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INVERSE ELASTIC SCATTERING FOR A RANDOM SOURCE*

JIANLIANG LIf AND PELJUN LIf

Abstract. Consider the inverse random source scattering problem for the two-dimensional time-
harmonic elastic wave equation with a linear load. The source is modeled as a microlocally isotropic
generalized Gaussian random function whose covariance operator is a classical pseudodifferential
operator. The goal is to recover the principal symbol of the covariance operator from the displacement
measured in a domain away from the source. For such a distributional source, we show that the direct
problem has a unique solution by introducing an equivalent Lippmann—Schwinger integral equation.
For the inverse problem, we demonstrate that, with probability one, the principal symbol of the
covariance operator can be uniquely determined by the amplitude of the displacement averaged over
the frequency band, generated by a single realization of the random source. The analysis employs
the Born approximation, asymptotic expansions of the Green tensor, and microlocal analysis of the
Fourier integral operators.
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1. Introduction. The inverse source scattering problems are to recover the
unknown sources from the radiated wave field which is generated by the unknown
sources. These problems are motivated by significant applications in diverse scien-
tific areas such as medical imaging [3, 24, 36] and antenna design and synthesis [21].
Driven by these applications, the inverse source scattering problems have been exten-
sively studied by many researchers in both mathematical and engineering communi-
ties. Consequently, a great deal of mathematical and numerical results are available,
especially for deterministic sources [1, 7, 14, 21, 23]. It is known that the inverse
source problem, in general, does not have a unique solution at a single frequency due
to the existence of nonradiating sources [9, 18, 22, 25]. There are two approaches to
overcome the nonuniqueness issue: one is to seek the minimum energy solution [34],
which represents the pseudoinverse solution for the inverse source problem; the other
is the use of multifrequency data to achieve uniqueness and gain increasing stabil-
ity [13, 15, 16, 20, 31].

In many situations, the source, hence the wave field, may not be deterministic but
is rather modeled by random processes [8]. Due to the extra challenge of randomness
and uncertainties, little is known for the inverse random source scattering problems.
In [10, 11, 12, 17, 28, 29], the random source was assumed to be driven by an additive
white noise. Mathematical modeling and numerical computation were proposed for a
class of inverse source problems for acoustic and elastic waves. The method requires
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one to know the expectation of the scattering data, which needs to be measured
corresponding to a fairly large number of realizations of the source.

Recently, a different model was proposed in [19, 33] to describe random functions.
The random function is considered to be a generalized Gaussian random function
whose covariance is represented by a classical pseudodifferential operator. The authors
studied an inverse problem for the two-dimensional random Schrédinger equation
where the potential function was random. It was shown that the principal symbol of
the covariance operator can be uniquely determined by the backscattered far field [19]
or backscattered field [33], generated from a single realization of the random potential
by using either plane waves [19] or a point source [33] as the incident field. A related
work can be found in [26], where the authors considered an inverse scattering problem
in a half-space with an impedance boundary condition where the impedance function
was random. In [30], the inverse random source scattering problems were considered
for the time-harmonic acoustic and elastic waves in a homogeneous and isotropic
medium. The source was assumed to be a microlocally isotropic generalized Gaussian
random function. It was shown that the amplitude of the scattering field averaged
over the frequency band, obtained from a single realization of the random source,
determines uniquely the principal symbol of the covariance operator. In this paper,
we study an inverse random source scattering problem for the two-dimensional elastic
wave equation with a linear load inside a homogeneous and isotropic medium. This
paper significantly extends our previous work on the inverse random source problem
for elastic waves. The techniques also differ greatly because a more complicated model
equation is considered.

The wave propagation is governed by the stochastic elastic wave equation

(1.1) pAu+ A+ p)VV - u+w?u — Mu=f in R?

where u € C? is the complex-valued displacement vector, w > 0 is the angular fre-
quency, A and p are the Lamé constants satisfying p > 0, A + 2u > 0, which implies
that the second order partial differential operator A* := puA + (A + pu)VV- is strongly
elliptic [35], and M € R?*2 is a deterministic real-valued symmetric matrix with a
compact support contained in D C R? and represents the matrix of a linear load
inside a known homogeneous and isotropic elastic solid [6]. The randomness of (1.1)
comes from the external source f = (f1, f2) . Throughout, we make the following
assumption.

ASSUMPTION 1.1. The domain D is bounded, simply connected, and Lipschitz.
The source f = (f1, f2) " is compactly supported in D and fi,7 = 1,2 are microlocally
isotropic Gaussian random fields of the same order m € |2, g) i D. Each covariance

operator Cy, is a classical pseudodifferential operator having the same principal symbol
o(x)|€]™™ with ¢ € C§°(D), ¢ > 0. Moreover, the source f is assumed to be bounded
almost surely with E(f;) =0 and E(f1f2) =0.

Since (1.1) is imposed in the whole space R?, an appropriate radiation condition
is needed to complete the problem formulation. By the Helmholtz decomposition, the
displacement u can be decomposed into the compressional part u,, and the shear part
ug away from the source:

1 1 —

u=-—VV-u+ Scurlewlu :=u, + us in R?\ D.

K K
P s

For a scalar function u and a vector function w = (uy,us) ", the vector and scalar curl
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operators are defined by
curlu = (Opyu, —0p,u) ",  curlu = 9, uy — pyus.

The Kupradze-Sommerfeld radiation condition requires that u, and wus satisfy the
Sommerfeld radiation condition:

. 1 . . 1 .
(1.2) Thﬁlgow (Orup — ikpup) =0, TILHQON (Orus — ikgus) =0, 1= ||,

where kp, and kg are known as the compressional wavenumber and the shear wavenum-
ber, respectively, and are defined by

w w
Rp = (75 = CpW Rg = — 5 =
1% (A+2M)1/2 1Shad]

Here
Cp = ()‘ + 2“)_1/2a Cs = M_l/z-

Note that ¢, and ¢ are independent of w and ¢, < c.

Given w, \, u, M, and f, the direct scattering problem is to determine u which
satisfies (1.1)—(1.2). For m € [2,5/2), the random source is a rough field and belongs
to the Sobolev space with a negative smoothness index almost surely. A careful
study is needed to show the well-posedness of the direct scattering problem for such a
distributional source. Using Green’s theorem and the Kupradze-Sommerfeld radiation
condition, we show that the direct scattering problem is equivalent to the Lippmann—
Schwinger equation. By the Fredholm alternative along with the unique continuation
principle, we prove that the Lippmann—Schwinger equation has a unique solution
which, almost surely, belongs to the Sobolev space with a positive smoothness index
e € (0,p/2) for some p > 2. Thus the well-posedness is established for the direct
scattering problem.

Given w, \, u, and M, the inverse scattering problem is to determine ¢(x), the
microcorrelation strength of the source, from the displacement measured in a bounded
domain U C R?\ D, which stands for the measurement domain and is required to
satisfy the following assumption.

AsSUMPTION 1.2. The measurement domain U is bounded, simply connected, Lip-
schitz, and convex and has a positive distance to D.

In addition, the following assumption is imposed on M.

ASSUMPTION 1.3. The matriz M = (M;j)2x2 is a deterministic and real-valued
symmetric matriz with M;; € C{(D) fori,j =1,2.

The following result concerns the uniqueness of the inverse scattering problem
and is the main result of this paper.

THEOREM 1.4. Let f,U, and M satisfy Assumptions 1.1, 1.2, and 1.3, respec-
tively. Then for all x € U, it holds almost surely that

1 Q
L. lim —— ml 2dw = d
(1.3) din o [Tt w) s = | oy
where a = ﬁ (cg’fm + cgfm) s a constant. Moreover, the function ¢ can be uniquely

determined from the integral equation (1.3) for all z € U.
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For any finite @, the scattering data given in the left-hand side of (1.3) is random
in the sense that it depends on realization of the source, while (1.3) shows that in the
limit Q — oo, the scattering data becomes statistically stable, i.e., it is independent
of realization of the source. Hence, Theorem 1.4 shows that the amplitude of the
displacement averaged over the frequency band, measured from a single realization of
the random source, can uniquely determine the microcorrelation strength function ¢.
The proof of Theorem 1.4 combines the Born approximation, asymptotic expansions
of the Green tensor, and microlocal analysis of integral operators.

For clarity, we briefly explain the steps of the proof for the main result. As men-
tioned above, the direct scattering problem is equivalent to the Lippmann—Schwinger
equation, which has a unique solution under Assumption 1.3. Considering the Born
series of the Lippmann-Schwinger equation > > u,(z,w) (see (4.1) for the definition
of u,(z,w)), we may show that the Born series converges to the solution of the direct
scattering problem when the angular frequency w is large enough. Therefore

(1.4) u(z,w) = uo(z,w) + u(z,w) + b(z,w), br,w):= Z Up (2, w).

For the leading term wg(x,w), it is the solution of the random source problem in
a homogeneous medium for the time-harmonic elastic wave without the linear load,
which was considered in [30]. If the random source f satisfies the Assumption 1.1, it
was shown in [30] that

19 1
1.5 lim 7/ W™ g (2, w Zdwza/i dy, xeU,
where a is some positive constant. In this work, it is required to consider the two
extra terms uj(z,w) and b(x,w), which are nontrivial. For the term wu;(z,w), we
show that

1 Q
(1.6) lim 7/ Wy (2, w)|Pdw =0, z€U.
1

It is quite technical and takes half of the main body text of the paper to (1.6).
The major ingredients are the asymptotic expansions of the Green tensor and the
microlocal analysis of integral operator. For the remainder b(z,w), we may show that

Q
(1.7) ngnoo ﬁ/l Wt b(2, w)Pdw =0, z€U.

