
1 gn−m,(91)

ϕ
(1)
2n (b) =

∑
m∈Z

eiβ2nb

(2iβ2n)(α2
n + β1nβ2n)(α2

m + β1mβ2m)
A

(n,m)
2 gn−m,(92)
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where

A
(n,m)
1 =

{
b−1

[
− 2β1nβ2nα

2
me

i(β1m+β2m)b +
αnαmβ1n

β1m
(α2
m − β1mβ2m)e2iβ1mb

+ 2
{
αmβ1n(αnβ2m + αmβ2n) + ibβ1n

[
αnαmβ2m(β2n − β2m)

− (αnαm)2 + β2
1mβ2mβ2n

]}
eiβ1mb − αnαmβ1n

β1m
(α2
m + β1mβ2m)

]
− iβ1n(αn − αm)

[
2αmβ2mβ2ne

i(β1m+β2m)b − αn(α2
m − β1mβ2m)e2iβ1mb

− αn(α2
m + β1mβ2m)

]}
τ1m +

{
b−1

[
− 2αnα

2
mβ1ne

i(β1m+β2m)b

− αmβ1nβ2n

β2m
(α2
m − β1mβ2m)e2iβ2mb + 2

{
αmβ1n

(
αnαm − β1mβ2n

)
+ ibβ1n

[
αn(α2

mβ2n + β2
2mβ1m) + αmβ1m(α2

n + β1mβ2n)
]}
eiβ2mb

+
αmβ1nβ2n

β2m
(α2
m + β1mβ2m)

]
− iβ1n(αn − αm)

[
2αnαmβ1me

i(β1m+β2m)b

+ β2n(α2
m − β1mβ2m)e2iβ2mb + β2n(α2

m + β1mβ2m)

]}
τ2m,

and

A
(n,m)
2 =

{
b−1

[
2αnα

2
mβ2ne

i(β1m+β2m)b +
αmβ1nβ2n

β1m
(α2
m − β1mβ2m)e2iβ1mb

− 2
{
αmβ2n(αnαm − β1nβ2m) + ibβ2n

[
αn(α2

mβ1n + β2
1mβ2m)

+ αmβ2m

(
α2
n + β1nβ2m)

]}
eiβ1mb − αmβ1nβ2n

β1m
(α2
m + β1mβ2m)

]
+ iβ2n(αn − αm)

[
2αnαmβ2me

i(β1m+β2m)b + β1n(α2
m − β1mβ2m)e2iβ1mb

+ β1n(α2
m + β1mβ2m)

]}
τ1m +

{
b−1

[
− 2β1nβ2nα

2
me

i(β1m+β2m)b

+
αmαnβ2n

β2m
(α2
m − β1mβ2m)e2iβ2mb + 2

{
αmβ2n

(
αnβ1m + αmβ1n

)
+ ibβ2n

[
αnαmβ1m(β1n − β1m)− (αnαm)2 + β2

2mβ1mβ1n

]}
eiβ2mb

− αmαnβ2n

β2m
(α2
m + β1mβ2m)

]
− iβ2n(αn − αm)

[
2αmβ1nβ1me

i(β1m+β2m)b

− αn(α2
m − β1mβ2m)e2iβ2mb − αn(α2

m + β1mβ2m)

]}
τ2m.

8. Inverse problem. In this section, we give reconstruction formulas for the in-
verse problem by dropping the higher order terms in the power series. Moreover, a
nonlinear correction scheme is proposed to improve the accuracy of the reconstruc-
tion.
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8.1. Reconstruction formula. First, we rewrite the power series expansion (72)
of ϕ1 and ϕ2 as follows,

(93) ϕj(x, y) = ϕ
(0)
j (x, y) + εϕ

(1)
j (x, y) + ej(x, y),

where ej(x, y) = O(ε2) denote the remainder consisting of all the high oder terms.
Evaluating (93) at y = b and dropping ej(x, y), we get the linearized equation:

ϕj(x, b) = ϕ
(0)
j (x, b) + εϕ

(1)
j (x, b),

which, in the frequency domain,

(94) ϕjn(b) = ϕ
(0)
jn (b) + εϕ

(1)
jn (b).