The main result (1.3) can be obtained by combining (1.4)—(1.7) and using the Cauchy—
Schwarz inequality.

The paper is organized as follows. In section 2, we introduce some necessary
notation including Sobolev spaces, generalized Gaussian random functions, and some
properties of the Hankel function of the first kind. Section 3 addresses the direct
scattering problem; sections 4 and 5 study the inverse scattering problem. In section
3, the well-posedness of the direct scattering problem is established for a distributional
source. Using the Riesz—Fredholm theory and the Sobolev embedding theorem, we
show that the direct scattering problem is equivalent to a uniquely solvable Lippmann—
Schwinger equation. Section 4 presents the Born approximation of the solution to the
Lippmann—Schwinger integral equation. Section 5 examines the second term in the
Born approximation via the microlocal analysis. The paper is concluded with some
general remarks in section 6.
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2. Preliminaries. In this section, we introduce some necessary notation and
properties of Sobolev spaces, generalized Gaussian random functions, and the Hankel
functions.

2.1. Sobolev spaces. Let C§°(R?) be the set of smooth functions with compact
support and D’'(R?) be the set of generalized (distributional) functions. Given 1 <
p < 00, s € R, define the Sobolev space

HP(R*) ={h=(1—-A)"2g:g¢c LP(R}},

which has the norm
[l frsem2y = I(1 = A)2h| Lo (ra2).-
With the definition of Sobolev spaces in the whole space, the Sobolev space H*P (V)
for any Lipschitz domain V' C R? can be defined as the restriction to V' of the elements
in H*P(R?) with the norm
12/l zep(vy = mE{llgll zror 2y = glv = R}
By [27], for s € R and 1 < p < oo, Hy”(V) can be defined as the space of all
distributions h € H*P(R?) satisfying supph C V with the norm
1Al s e vy = [l mem g2)-

It is known that C§° (V) is dense in HyP(V) for any 1 < p < oo,s € R; Cg°(V) is
dense in H*P(V) for any 1 < p < 00,5 < 0; and C°°(V) is dense in H*P?(V) for any
1 <p < oo,s €R. In addition, by [27, Propositions 2.4 and 2.9], for any s € R and
p,q € (1,00) satisfying % + % =1, we have

Hy*'(V) = (H*(V))' and H™*9(V) = (H"(V)),

where the prime denotes the dual space.
Alternatively, the Sobolev spaces can be defined as follows [2]: For an integer
m >1and 1 < p < 0o, the integer order Sobolev space H™? (V') can be defined by

5f

H™P(V) = {f € LP(V), e LP(V), [B] <m},

which is equipped with the norm

£l zrmoe vy =

[Bl<m

Here 3 = (61, ) is a multiple index and 8] = 1 + B, 3:F = —2°L With the
Ty 0Ty

definition of the integer order Sobolev space, the fractional order Sobolev space is
defined by the complex interpolation between LP and the integer order Sobolev space.
Specifically, if s > 0 and m is the smallest integer greater than s, the space H*P(V)
is defined by

(2.1) H>P(V) o= [LP(V), H™ P (V)]s -

The following two lemmas will be used in the subsequent analysis. The proofs of
Lemmas 2.1 and 2.2 can be found in [33, Lemma 2] and [37, Proposition 1], respec-
tively.
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LEMMA 2.1. Assume that ¢ > 0, 1 < r < oo, %—|— % =19 € Hf(;zT(RQ),
he Hy (R?). Then gh € Hy “"(R?) and satisfies
9Pl g7 gay S gl reer @) 1Bl ger g2y

2r
2r—1-

where T =

LEMMA 2.2. Assume that s >0, 1 < p < oo, and%: e i-i—%,qhﬁ S

q1 q2 T1

(1,00], 2,72 € (1,00). Then the following estimate holds:

lghllsrsp®e) S glla @)l Al e w2) + (Rl Lr r2) (9l ze0m2 (R2)-
Throughout the paper, a < b stands for a < Cb, where C' is a positive constant

and its specific value is not required but should be clear from the context.

2.2. Generalized Gaussian random functions. Let (2, 7,P) be a complete
probability space. The function h is said to be a generalized Gaussian random function
if h: Q — D'(R?) is a mapping such that, for each & € €, the realization h(®) is a
real-valued linear functional on C§°(R?) and the function

weQ—(h(w),v)eR

is a Gaussian random variable for all ¢y € C§°(R?). The distribution of h is determined
by its expectation Eh and the covariance Covh defined as

Eh : ¢ € C(RY) — E(h, ¥) € R,
Covh : (¢1,92) € C5°(R?)? — Cov((h, 1), (h,2)) € R,

where E(h, 1) denotes the expectation of (h,) and

Cov((h, 1), (hy2)) = E(((h, 1) — Eh, 1)) ((hy th2) — (R, 1h2)))

denotes the covariance of (h,;) and (h,12). The covariance operator Covy :
C§°(R?) — D'(R?) is defined by

(2.2)  (Coviihr, P2) = Cov((h, ¢1), (h, 1)) = E((h — Eh, ¢1)(h — Eh, 1b2)).

Since the covariance operator Covy, is continuous, the Schwartz kernel theorem shows
that there exists a unique Cj, € D'(R? x R?), usually called the covariance function,
such that

(2.3) (Ch, 1 @ ¥a) = (Covpthy, tha)  Vibr, ¢y € CG°(R?).
By (2.2) and (2.3), it is easy to see that

Cn(z,y) = E((h(z) — Eh(z))(h(y) — Eh(y))).

In this paper, we are interested in the generalized, microlocally isotropic Gaussian
random function, which is defined as follows (cf. [33, Definition 1]).

DEFINITION 2.3. A generalized Gaussian random function h on R? is called mi-
crolocally isotropic of order m in D if the realizations of h are almost surely supported
in the domain D and its covariance operator Covy, is a classical pseudodifferential op-
erator having the principal symbol ¢(x)|E|™™, where ¢ € C§°(R?) satisfies suppp C D
and ¢(x) > 0 for all x € R2.
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In particular, we pay attention to the case m € [2,5/2), which corresponds to
rough fields. The following results will also be used in the subsequent analysis. The
proofs of Lemmas 2.4 and 2.5 can be found in [33, Theorem 2 and Proposition 1].

LEMMA 2.4. Let h be a generalized, microlocally isotropic Gaussian random func-
tion of order m in D. If m = 2, then h € H=5P(D) almost surely for alle > 0,1 <
p<oo. If m € (2,5/2), then h € C*(D) almost surely for all a € (0, 252).

LEMMA 2.5. Let h be a microlocally isotropic Gaussian random field of order
m € [2,5/2). Then the Schwartz kernel of the covariance operator Covy, has the form

C - co(z, y)logle — y| + 1z, y) for m =2,
h(ﬂf,y) - _ m—2
co(@,y)|z -yl +r1(z,y) for m € (2,5/2),

where ¢ € C§°(D x D) and r1 € C§(D x D) for any o < 1.

2.3. Properties of the Hankel function. In this subsection, we present some
asymptotic expansions of the Hankel function of the first kind for small and large
arguments. Let HY be the Hankel function of the first kind with order n. Recall the
definition

HV (1) = J,(t) + 1Y, (1),

where J,, and Y,, are the Bessel functions of the first and second kind with order n,
respectively. They admit the following expansions:

o _1)p ¢ n+2p
(2.4) Jn(t)=Zp!En+p); (2) ’

p=0
=g oo L E e (3)”
p=0 ’
> _1)» n+2p
(2.5) - ipopléni)p)! (;) {(p+n)+v(p)}

where 7 := limy, o {3°7_, " — Inp} denotes the Euler constant, ¢(0) = 0, ¢(p) =
5?:1 41, and the finite sum in (2.5) is set to be zero for n = 0.
Using the expansions (2.4) and (2.5), we may verify as ¢t — 0 that

2.6) H @) = m7+m+o@%n)

21
27  HY@=-214 ftlnf +b1t—|—0(t3ln 2)

mt 2
(1) __éi_i 4oyt 2 4 )
28)  H()=-— -+t It 5+ bat +O<t In -

(1) 1611 281 L L3 v 3 (5 )
(2.9) H;'(t) = i +24 t ln +bgt +O(t’In—

where b = 142y, by = 2 +1y—

_ 1_7 1 11i
30 b2 = 47 167r+87b3 247r+48 3885+ Denote

Dn(z,w) = & HP (ks|2]) — wp H{D () 2]).-
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Noting (2.6)—(2.9), we have from a direct calculation that the following asymptotic
expansions hold as |z| — 0:

Ks|2| “p‘z|

i 2 2 _ 3] ||
(2.10) Ty(z,w) = 7T|Z\ (KS In 5 Ky In —-— 5 > + b1 (k2 — K2)|z] +O(|Z\ 5 ),

i Ksl2| KplZ] i
1 _ Y ag BslEl a4 BplZ 2 1.2 2 2
(2.11) To(z,w) = (Hs In 5 Ky In 5 ) || ﬂ_(ns k5) +O(]2]7),

_ 2, 2y 1 14 4 3. |2
(212) Ty(o,) = (6] = 2) o+ ) RS)\Z|+0(|2| 1n3).

For a large argument, i.e., as |z| — oo, it follows from [5, equations (9.2.7)-

(9.2.10)] and [32, equation (5.11.4)] that the Hankel function of the first kind o
has the asymptotics

HO(2) _\feuz(zﬂ)w)
z

N
(2.13) (Za»n)z T+ 0(2 |7N71)), largz| < 7 — 0,

Jj=
where § is a small positive number and the coefficients agn) = (=2i) \/g(n,j) with

(4n? —1)(4n? — 32) - (4n% — (2 — 1)? )

(n,0)=1, (n,j)= 223 51

Using the first N terms in the asymptotic of Hy(ll)(,'<a|z|)7 we define

1 J
2.14 g — i1zl —(3+4 )”)Z (n)
( ) ’rL,N(K"ZD KJ‘Z| =~ K:‘Z|

Denoting I';, v (k|2]) = H7(11)(I€|Z|) - Hfllj)\,(n|z|), it is easy to show from (2.13) that

s

N+2
(2.15) T (k]2])| < c<ﬁ|12|> .

3. The direct scattering problem. This section aims to establish the well-
posedness of the direct scattering problem for a distributional source. Based on
Green’s theorem and the Kupradze-Sommerfeld radiation, the direct problem is equiv-
alently formulated as a Lippmann—Schwinger equation, which is shown to have a
unique solution by using the Riesz—Fredholm theory and the Sobolev embedding the-
orem.

By Lemma 2.4, we have that f € H~5P(D)? almost surely for all e >0, 1 < p <
00 if m = 2; and f € C%*(D)? almost surely for all a € (0, 2:2) if m € (2,5/2).
Therefore, it suffices to show that the scattering problem (1.1)—(1.2) has a unique
solution for such a deterministic source f € H==?(D)2.

Introduce the Green tensor G(z,y,w) € C?*2 for the Navier equation

1 1
(31) G(x,y,w) = ;(I)(xv Y, KS)I + Evzvl(@(x,y, K’s) - q)(xaya ’ip))a
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where I is the 2 x 2 identity matrix, ®(x,y, k) = iHél)(/ﬂx —y|) is the fundamental
solution for the two-dimensional Helmholtz equation, and V.V is defined by

2 2
v VT 89c13c1<)0 ax1$2
a%zivlgo 8{%2£D2

for some scalar function ¢ defined in R?. It is easy to note that the Green tensor
G(z,y,w) is symmetric with respect to the variables = and y.

In order to obtain the well-posedness of the scattering problem (1.1)—(1.2), we first
derive a Lippmann—Schwinger equation which is equivalent to the direct scattering
problem, and then we show that the Lippmann—Schwinger equation has a unique
solution.

THEOREM 3.1. For some p > 2, %—i— ﬁ =1,0<e< %, fe HO_E’Z)/(D)Q, i M

satisfies Assumption 1.3, then the scattering problem (1.1)—(1.2) is equivalent to the
Lippmann—Schwinger equation

(32) ule)+ /D Gz, y,w) M (y)uly)dy = — /D Glay.w)fy)dy, = cR>.

Proof. Let u € H_P(R?)? be a solution to (3.2), and then we have

loc

—/ G(z,y,w)M y)dy — /G’x y,w)f(y)dy, zcR2
D

Since the Green tensor G(z, y,w) and its derivatives satisfy the Kupradze—Sommerfeld
radiation condition, we conclude that u also satisfies the Kupradze-Sommerfeld ra-
diation condition. By (3.1), the Green tensor G(z,y,w) satisfies

(33)  WAG(r,y,w) + (A + p)VV - Gla,y,w) + W Gla,y,w) = —3(x — y)I.

Letting y = 0 and taking the Fourier transform with respect to  on both sides of
(3.3) yields

(3.4) [((Am2ple? — I +4r* A+ p)e - €T GE) =1, € eR2

Note that the integral in (3.2) is a convolution since G(z,y,w) is a function of
x —y. Taking the Fourier transform on both sides of (3.2) leads to

(3.5) a(e) = ~G()(F(&) + Mu(€)).

Multiplying (472pu|€]? — w?)I +472(A+ p)é - €T on both sides of (3.5) and using (3.4)
gives

[(Am2lg* = )T +4m> (A4 )€ - €71 a(E) + Mu(§) = —f(9)-
Taking the inverse Fourier transform yields
pAu+ A+ p)VV - u 4+ w?u — Mu = f  in R,

Hence, u is the solution of the direct scattering problem (1.1)—(1.2).
Conversely, if u is a solution of the direct scattering problem (1.1)—(1.2), we show
that u satisfies the Lippmann—Schwinger equation (3.2). It follows from (1.1) that

pAu+ N+ p)VV - u +w?u = Mu+ f in R?,
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where u € H;P(R?)? and M;; € C3(D). Noting that f € H(;E’p/ (R?)?, we have that
Mu + f € Hy " (R?)2. An application of Lemma 4.1 in [30] shows that for some
fixed z € R?, G(z,-,w) € [L2.(R2) N H-P(R2)]2%2 for p e (1,2). Since 0 < & < %, a

loc loc

simple calculation gives that % —5>0. Let 5= % — 5 and define p := %5“ < 2, and

then % -1ic< % — 5. It follows from the Sobolev embedding theorem that H, 1P (R?)

loc

is embedded into H;?(R?), which implies that G(z,-,w) € [H¥(R?)]**2. Choose a

loc

large enough ball B, such that D C B,., and then we have in the sense of distributions
that

/B Gz, y.w) [1duly) + (A + W)VY - u(y) + wu(y)] dy
- /B Gl y.w) M (y)uly) + F)dy.

Denote by T the operator that maps u to the left-hand side of the above equation.
For 1 € C*°(R?)?, by similar arguments as those in the proof of Lemma 4.3 in [30],
we obtain

Top(x) = —ap(z) + /8 (G ) P(y) — PG,y b(wlds(s),

where Pt := ug—‘f + (A4 p)(V-1p)v and v is the unit normal vector on the boundary
0B,.
Approximating w with smooth functions, we get

—u(z) + /@ (Gl .)Puly) = PGz, y.0)u(y)lds(y)
- /B Gl y,w)[M (y)u(y) + F()]dy.

Using the radiation condition yields

lim (G (2, y,w)Pu(y) — PG(z,y,w)u(y)]ds(y) = 0.

r—oo Jap,.

Therefore,

u(z) + /D Gy )M (y)uly)dy = — /D Glr.yw)f(y)dy, = €R2,

which shows that w satisfies the Lippmann—Schwinger equation (3.2) and completes
the proof. ]

The Lippmann—Schwinger equation (3.2) can be written in the operator form
(3.6) (I + Ky)u=—-H,f,
where the operators H, and K, are defined by

(3.7) (Hof)(x) = /D Gle,y,w)f(y)dy, z €D,

(3.8) () (x) = /D G(a,y,0)M(y)u(y)dy, =€ D.
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LEMMA 3.2. Assume that p > 2, I%—F i =1 0<e< %, and M satisfies

Assumption 1.3. Then the operators H,, : Hy *(D)? — H*(D)? and K, : H*P(D)? —
H®P?(D)? are bounded for s € (0,1). Moreover, K, : H®P(D)?> — H®P(D)? is
compact.

Proof. We study the asymptotic expansion of the Green tensor G(z,y,w) when
|z —y| — 0. Recall the Green tensor,

1 1
G(z,y,w) = ;‘P(x,yms)f - EVmVI(‘I)(x,yws) — ®(z,y, Kp)),

and the recurrence relation for the Hankel function of the first kind [32, (5.6.3)],

d —-n -n
S HEO O] = e Y ).

A direct calculation shows for 7,j = 1,2 that

aiimj [(I)(.T, Y, KS) - ‘I’(.’E, Y, HP)]
(39) — _1#1"1 (.’L‘ _ yaw)(sij + i(l’z - yi)(xj2_ yj)F1($ . y,w),
4|z -y 4 lz =y

where 6;; is the Kronecker delta function. Substituting (2.10)—(2.11) into (3.9) gives

62 [(I)(Ivyv’%s) - (I)(xvyﬂip)]

XTiTyj
1 Kslz — gl kplz —yl

Comparing (3.10) with (2.6), we conclude that the singularity of V.V (®(xz,y, ks) —
®(z,y, kp)) is not exceeding the singularity of ®(x,y, ks)I when |x—y| — 0. It follows
from Lemma 2.1 that H, : H;*(D)? — H*(D)? is bounded for s € (0, 1).

For w € H*?(D)? and M;; € C§(D) C HO_E’p/1 (D), by Lemma 2.1, we obtain
that M;;u is a well-defined element of H(;s’pl (D)? and

(311) HMiju||H0*5vPI(D)2 S HMU ||H0*5=P'1 (D) ||u||H5’p(D)2'

For some fixed € € (0, %), we define § = %75 € (0,1)and s =1—4 € (0,1). It is clear
to note that 3 — £ < % — 5. The Sobolev embedding theorem implies that H*(D)

is embedded compactly into HSP(D) and Ho_s’p/(D) is embedded compactly into
H;*(D). Noting that K,u = H,(Mu) and Mu € H, =" (D)2, which is embedded
compactly into Hy *(D)?, and that H, : Hy *(D)? — H*(D)? is bounded, we claim
from (3.11) that K, : HSP(D)? — H®P(D)? is bounded and compact. 0

Now we present the existence of a unique solution of the direct scattering problem
(1.1)—(1.2).

THEOREM 3.3. Let f € HO_E’p/(D)2 with 0 < € < 12; and M satisfy Assump-
tion 1.3. Then the Lippmann—Schwinger equation (3.6) has a unique solution u €
H P (R?)2, which implies that the scattering problem (1.1)—(1.2) has a unique solu-

loc

tion u € H; P (R?)? which satisfies the stability estimate

||u||HE’p(R2)2 SJ ||‘f||H(;5’p/(R2)2'

loc
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Proof. For the Lippmann—-Schwinger equation (I + K, )u = —H, f, by Lemma
3.2, we obtain that H,f € H>P(D)? for f € H(;E’]’/(D)2 and I + K, : HSP(D)? —
H®?(D)? is a Fredholm operator. Thus, by the Fredholm alternative, it suffices to
show that (I + K, )u = 0 has only the trivial solution u = 0.