Substituting (91)–(92) into (94) and noting f = εg, we obtain an infinite dimen-
sional linear system of equations:∑

m∈Z
C

(n,m)
j fn−m = ϕjn(b)− ϕ(0)

jn (b),

where

C
(n,m)
j =

eiβjnb

(2iβjn)(α2
n + β1nβ2n)(α2

m + β1mβ2m)
A

(n,m)
j .

In order to obtain a truncated finite dimensional linear systems, the cut-off

Nj =

⌊
ηjΛ

2π

⌋
is chosen such that |αn| ≤ ηj for all |n| ≤ Nj , where ηj is given by (18). In
view of the definition of ηj , the density ρ1 of the elastic slab is crucial to the
reconstruction resolution, a bigger ρ1 gives a higher resolution. Keeping only the
Fourier coefficients of the solution in [−Nj , Nj ], we obtain the truncated equations

(95) Cjsj = tj ,

where Cj is the (2Nj + 1) × (2Nj + 1) portion of C
(n,m)
j , and sj , tj are (2Nj + 1)

column vectors given by

sj,m = fm, tj,n = ϕjn(b)− ϕ(0)
jn (b), −Nj ≤ n,m ≤ Nj .

We observe from (64) and (91)–(92) that when |m| > Nj there could have expo-

nentially amplified errors of A
(n,m)
j due to the data noise. Therefore, the equations

need to be regularized further by letting A
(n,m)
j = 0 if |n − m| > Nj . Let the

solution of (95) be given by

(96) sj = C†j tj ,

where C†j denote the Moore-Penrose pseudo-inverse of Cj . Finally, the scattering
surface function is reconstructed as follows:

(97) f(x) = Re
∑
|m|≤Nj

sj,me
iαmx.
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8.2. Nonlinear correction scheme. In the previous subsection, an explicit re-
construction formula (97) is given. It is effective for a sufficiently small deformation
parameter ε. For a relatively large ε, it is necessary to develop a nonlinear correction
scheme to improve the accuracy of the reconstruction.

Firstly, we solve the linearized problem and compute (96) to obtain sj , which is

denoted as s
[0]
j . Let f0 be the reconstructed surface function by using s

[0]
j in (97).

Next we solve the direct problem using f0 as the surface function, and evaluate the

total field u at y = a denoted by u[f0]. The data φ
[f0]
j (x, a) is computed from (45)

by using u[f0], which is then used to compute τ
[f0]
jn from (58), (60) and (64). We

construct the coefficient matrices C
[f0]
j and the right hand side vectors t

[f0]
j of (95)

using τ
[f0]
jn . Now we have approximated equations:

C
[f0]
j s

[0]
j = t

[f0]
j .

Subtracting the above equation from (95) yields

Cjsj = tj + C
[f0]
j s

[0]
j − t

[f0]
j ,

from which we compute the updated Fourier coefficients:

s
[1]
j = C†j

(
tj + C

[f0]
j s

[0]
j − t

[f0]
j

)
.

Then the surface function is updated as follows

f1(x) = Re
∑
|m|≤Nj

s
[1]
j,me

iαmx.

Repeating the above procedure gives the nonlinear correction scheme:

s
[l]
j = C†j

(
tj + C

[fl−1]
j s

[l−1]
j − t[fl−1]

j

)
,

fl(x) = Re
∑
|m|≤Nj

s
[l]
j,me

iαmx, l = 1, . . . .

Essentially the above nonlinear correction scheme is similar to Newton’s method
for solving non-linear equations. From the numerical experiments in the next sec-
tion, we only need few iterations to obtain accurate reconstructions because good
initial guesses are available from the reconstruction formula (97) when solving the
linearized equation.

9. Numerical experiments. In this section, we present some numerical exper-
iments to show the effectiveness of the proposed method. We solve the direct
scattering problem (4)–(6) to get the synthetic data of the displacement of the total
field u by using the finite element method with the perfectly matched layer (PML)
technique. Then the measured data is obtained by interpolating the finite element
solution with 500 uniform grid on Γa. In order to test the robustness of the proposed
method, we add random noise to the data:

uδ(xi, a) = u(xi, a)(1 + δri),

where xi = −Λ/2 + iΛ/500, i = 1, . . . , 500, ri are vectors whose two components
are random numbers uniformly distributed on [−1, 1], and δ is the noise level.

In our numerical experiments, the Lamé parameters µ, λ are taken as λ = 2, µ =
1. The density ρ0 of the free space is ρ0 = 1, while the density of the elastic slab ρ1

is chosen to be three different numbers ρ1 = 1.0, 2.0 and 4.0 in order to compare

Inverse Problems and Imaging Volume 13, No. 4 (2019), 721–744



740 Huai-An Diao, Peijun Li and Xiaokai Yuan

the reconstruction results. The noise level δ = 2%. The angular frequency ω = 2π.
Thus the compressional wavenumber κ1 = π and the shear wavenumber κ2 = 2π,
which indicate that λ1 = 2, λ2 = 1, where λ1 and λ2 are the compressional wave-
length and the shear wavelength, respectively. The bottom of the slab is positioned
at y = b = 0.05λ2 and the top of the slab is put at y = a = 2.0λ2. Hence the slab
is put in the near-field regime while the data is measured in the far-field regime.
The incident wave is generated by (2). In all numerical examples, the deformation
parameter is fixed at ε = 0.01. According to (97), there are two possible choices
to obtain the reconstructed surface function f , which are mathematically equiva-
lent. Thus we always take j = 1 in (95) to compute the Fourier coefficients and to
reconstruct the surface.

Example 1. The exact surface profile function is given by

g(x) =
1

5
sin

(
20πx

31

)
− sin

(
40πx

31

)
+ sin

(
60πx

31

)
,

which is a periodic function with the period Λ = 3.1. This is a simple example as
the surface function only contains a few Fourier modes.

Figure 2 shows the reconstructed surfaces (dashed line) against the exact surface
(solid line). Figure 2(a), (b), and (c) plot the reconstructed surfaces by using
ρ1 = 1.0, 2.0, 4.0, respectively. Clearly, the reconstruction resolution is increased
with respect to ρ1. For ρ1 = 1.0, the slab is absent and the cut-off N1 = 1. Hence
only the zeroth and first Fourier modes may be reconstructed and the resolution is
at most one wavelength. More frequency modes are able to be recovered and the
resolution increases to the subwavelength regime by increasing ρ1. Using Figure
2(c) as the initial guess, we adopt the nonlinear correction scheme to improve the
reconstruction accuracy. As shown in Figure 2(d), (e), and (f), the reconstruction
is almost perfect after 3 steps of the iteration, which indicates that the algorithm
is effective to improve the accuracy of the reconstruction.

Example 2. Consider the following surface profile function in the interval [−1, 1]:

g(x) =

{
1− cos(2πx), −1 ≤ x < 0,

0.5− 0.5 cos(2πx), 0 < x ≤ 1.

The period Λ = 2. Although this function is continuous, it is not smooth since
the first derivative is not continuous at x = 0. Figure (3) shows the reconstructed
surface (dashed line) against the exact surface (solid line) for different density ρ1

and the first three steps of the nonlinear correction. The similar conclusions can be
drawn as those for Example 1: the density ρ1 helps the resolution and the nonlinear
correction improve the reconstruction.