For (I + K,)u = 0, we have

ule) = - [ Glogo)Mu)dy, =<k
D
which implies that w is smooth in R? \ D and

(3.12) a(€) = —G(&) Mul().

Multiplying (472p|€|? —w?) I +472(A+p)€-€ T on both sides of (3.12) and using (3.4)
gives

[4m* g +Am* (A + )€ - € — w?la(e) = —Mu(e).
Taking the inverse Fourier transform of the above equation yields
(3.13) pAu+ A+ p)VVT w4 wPu = Mu  in R%

By the Helmholtz decomposition, there exists two scalar potential functions 1 and
1p9 such that

(3.14) w = Vi + curlgy = (9o, %1, 00,01) | + (Duyth2, —00,402)
Substituting (3.14) into (3.13) gives that

VIA 4 20) Ay + w?i] + curl[pAgy + w?ihy] = MV + Mcurly,  in R?,
which implies that

(A4 2u)A(Viy) + w? (Viyy) = MV,
pA(curly) + w? (curlyy) = Mcurli,.

Letting u, = Vi, and us = curliys, we obtain that

(3.15) {A_"p t“iup = A'+—12NMup in R?,
T.ILH;O” (Orup — ikpup) =0
and
(3.16) {Au +wtug= [ Mu, n B2,
Tlggo“ (Orus — ikgus) = 0.

Since suppM;; C D, it follows from (3.15)—(3.16) that u,, and us satisfy the homoge-
neous Helmholtz equation in R? \ D and the Sommerfeld radiation condition. Hence,
u, and us admit the following asymptotic expansions:

einp|a:| eil-cs\z| A N
———Us 00 (E) + o|z]2).

(3.17)  wup(x) = 47r|x\%

~ 1
= m“p,m(@ +o(|z]Z), us(x)
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Noting that u,, satisfies the Sommerfeld radiation condition, when r — oo, we have

/ |0,y — ikpuy|” ds = / (10pupl® + K2 |up )ds + 2f<;plm/ w0, Upds — 0.
d 9B,

r T

Combining the second Green theorem and (3.15)—(3.16), we get

/ up 0, Upds = / |V, |*dr — fff)/ lup|?dx

aB, B, B,

+ ﬁ /B (1\411|up,1\2 + M22|up,2|2 + Migup1tp 2 + Mleup,Q) dz,
where up 1 and up o are the components of u,,. Since M is real-valued and symmetric,
taking the imaginary part of the above equation leads to Im faBT u,0,Upds = 0,
which yields lim,_ o faBr |up|?dz = 0. Using (3.17), we obtain fBBl [up,00|?ds = 0,
which implies u, oo = 0, s0 up(z) = 0 in R?\ D. Similarly, we can obtain us = 0
in R? \ D. Thus, we have w = 0 in R? \ D. Since M;; € C}(D), it follows from the
unique continuation (e.g., [4]) that u = 0 in R?, which shows that I + K, is injective
and completes the proof. 0

4. Born approximation. As shown in the previous section, the direct scatter-
ing problem is equivalent to the Lippmann—Schwinger equation

u(x) +/DG(x,y,w)M(y)u(y)dy = —/DG(ac,y,w)f(y)dy, x € R2.
Consider the Born sequence of the Lippmann—Schwinger equation
(4.1) up(z) = (—Kptupn_1)(z), n=12,...,

where the initial guess is given by

up(z) := (—Ho f)(2),

which is called the Born approximation to the solution of the Lippmann—Schwinger
equation. Here, K, and H,, are operators given by (3.7) and (3.8), respectively.

We aim to show that for sufficiently large w and « € U, the Born series Y ty, (z)
converges to the solution w(z) and the higher order terms decay in an appropriate
way.

LEMMA 4.1. Forany 1 <p <2<r <oo,s € (0,1), and w > 1, the following
estimates hold:

_ 1_1
HHW||HO_S,p(D)2_>H5,T(D)2 < w A G =]

—142[s+(1—1
||Kw||HSY2P(D)2—>H512P(D)2 Sw et ”)]a

_1
||Kw||Hs,2p(D)2*>Loc(U)2 S w1+2s P,
where the constant ¢ = ¢(©) in the inequalities is finite almost surely.

The proof of Lemma 4.1 can be found in [33, Lemma 5]. By Lemma 4.1, we have
for large enough w that

N
. + Ky, Uy = U + (— Ug — Uy as — 00.
4.2 I+ K DNV KN+ N

n=0
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Since (I + K,,)~tug = u, taking the inverse of the operator I + K, in (4.2) leads to
(4.3) u(z,w) = up(z,w) + uy (z,w) + bz, w),

where b(z,w) := Y 07, u,(z,w). With the convergence of the Born approximation
(4.3), we can analyze each term in the Born approximation. For the leading term wy,
we have the following result [30, Theorem 4.6].

THEOREM 4.2. Let f satisfy Assumption 1.1. For all x € U, it holds almost
surely that

. 1 @ m+1 2 1
lim ——— w |uo(z,w)|?dw = a ——o(y)dy,
1 r2 |7 — Yl

where a is a constant given in Theorem 1.4.

Now we analyze the term b(z,w). For n > 2, by Lemma 4.1, we get

|wn (2, w) || Lo ()2 = [[KSuo || Lo ()2

< 1Kol mew(y2— noo 012 1Ko 15 Dy e (02

X ||Hw||HO—€>P'(D)2_>Ha,p(D)2 ”f”HO_E"’/(D)?
< w1+257%w(n71)[71+2(5+17%)]w—1+2[e+pi,—%]
< o2 (D24 5 —3)]

which gives

2
w20 H=2)

10
< w68+3—7.

o0
Z u co 2 < w45+2_%
n=2 fetnlli e 5 1 — @ 2eH1=0)

Since 0 < € < 2 and p > 2, we can choose suitable ¢, p such that ¢’ = 6 + 5 — 1?0 is
small enough and

(4.4) Z l[wn||Loo 02 S w e

n=2

Hence, when Q — oo,

1@ 1/ 1 Q-1
45) —— mtlip 24 <7/ L A ——
(4.5) Q—l/lw |b(z,w)] wNQ—llw w=-"" 01 — 0,
where ao = m + 2¢’ — 3. Noting that m € [2,5/2), we have a € (—1,0), which is used
in (4.5).

5. The analysis of u;(x,w). In this section, we consider the term u;(z,w) in
the Born series (4.1), which is given by

(61 w(w) = /D /D Gla.y. ) M(y)Gly, 2, 0) f (2)dydz, € U.

It turns out the term w;(x,w) is very difficult to analyze. Fortunately, after tedious
calculations, we find out that the contribution of u; can be ignored. We present the
main result of this section.
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THEOREM b5.1. Let f, U, and M satisfy Assumptions 1.1, 1.2, and 1.3, respec-
tively. Then for x € U, it holds almost surely that

Q
5.2 lim —— Wy (2, w)|2dw = 0.
(52) Jim 5= [ o)
The proof of Theorem 5.1 requires the asymptotic expansions of Green’s tensor
and microlocal analysis of integral operators. Since the whole proof is lengthy, we
split it into several parts, and which consist of Lemmas 5.2, 5.3, and 5.6.
Recalling the Green tensor in (3.1), a direct computation shows

(1 i
—(LHD (hilz — ) — — — Ty (z— I
G(ﬂf,y,(ﬂ) (4/,L 0 (K’b|x yl) 42 |fE _y‘ 1(']: y7w)>
(5:3) T e o —y) (z—y)"
: W2 g2 el -y (r -y,

where z —y = (71 — y1,72 — y2)' and Iy, Ty are given in (2.10), (2.11). Noting
the definition of H’r(Llj)V in (2.14), we define the notation 0, (z,w) = H:Hr(:())(lislzb -

n (1
K2 H ) (k) 2)),

i 1 i 1
Galor) = (Bl =0 = 51— ) ) I
i 1
(54) + 762(:17 - y,W)(l’ - y) : (‘T - y)Ta

4w? [z — y|?

and
(5.5) uy i (z,w) ::/D/DGo(x,y,w)M(y)G(y,z,w)f(z)dydz, e U

Now we estimate the order of the difference w; —u;; with respect to the angular
frequency w.

LEMMA 5.2. For u;(z,w) and w1 ;(x,w) given by (5.1) and (5.5), respectively, we
have

(5.6) luy (2, w) — uyy(z,w)| Sw 3t zeU,

where €; is a sufficient small positive number.

Proof. A simple calculation yields

ur (2, w) = u (2, w))|

/ (Gl y,w) — Gol,y,)) M(y) / Gy, z,w) f(=)d=dy
D D

5 HG(Iayaw) - GO(‘Tay?"‘})HLP’(D)’ZXZHwa”Lp(D)Z-

Since z € U, y € D, there exists ¢1,ce > 0 such that ¢; < |z — y| < ¢ca2. By (2.15), we
have

_3
(5.7) ITn0(kle =Dl py S 572
A direct computation shows that VI, o(k|z —-|) < x~2. Hence

_1
(5-8) IVNToo(kle =Dl py S 572
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By (5.7) and (5.8), we get

_3
okl = Dl ger oy S 5727

Therefore,

(59> ||G(l‘7 .7("}) - GO(I? 'aw)HHa,p/(D)zxz S w_%+5.