10. Conclusion. In this paper, we have proposed an effective mathematical model
and developed an efficient numerical method to solve the inverse elastic surface
scattering problem by using the far-field data. The key idea is to utilize a slab
with larger density to allow more propagating modes to propagate to the far-field
zone, which contributes to the reconstruction resolution. The nonlinear correction
improves the accuracy by using the initial guess generated from the explicit recon-
struction formula. Results show that the proposed method is robust to the data
noise. The proposed approach can be extended to bi-periodic structures where
the three-dimensional Maxwell and elastic equations should be considered. We are
investigating these equations and will report the progress elsewhere.
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Figure 2. Example 1: the reconstructed surface (dashed line) is
plotted against the exact surface (solid line). (a) ρ1 = 1; (b) ρ1 = 2;
(c) ρ1 = 4; (d) 1 step of nonlinear correction when ρ1 = 4; (e) 2
steps of nonlinear correction when ρ1 = 4; (f) 3 steps of nonlinear
correction when ρ1 = 4.
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Figure 3. Example 2: the reconstructed surface (dashed line) is
plotted against the exact surface (solid line). (a) ρ1 = 1; (b) ρ1 = 2;
(c) ρ1 = 4; (d) 1 step of nonlinear correction when ρ1 = 4; (e) 2
steps of nonlinear correction when ρ1 = 4; (f) 3 steps of nonlinear
correction when ρ1 = 4.
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Appendix A. second order equations. Consider the final value problem of the
second order equation in the interval (b, a):

u′′ + η2u = 0, b < y < a,(98)

u = p, y = a,(99)

u′ − iβu = q, y = a,(100)

where 0 6= η, β, p, q are constants.

Lemma A.1. The final value problem (98)–(100) has a unique solution which is

u(y) =

(
(η + β)p− iq

2η

)
e−iη(a−y) +

(
(η − β)p+ iq

2η

)
eiη(a−y).

Proof. The general solution of the homogeneous second order equation (98) is

u(y) = c1e
iηy + c2e

−iηy,

where c1 and c2 are constant coefficients to be determined. It follows from the final
conditions (99)–(100) that

u = p, u′ = iβp+ q, y = a.

Plugging the final values of u and u′ into the general solution, we obtain

c1 =

(
(η + β)p− iq

2η

)
e−iηa, c2 =

(
(η − β)p+ iq

2η

)
eiηa,

which completes the proof.

Consider the two-point boundary value problem of the second order equation in
the interval (0, h):

u′′ + β2u = v, 0 < y < h,(101)

u′ = r, y = 0,(102)

u′ − iβu = s, y = h,(103)

where 0 6= β, r, s are constants.

Lemma A.2. The two-point boundary value problem (101)–(103) has a unique
solution which is given by

u(y) = K1(y;β)r −K2(y;β)s+

∫ h

0

K3(y, z;β)v(z)dz,

where

K1(y;β) =
eiβy

iβ
, K2(y;β) =

eiβh

2iβ
(eiβy + e−iβy),

and

K3(y, z;β) =


eiβy

2iβ (eiβz + e−iβz), z < y,

eiβz

2iβ (eiβy + e−iβy), z > y.

Proof. A fundamental set of solutions for the second order equation (101) is

u1(y) = eiβy, u2(y) = e−iβy.
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A simple calculation yields that the Wronskian W (u1, u2) = −2iβ. It follows from
the variation of parameters that the general solution to the inhomogeneous second
order equation (101) is

(104) u(y) = c1e
iβy + c2e

−iβy +
eiβy

2iβ

∫ y

0

e−iβzv(z)dz − e−iβy

2iβ

∫ y

0

eiβzv(z)dz,

where c1 and c2 are undetermined constants.
Taking the derivative of (104), evaluating at y = 0, and using the boundary

condition (102) give

(105) u′(0) = iβ(c1 − c2) = r.

It follows from the boundary condition (103) that

(106) c2 =
1

2iβ

(∫ h

0

eiβzv(z)dz − seiβh

)
.

Combining (105) and (106) yields

(107) c1 = c2 +
r

iβ
=

1

2iβ

(∫ h

0

eiβzv(z)dz − seiβh

)
+

r

iβ
.

Substituting (106) and (107) into (104), we obtain the solution.
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