It follows from Lemma 4.1 that we obtain

< oo 12EeF1-2)

(5:10) Hofllmerior < WHull e ey gromoe 1o (1

where we use the fact that || fl|, is bounded almost surely. Denoting ¢; =

;<P (D)2
3e+2(1 - 5) which can be suﬂi(nent small for suitably chosen ¢ and p due to p > 2
and 0 < e < %, we conclude the result from (5.9) and (5.10). O

In order to analyze the term u; ;, we replace the Green tensor G(y, z,w) in uq
by Go(y, z,w) and define

(5.11)  wup,(z,w) / / Go(z,y,w)M(y)Go(y, z,w) f(z)dydz, =€ U.

LEMMA 5.3. For uy (z,w) and ui ,(x,w) given by (5.5) and (5.11), respectively,
the estimate

(5.12) lug (2, w) —uy p(z,w)| Sw e, zeU,
holds for any € € (0, %)

Proof. By (5.5) and (5.11), a direct calculation shows that

ul,l(xaw) — Ui, x W / / GO ‘T Y, W ( ) (G(yazaw) - Go(y,Z,W)) f(Z)dde

2
(s oy f;iz) ,

Gk l=1 Gk, l=1

I](Ql = /D/DGO,ij(xyyaw)Mjk(y) (Gri(y, z,w) — Go iy, z,w)) fi(z)dydz

for 4,7,k,0 = 1,2. Here, G;; and Gy ; represent the elements of the matrix G and
G|y, respectively.

Now we only focus on the analysis of the term I ﬂ)l and show the details; the other
terms can be analyzed in a similar way. In the dual sense, we have

I = (G (y, z,w) — Go(y, 7,w),
(5.13) Go,11 (2,4, W) MuW)1(2) (e (pw py, 57 (Dx D))

By (5.3) and (5.4), we can split G11(y, z,w) — Go11(y, z,w) into three terms:

Gll(y7 Z,LO) - GO,ll(ya Z,LU) = gO(y - Z,W) + gl(y - Z,W) + gQ(y - Zaw)a
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where

i
go(y — z,w) = —To0(ksly — 2),

4p
1 1
gy —zw) = —DH[HSFLO(’%\?J —2[) = wpl'10(kply — 2])],
i (y1—21)2 2 2
go(y — z,w) = @W[KSFZO(’%W —z]) - "pr2,0(’<3p|y —z|)].

Notey, z € D and D is a bounded domain. Next is to estimate the term ||G11(y, z,w)—
Go,11(Y; 2,W)|| e5(Dx Dy, Which requires estimating |g;(z,w)|ges(py,J = 0,1,2 for
some bounded domain containing the origin.

We analyze the three terms one by one. For large kg|z|, it is easy to note from
(2.15) that

(5.14) 190(z,w)| S (ks[2]) 72

For small kg|z|, using (2.6) and (2.14) gives that

(5.15) [90(z,)| £ (ksl2]) ™% = (slzl) 2 (a2l < (mall) 2.

By (5.14) and (5.15), we obtain that
_ : ) (R ) )
(5.16)  llgo(z,w)ls(p) S/ w2023y < w—%l’/ Pl 8Pgy < 8P
B 0

holds for p < 3, where R = max{|z|,z € B}. Since

i 1 0 1 i(ks|z|— %
Vao(z,w) = @V <H(§  (ks|2]) — al \/Je( ] 4)>

1z 1

1 3 x 1 L .
R SH(l) < L (0) P i(kslz|—F) _: (0) 2|22 i(rs|z|—F)
TP < keH " (Ks|2|) + 500 K |z| " 2e iag k2 |2|" %€ ,

we have for large ks|z| that

1 1 _1 3 1 1 1 1
(17  Vaolerw)] S wdlel ™t 4 s Hlat 1 wdlelF < et

For small ks|z|, we get
1 _1 3 1 1 _1 3
(5.18) [Vgo(z, )| S ms(hsl2]) ™" 4 ks 2[2]77 + R3[2]72 S ks 7[2] 2.

S _ 4
By (5.17) and (5.18), we conclude for p < 3 that
5.19 Vgo(z,w)|?, < w2P|2| " Pz 4 [ WP || 2Py < w??,
L#(B)
B B
. S _ 4
Using (5.16) and (5.19), we have for p < 3 that
5.20 go(z,w b < wTBP 3P < 3P,
H *P(B) ~ ~

From (2.1), we have

(5.21) H*?(B) := [L(B), H'7(B)]..
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Using (5.16) and (5.20)—(5.21), we arrive at

(522)  llgo(z )llm=s(m) < l90(2,w)ll 17 (s 190 (2, W) 5155y S w

—%+25.
Now we analyze the term g1 (z,w) which is given by
i 1

= 2 o T ro(ssl2]) = moTuo (ol 21).

gl(z,w) =

For large w|z|, it follows from (2.15) that
191(2,w)] S w2z Hw(wl2]) 2] S w2252
CER

(5.23) = S (w]2))7.

For small w|z|, by (2.5) and (2.8), we have

(5.24) l91(2,w)| S (w]2]) 7%
.. . . ~ 4

Combining (5.23) and (5.24) implies for p < 5 that

R
I (es) gy S [ ™ $0lal$0ds S w80 [0y S,
B

For convenience, we split g1 into two parts by ¢1(z,w) = g11(2,w) + g12(2,w) with

i1
g1 (z,w) = *wmrl(%w),
i 1 i (1) —3nxi % ikp|z| % iks|z| -3 -3
glg(z,w):mm@l(z,w):—zao e" 1™ (cg el rlFl — 2 e IFN TR 2] T2,
For large w|z|, by (2.7), we have
(5.25) g (2, w)] S w2 7.

For small w|z|, by (2.5), we have

wl2|

(5.26) 911 ()| < ]m <w b

. . ~ 4
Combining (5.25) and (5.26) yields for p < 3 that

R
(5.27)  lgu ()25 5 < / w3840 < m%ﬁ/ =3y < w37,
B 0
For Vgi1(z,w), we have
i oz
Vgll(Z,W) = mwFQ(Z,W)
For large w|z|, (2.7) implies

(5.28) Vg1 (z,w)| Sw %22
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For small wl|z|, (2.6) implies
(5.29) Vi1 (z,0)| S 2|7 Sw™z 2|75

Following (5.28) and (5.29), we get for < 4 that

R
(5.30)  Vgui(z,w)ll75 5 5/ w™ 3P| 2| 3P dz gw—%ﬁ/ P3Py < 3P
B 0
Using (5.27) and (5.30), we have that
(5.31) lg11 (2, W) By sy S w27 +w7 3P Sw2P,
which gives after combining (5.21) and (5.27) that
e _3
(5:32) g (zw)llmesm) S 911 (2,0 5 6m) 1911 (2 )51y Sw ™27
Since
_ i (1) —3xi % ikp|z| % irs|z| _3 _3
912(Z,w)——1a0 e" 1™ (cgel PPl —cZe w2272,

it suffices to prove that w=2|z|~2 € H5?(B). By the Slobodeckij seminorm, we need
to prove

P

~ _3 o _3 P
C5B = w—%p/ Mdzdz’ < 00,
BJB

R
|w |z| |Z*Z/‘2+€ﬁ

which requires showing the following two lemmas: one is the integrability criterion
and the other is Young’s inequality for convolutions [2, Theorem 2.24].

LEMMA 5.4. For the n-dimensional space, we have
1 . .
——dzr < oo if and only if p<n.
<1 T/?

This lemma is fundamental and can be easily proved by using the polar coordi-
nates.

LEMMA 5.5. Let s1, 82,83 > 1 and suppose that i + i + é = 2. It holds that

L m@ihate = whadods| < mllnalalnal.,
for any hy € L**(R™), hg € L*?(R"), hs € L*3(R").
Since

(212 = l22) (2" + |2'[2]2]2 + |2])

|31 |3

2|2 — || 72| = ‘

|2 — 21112 +12]7)

)

. ’(zw — 2(12'[? + |2%)?

217122 (|2]7 + |2]7)

21712/
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we have
3 1 1~
llel 2 = |74 (/1% + |21y :
/ / _ l24€p ZdZ ; Note dzdz
|2 Z‘ |z\2p|z\zp|z_z\+pp
dzdz d /
// |z \P|z’\21’|z 2! |2+ep—D +// E ‘2P|Z/|p|z 2| 2+ep—p dzdz

=1, + L.
VlVe choose ;5 = 190, € = é, S$1 = gg, Sg = %Lansl S3 %, -and then. we have
ot g + - =2and ps; <2, 2p82 <2, (2+¢ep—p)ss < 2. A direct application of

Lemmas 5. 4 and 5.5 leads to

h :/ / XB() P xB(E | X B (2 = 2|2 = 2|7 P dzd
R2 JRR?
-5 _35 — 5—D
< 7Pl 2122 ) 121~ CFP7P|, < 00,

where Bsp is the ball with radius 2R and center at the origin, and xp is the charac-
teristic function of the domain B which equals to 1 in B and vanishes outside of B.
We can prove Iy < oo by a similar argument. Therefore,

_3
2

(533) o123, ) S

Next we analyze the term go(2,w), which is given by
i G 2
g2(z,w) = mw[ﬁsrzo('fsk\) - "GpF2,0("5p|Z|)]~

For large w|z|, (2.15) shows that

(5.34) 9202, S = (W20sal2)E + K20yl ) S (wlal)E.
For small w|z|, we have from (2.11) that

(5.35) 192(2,0)| S (Rol2)) 7% + (pl2)) 77 S (w]z]) 72 S (w]2l) 72,
Thus, (5.34) and (5.35) implies for § < 4 that

R
(5.36) Hgg(z,w)Hgﬁ(B)5/w—%ﬁ|z| 89z < w p/ P30y < o 37,
B 0

A direct computation shows that

i 5 _ 5. 3 .
Vga(z,w) = Q—Lﬂzlelao)|z| 2g7a™ [ﬁ;ﬁemf’“ /<;2e”“‘ q

. . 2 . 2
iz 1z 27 (2,w) L @21 2 _sp

r i
22 PO ~ g et 2% TP

[(Zm§|z|_2 - ilisg|z|_2> elrslzl (2}$I§|z|_g - ifipg|z|_%> ei’“f’lzl] .

For large w|z|, we know from (2.7) that

X

(5.37) IVg2(2,0)| S w™%|2] 7% +wilz]
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For small w|z|, we obtain from (2.11) and (2.12) that
(5.38) Voa(z @)l Sw™F o] 73 +wile] 3 4 ]2 SwTH R,
By (5.37) and (5.38), we conclude for p < § that

(5.39) ||Vg2(z,w)||zzi,(3)§/w%f’|z|*%ﬁdz—|—/ w 2P| " 8Py < Wi,
B B

Using (5.36) and (5.39), we get

(5.40) ||92(z,w)||§;w(3) S w P 4 aP < w3k,

It follows from (5.21), (5.36), and (5.40) that

(541) g2z )llmes(m) < l92(2,w)ll 15 (s l92(2, @) |51 5() S w
(

Noting that D is a bounded domain, and combining (5.22), (5.32), (5.33), and
(5.41), we obtain for any € € (0, 1] and p € [1, L] that

—%+2a.

1G11(y; 2,0) = Goui(y: 2,0) le s (DxD) S w2t

Since Go11(7,y,w) is smooth for z € U and y € D, Mi1(y) € C5(D), and fi(z) €
H™=P(D) for any ¢ > 0 and 1 < p < oo, we have Go11(z,y,w)Mi1(y)fi(z) €
H,“?(D x D). Moreover,

. _m 1 — 37
Go,11(z,y,w) = L67416150)% 2 ginelolg—y L€ 7 3 aél)
A e —y|2 4z —yl2
1. L. 3
% (Csz ems|:1:7y\ 7 CS emp|:r7y\) w2
5 .
! 6717”(1:1 - y1)2 (2) 3 ik |z—y| 3 ik |z—y| -1
e M C Lt S
Thus, we obtain for sufficient large w that
_1
(542) ||G0711($ayaW)M11(y)f1 (Z)HHO—H;(DxD) Swre.

Substituting (5.41) and (5.42) into (5.13) yields that |I\1)] < w=2+ holds for any
g€ (0,1

Repeating a similar proof, we can obtain estimates for Iﬁ)z, cey Ig)Q and get (5.12).
The details are omitted for brevity. O

Noting (5.6), we have
|u1(x,w) - ulﬂ’(xa w)l S w72+6a

which gives

1 ? 1 2 2 @ 1 2
ﬁ/ WMy (2, w) [Pdw < 0 1/ W™ty (2, w)|*dw
-1, -1
2 © 342
+ ﬁ/ wm_ + Edw.
-1/

It is easy to verify that

2 /Q W32 4w 0

Q-1

for m € [2,5/2) and small enough . To prove (5.2), it is sufficient to prove the
following result.
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LEMMA 5.6. For the item w1 ,(x,w) given by (5.11), we have

Q
(5.43) ngnoo W/ W™y (v, w)Pdw =0, x€U.
-1

Proof. Tt follows from a straightforward but tedious calculation that the vector
w1 ,(x,w) can be decomposed into three parts according to the order of w in the
following form:

(5.44) uy (2, w) = v1(z, W)w ™+ oz, w)w ™2 + v (T, wW)w 3,
where
—3i 2 . M —§mi
w1, w) = — e . aéo) / / elrs(lz=yl+ly—=)) (%)f(z) _dydz — e aéO)a(()Q)
16# Cg |x—y|§|y—z‘§ 16#
X [/ / (csei“s(‘“”—ylﬂy_zl) - c§c;%ei(“s\z—y|+f<p\y—2|)) M(y)J(i/ - Z)f(j) dyd>
[z —ylzly — 2|2
/ / myMwmm/m,cczlmwzumzng( NW@V(LMM]
|z —ylEy — 2|2

—5mi 2 . 3 3 .
4,§Ajg,a§) — Beirallo=ylHly=2D) | (2 02 cilrslo—yl+rply—2])
16 D D b

4_C§c§eunamy+nqyz>__cgemp<zyw|yzD)-7($“y)ﬂ4(g)J(y“j)f(z)dydz
[z —ylzly — 2|2

v3(,) = (D// (m femallu—sl) _ o 2ei<nsm—y|+~py—z|>>

y Aﬂ@f@)sdd_%‘“am<1/ /(1mmyHyz>
|z —yl2ly — 2|2

_céc;%eiwplw—yﬂsly—w)M W) gy, + oD a?)
e —yl3ly — 2|2 16

XL/TJ/ <c§em&umy4|yz>__czczemnqm ylrply—2)

_%cemmxy+%wZ)+C2MMwMHyﬂ0A4@)( DFE) g
|z —yl3ly — 2|3

—27i
¢ aénagz)// (cgemm—ywy—zn_c o} eilkpla—yl+rsly—z)

B eitlomultraly—2)) o 2 gimala—yl+ly—=) | T@ZIMWIFE) )
v P |z — yl 3y — 2| 7

— 37 2
vy(e,w) = Sl ./;(/; ( enello—ul+r==D) 4 oF o8 pitealo—yl4mply—2)

4_c§cgeu~mx—yr+mqy—z)__cpemp<x—yr+y—zn) MW g,
|z —yl 3y — 2|

Here J(z —y) = (z —y)(z —y)T and J(y —2) = (y — 2)(y — 2) "



4592 JIANLIANG LI AND PEIJUN LI

By (5.44) and the Cauchy-Schwarz inequality, we have

Q Q
/ wm+1|u1,r(1’,w)|2dw < / (wm71|vl(x,w)|2
1

1
+ w3 vy (x, o.))|2 + wm_5\vg(ac, w)|2)dw.

Noting the facts that |z — y| has a positive lower bound for z € U, y € D, |||y —
Z|"2 ||H%119#O(DxD) is bounded from the above, M;;(y) € C}(D), and ||fJ»(;z)||H,%lo

is bounded from the assumption, we conclude that

(D)

|lva(z,w)| < 00, |vz(z,w)| <oo, zeU, w>1.

Hence, we have as w — oo that
: /Q "y ()P S /Q "By 0
—— w vo(z,w)|“dw < —— w w )
Q-1/; Q-1/

1 (@ 1 (@
01 1/ WP w3 (2, w) |Pdw < 0 1/ W™ S dw — 0.
-1/ —

To prove (5.43), it suffices to prove that
1 Q
(5.45) lim 7/ W™ oy (2, w)|?dw = 0.
We claim that in order to prove (5.45), it will be enough to show that
(5.46) / W™ 2wy (z,w)|*dw < 0o, almost surely.
1

To show this, we notice that

1 (¢ Qw
—/ Wy (2, w) | dw S/ — W™ 2|y (z,w)|*dw
Qi 1 @

< / min (1, w> W2 oy (2, w)| P dw.
1 Q

From the dominated convergence theorem, the last integral in the above inequality
converges almost surely to zero as Q — 0o, so the claim follows. The remaining part
of the proof will focus on (5.46). To this end, we define

o, w) // iw(er o=yl +ealy—2])

(w1 = y1)P! (22 — y2)P2 (g1 — 21)" (y2 — 22) a(y)f(2)dydz,

5.47
(47 o~ ylly — oI

where ¢1,¢5 > 0, p1,...,lo > 0, f denotes a generalized Gaussian random field
which equals to fi or fa, and q(y) € C}(D) stands for M;;(y). From the formu-
lation of v (z,w), we know that it is a linear combination of g(z,w) for different
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(I1,1l2, p1,p2,p3,pa) € S which is given by

S—{G ; 0,0,0 0) (; ; 0 0,2,0) (%,2,0,0,1,1), (%5 0,0,0 2)
(G h20n0) (¢ 3020a), (hnan) (33 20m
G 2annn) (L0n), (G 2anas). (3 2003)
Ganna) (bhnand) (b hoars). ( bozos)
To prove (5.46), it is enough to show that
(5.48) /1 " ™2 g(0,0) Pdw < o0, almost surely.

In the following, we consider two cases.

Case 1. m = 2. In this case, Lemma 2.4 claims that f € H~5?(D) almost
surely for any ¢ > 0 and 1 < p < oo. In order to avoid the distribution dualities, we
introduce the mollification f5 := fxps, where ps := §=2p (2),p € C§°(R?) is a radially
symmetric function satisfying fRZ p(x)dx = 1. We denote gs by replacing f by the
standard mollification f5 in (5. 47). Let M; f := f5 be the mollification operator and
Cs be the covariance operator of fs. Then it is easy to verify that Cs5 = MgC zMs and
gs(z,w) = g(x,w) as § — 0. To prove (5.48), we claim that it is enough to show that

o0
(5.49) sup/ E|gs(x,w)*dw < oco.
6€(0,1) J1

If (5.49) holds, then it follows from the Fubini theorem and Fatou’s lemma that

E ( | g(x,w>|2dw) < oo,

which shows that (5.48) holds immediately. So, we focus on proving (5.49) for this
case. We look at the phase function A(y,z) = c1]z — y| + 2|y — 2| for some fixed
x € U. Tt is easy to see that A(y, z) is smooth on D x D apart from the subset where
y = z. Since the phase function A(y,z) is not smooth at y = z, a stationary phase
approach cannot be used in the analysis of A(y, z). A direct computation shows

VA, z) = a1 gy +C2y—z’ VZA(y’Z):%ﬂ.
ly — = ly — 2| |z =yl
Hence,
IVyA(y, 2)| < e1+co, |VAWY,2)| <co V(y,z) € DxD and y # z.
Since

. RN 2 k)
(y,Z) VA(yv ) 1 |y—:c|

(5.50) =c1|y|cosO + caly — z| > o > 0,

+ caly — 2|
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where 6 denotes the angle between y and y—x, noting the facts that the origin belongs
to U and U is convex, we have that (y, z) - VA(y, z) has a positive lower bound for
(y,2) € Dx D and y # z. So

(5.51) 0<c) <|VA(y,z)|<ch <oo Y(y,z) €D xD and y # z.

Our aim is to express gs(z,w) as a one-dimensional Fourier transform and get rid
of the variable w. Now, we define the following surface:

I :={(y,2) € D x D|A(y,2z) =t}, t>0.

It is easy to see that there exists smallest and largest values Ty = To(z) and Th = T (x)
such that T"} is nonempty only for ¢ € [Ty, T1]. Now we fix a ¢t € [Ty, T1], and then

there exists = n(f) and an open cone K = K (t) C R* with center at the origin such
that for tg =t —n and t; = t + 1, we have

DxDN{tg < A(y,z) <t1} C KN{to < A(y,2) < t1} :=T.

Moreover, since D has a positive distance to the origin we may also choose n and K
such that

lyl, |2l =23 >0 V(y,2) €T

Denote I'ty = I' N {(y,2) : A(y,z) = t}. We obtain I' = Uy <<, I't. By (5.50)
and (5.51), we deduce that there is a radial stretch B; yielding a bi-Lipschitz chart
B; : I — I'; over a subdomain F of the unit ball. The bi-Lipschitz constant of B; is
uniform over tg < t < t; and each B; is actually a local diffeomorphism apart from
y = z. By (5.50) and (5.51), we may write B; in the following form:

Byi(w1,we) = o(t, w1, we)(wi, wa),
where the dependence (w1, ws) — o(t,w1,ws) is Lipschitz with respect to ¢t with a
uniform Lipschitz constant with respect to wq, ws.

Letting h be a integrable Borel function on I' and noting that I' = U <¢<¢, I'y, we
get

(5.52) /Fh(y,z)dyd,z:/tl/F h(y,z)mdﬂg(y,z)dt,

where the inner integral is with respect to the three-dimensional Hausdorff measure
on I';. Using a change of variables, we have

(5.53) /Fh(y,z)d?—l3(y,z):/Fh(Bt(wl,wg))Et(wl,wg)dH3(w1,w2).

By (5.50) and (5.51), the Jacobian E} in (5.53) satisfies

| Be (w1, w2) P VA(B (w1, ws))| _
0<c) < E(wy,ws) := < cr < oo.
1 Blwnw) = 5 ) VAB wyw)]

Since By(w1,ws) is Lipschitz with respect to ¢, for our later purpose, we claim that
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the dependence t — Ei(w1,ws) is uniformly Lipschitz with respect to ¢. Using (5.52),

g5(2,0) = / / piw(erla—yl+ealy—z) (L1 = Y1)P (T2 = 42)P2 (g1 — 21)"* (y2 — 2)
pJp |z —yllr]y — 2=
x q(y) f5(2)dyd=
_ / piew(erfo—yl+ealy—z)) (P = Y1)"! (22 — y2)P2 (g1 — 21)P° (y2 — 22)"
r |z =yl |y — 2|*

x q(y) fs(z)dydz

= / ' et S5 (t)dt = [F~1S5](—w),

to

where Ss is given by

(@ = y)P (w2 — y2)P2 (g1 — 21)P2 (Y2 — 22)P*
Ss(t) = i 1
r, [z —ylly — 2["
x —————q(y) f5(2)dH>(y, 2).
WAy, )
Since T'; is only nonempty for ¢ € [Ty, T3], Ss(t) is compactly supported inside [T, T1].
For fixed z € U, let L(x,y) be a smooth cutoff of the function E1=y1)"(a=v2)" 4},

lz—yls
vanishes outside D, and hence, L(x,-) € C§°(R?). Thus, we can rewrite Ss(t) as

o0 0= [ 1 e

Recall that our aim is to prove supse g, 1) [T Elgs(z,w)|?dw < oo. Tt is sufficient to

show that for each ¢ € [Ty, T}], there exists a finite constant M = M () < co such
that

(5.55) E|Ss(t)|> < M V6 € (0,1) and t € [to(f),t1(F)].

This can be seen by the following facts: by compactness, we can choose finitely many
t € [Ty, T1] such that the union set of [to(t), t1(¢)] for these ¢t can cover [Ty, T1]. Hence,
for any t € [Ty, T1], we have E|S5(¢)|? < M’. The Parseval formula yields

0o T
sup/ E|gs (2, w) 2w < Sup/ E|S5(8)[2dt < M'(Ty — Ty) < oo.
6€(0,1) J1 6€(0,1) J Ty

It remains to show (5.55). By (5.54), we have

E|S5()[2 = / (1 — 21)" (y2 — 22)™ (g1 — 21)™ (yp — 25)™
Iy xTy ly — 2| ly — 2'|2
o Llzy) Lzy)
IVA(y, 2)| IVA(Y', 2')]|

q()a(y E(f5(2) fs(z')dH> (y, 2)dH>(y', 2').

Noting that E(fs(2)f5(z')) = Cs(z,2") and Cs = M;sC'§M;s, we obtain from Lemma 2.5
that for any given 8 > 0, there is a finite constant C such that Cs(z, 2') < Cé|z—z'\*f8
for any 6 € (0,1) and (2,2’) € D x D. Since ¢ € C}(D), an application of Hélder’s
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inequality arrives at

sup E[S5(t)]* < / 2= 2| P(ly — zlly’ — &)~ PP and (y, 2)dHE (Y 2)
66(0,1) 'y xIy
1

< [ [ - z/|26dH3<y,z>dH3<y',z'>]
'y xIy

2

[ el w.) [ |y’z/|1dH3<y',z'>} ,
Ty Iy

where we use the fact o —p3—ps = % for (11,12, p1,p2,p3,pa) € S. To show the integral
in the right-hand side of the above inequality is bounded, we need the following
result [33, Lemma 6]).

LEMMA 5.7. Given v € (0,2), there is a finite constant ¢ such that for every
t € [to,t1] we have

ly — 2| dH(y,2) < ¢, / 7 — 2|77 dH? (y, 2)dH? (v, ) < ¢
Iy [y xTy

for (5,2) = (y,9), (4, 7). (2,9/), (2, 2").

Choosing 5 = % and applying Lemma 5.7 gives (5.55). So Theorem 5.1 holds for
the case m = 2.

Case 2. m € (2,5/2). By Lemma 2.4, we know that in this case the realizations
of f are Holder continuous with probability one. So it is not necessary to introduce
the mollification, and we define

(g —2)P (Y2 — 22)P* L(w,y)
St = /r ly — [t IVA(y, 2)]

a(y) f(z)dH>3(y, 2).

In order to prove (5.48), i.e., [~ m’2|g(x,w)\2dw < 00, by g(z,w) = [F15](~w),
it suffices to prove that S(t) € H, = (R), which denotes the homogeneous Sobolev

homog

space. By compactness, it is enough to show that S(t) € € H, N (to(t),t1(f)) for each

. homog
t € [To,T1]. According to the Besov characterization of the homogeneous Sobolev
space, it is sufficient to show

IS = SEIR
(5.56) / / t—t’|m L dtdt! < oo

The Fubini theorem shows that (5.56) holds if there exists a positive constant M such
that the following estimate holds:

(5.57) E|S(t) — S(t)2 < M|t —¢|"= Vit € [to(D), t1(F)].
We can rewrite S(t) by

(5.58) S(t) = N(y,z>L<x,y>mq<y>ﬂz>d%3<y,z>.

Iy

Recall that the bi-Lipschitz chart B; : F' — Ty is given by

By(wy,ws) = o(t,wr,wz) (w1, w2) := (ys (w1, w2), z¢e(w1, wz)).
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Denote

(Y1 — 21)P (y2 — 22)™

Nt(yvz): \y—z|12

By (5.58), we can rewrite S(t) as

S(t) = /F Ny (9 20)To(ws, w2)q(ye) f(z2)dH? (w1, wa),

where the function

L(z,y:)

Tiwy, wa) = Br(wy, wa) oo =y

is uniformly bounded and Lipschitz continuous with respect to t. Since
S(t) = S(t') = Si(t) = Si(t')
[ Vi) T ) = T (o)) ) o ),
where
S0 = [ Nilano 2 Twrw)atwn) F) i ), Tln,wa) = Tilo o)
we have
15(t) = S(E)IL2 () S 1S1(8) = S1(t)llz2(0)
+It*t'l/FIQ(yt/)ll\f(Zt')||L2(Q>|Nt’(ytuZt/)ldH?’(wlawfz)
SS1(#) = 1) |2 (o) + 1t =1

m 3—m

Since |t — | = |t — t/| = [t —t|= S|t - t’\mT_l, it suffices to estimate ||S1(¢) —
S1(t')||L2(q)- Similarly, we have

S1(t) — S1(#') = Sa(t) — Sa(t)
b [ [N 1) = Nty )T wr,w2)alo) Fe)dH (),
F
where
Sy(t) = /FN(w17w2)T(w17w2)Q(yt)f(Zt)dH3(wlvw2), N (w1, ws) = Ni(wr, ws).
Note that

|Ni(ye, 2¢) — N (yer, 21)]
_ ‘ (11 (1) — 21(8)P2 (y2(t) — 22(8))** (1 (¥) — 21 ()2 (w2 (t') — 22('))P

MOREGIE y() = =]
B e 0 L 1 0 L s 0 s s 0
0wy — walt2 o2 wy — wal2

_1 _1
<oy 2 — oy Jwr —wa| "2 S |t —t']|wy — wo| 5.
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Hence
[1S1(t) = S1(t)z2) S N1S2(t) = S2(t) |2 + [t =]
Now we estimate ||S2(t) — S2(')| 12 (), which can be rewritten in a double integral as
[92(t) = S2(t')2(02) = ]E/F[Q(yt)f(zt) — q(ye) f (20| R(wr, wa)dH> (wy, wo)
X /F[Q(St)f(m) — q(s0) f ()| R(v1, va)dH> (v1, v2)
= / G(wl, wa, V1, vg)R(wl, U/Q)R(’Ul, UQ)dH3(w1, ’LUQ)dHB(Ul, ’Ug)7
FXxF
where (ytht) = Ut(w17w2)7 (Z/t’7zt') = Ut’(w17w2)7 (Staut) = ot(m,vz), (St’aut’) =
o (v1,v2),
R(wl, UJQ) = N(wl, ’LU2)T(U)1, w2), ff(’Ul7 ’U2) = N(U1, Ug)T(Ul, ’02)7
and
G(wy,ws,v1,v2) = Blg(ye) f(20) — q(yer) F(ze))la(se) f (ue) — qser) fu)]
= q(y)a(se)Cp(ze, ue) — qye)a(se)Cplze, up)
— a(ye)q(se)Cpze, ur) + q(yp )a(se ) Cpze, up)

= Q(yt)Q(St)[Cf(Zt»Ut) - C’f(zt,ut/)] +alye)la(se) — (I(St’)]Cf(Zt, u)
+ q(ye)a(se)[Clze, up) — Cplze, ue)] + q(ye)|a(se) — q(s0)]Cplze, ue).

Recall that the covariance function has the form
Cf(y7 Z) = CO(yv Z)|y - Z|m_2 + r1 (yu Z)7

where ¢ € C5°(D x D) and ry € C§(D x D) for any a < 1. Combining the fact
q € C}(D) yields immediately that

(5.59) |G (w1, wa, v1,v2)| S [t — /|72
Denoting d = |z; — ut| = |ot(wa — ve2)| and § = |ug — uy | = |(or — o )va], if% <1, we
have

||Zt _ut|m72 _ ‘Zt _ut/|m72| S |(d+5)m72 _dm72| — dm72

A K
(1+3)" 1]

m—1 m—1

gdm”(m—z)gz(m—mdm*ég& = S|t—t| 2

Hence, if |t — | < cJwg — va| for some small enough ¢ > 0, we have

m—1

“Zt —ug] " = [z — Ut'|m_2| Stz

Similarly, we have that

||z — u |72 = |2 — Ut|m_2| Slt— t/‘mgl
holds if |t — ¢/| < c|wa — w2 for some small enough ¢ > 0. Thus, if we define a set

P = {(wy,ws,v1,v2) € F X F: |wg —wvg| < CJt — /| for some large enough C > 0},
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then we have

m—

T for (w1, wa,v1,v2) € F x F'\ P.

(5.60)  |G(wy, wa,v1,v0)| S [t — ¥

Dividing integration on F' x F over the sets PN F x F and (F x F) \ P, we obtain
192(t) = S2(t')| L2 ()
= / G(w1, wa, U1, Ug)R(IUl, ’UJQ)R(Ul, ’Ug)drHS(wl, wg)dHS(Ul, ’UQ)
FxFAP
—|—/ G(w1, wa, v1,v9) R(w1, wo) R(v1, vo)dH? (w1, wa)dH? (v1, va)
(Fx F)\P
= Il + 12.

Observing that [R(w1, ws)| < |wy —ws|~2 and |R(vy,v2)| < |vg — s~ 2, using (5.59),
the Holder inequality, and Lemma 5.7, we have

n<|- t’|m*2/ s — wa| =3 o1 — v| = AHB (w1, wa)dHE (o1, v)
FxFNP

St [ vaft s = ol Hun - ol
xFN
X |’01 — v2|7%d7-{,3(w1,wg)d’Hs(vl,vg)

5 |t — tllm_%/ |w2 — v2|_%|w1 — ’LUQl_%‘Ul - ’l)2|_%d7‘13(’w17’LUQ)dHS(Ul,UQ)
FxFN

Wl

m—1 m—2
+

2 2 </ ‘”LUQ — v2|*%d7{3(w1, w2)d7-[3(vl, ’UQ))
FxFNP

. 3 s 3
X </ |w1 — w2|_2d7{3(w1,w2)> (/ |1}1 — UQ_QdHS(UhUg))
FxFNP FxFNP

Sle—¢" T

S|E—t

For I, we have from (5.60) that

m—1

IQ S |t — tl| 2 / |w1 — ’LU2|_%|’U1 - Ug‘_%dH3(w1,UJ2)dH3(7}1,’1}2)
(FxF)\P

: (/ |’LU1 — w2|1d’7’-1,3(w1,w2)>
(FXF)\P

X (/ |Ul — ’U2|_1dH3(U1,1)2)>
(FxF)\P

< |t . t/ m—1

2

<|t—¢]"7

~

[N

~ )

where we use the Holder inequality along with Lemma 5.7. Hence, we arrive at

182 (t) = So(t)| 120y S [E— 1|77,

which shows that (5.57) holds true. By the previous argument we have that (5.48)
holds for this case. The proof is completed. 0
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With Lemmas 5.2, 5.3, and 5.6, we are able to prove Theorem 5.1.
Proof. Noting Lemmas 5.2 and 5.3, we have

(2, w) — w2, 0)| S w7,

which gives

1 ? -H‘ 2
— W g (2, w) [ fdw S
1),

Q
/ W™y (2, w)]Pdw

1

1
2 @ 342¢
S —— wm™ dw.
Q-1 /1

It is easy to note that
2

Q-1
for m € [2,5/2) and small enough €. By Lemma 5.6, we get

Q
/ W32, 50
1

1 Q
lim 7/ Wy (2, w)[Pdw =0, z€U.

Qo0 @ —1
Hence
PR S e 2 —
anooQ—l/l W™ ugy (2, w)|?dw =0, x€U.
The proof is completed. O

In the proof of Theorem 5.1, (5.2) corresponding to uq involves wq;, w1, Ij(z)l,

{90, 91,92}, {911, 912},{v1,v2,v3}, g(x,w), g5s(x,w), Ss(t),{S1,S2}, and {I1,I>}. In

the following, we present a chart to summarize the major steps of the proof.

replace the left G in u; by Go replace the right G in uy,; by Go
Step 1: uq Uy U .

2 1 2 2
Step 2: uy i (v,w) — U1 (7, W) = (Zj,k,l:l Ij('k%a Z; k=1 I](kD

Step 3: —78)1 fD fD Go11(2,y,w)M11(y) (Gi1(y, z,w) — Go11(y, 2,w)) f1(z)dydz.
Step 4: G11 — Go11 =go+ 91 + g2, 91 = 911 + 12

Step 5: Uy, = w vy + w2ve + wBvs.

Step 6: vy is a linear combination of g with

g(@,w) // iw(er |z —yl+esly—2])

(@1 — y1)P (22 — y2)"2 (41 — 21)P* (y2 — 22)P _
|z — yll|y — 2|t q(y) f(z)dydz.

mollification Fourier transform

Casel: m=2,g
Case2: m€(2,2), g
Step 7: HSQ(t) - Sg(t/)HLz(Q) =1+ Is.
With the convergence of the Born approximation, using Theorems 4.2 and 5.1,
we are ready to show the proof of Theorem 1.4.

Ss;

Fourier transform g replace Ty by T replace Ny by N

S1 So.

Proof. Recall the convergence of the Born approximation

u(z,w) = up(z,w) + v (z,w) + bz, w),



INVERSE ELASTIC SCATTERING FOR A RANDOM SOURCE 4601

where b(z,w) = > 07, up(z,w). It follows from (4.4) that
Ib(, @)l e ()2 S w ™

for some small enough & > 0. So

(5.61) : I/Q b, ) P S
. 0-1J, w T,w wNQfl

as @@ — 0o, where we use the fact m € (2,5/2). Recalling Theorems 4.2 and 5.1, we
have

Q
/ W32 gy 0
1

1 Q
5.62 lim —— W Jug (2, w de:a/ _— dy,
662 Jim o [ ) [ e
1 Q
(5.63) ngléoﬁ/l W™y (2, w) [2dw = 0

hold almost surely, where a is a constant given in Theorem 1.4. Since
u(z, w)|? = Jug(z,w)|* + [u (z,0)* + [b(z, w)|?

+ 2R[up(z, w)u (x, w)] + 2R[uo(z, w)b(z, w)] + 2R[u; (2, w)b(z,w)],

along with (5.61)—(5.63) and the Cauchy—Schwartz inequality, it is to easy to verify
that

. 1 @ m—+1 2 1
lim —— W u(z,w)|fdw = a o(y)dy.
1 R

Q=00 Q —1 2 [z —y
By Lemma 3.8 in [30], we know that the integral [p. ‘m—iylfb(y)dy for all z € U can
uniquely determine the function ¢. The proof is completed. 0

6. Conclusion. We have studied the inverse random source scattering prob-
lem for the two-dimensional elastic wave equation with a linear load. The source
is modeled as a generalized Gaussian random function and its covariance operator
is described as a classical pseudodifferential operator. Both the direct and the in-
verse problems are considered. The direct problem is equivalently formulated as a
Lippmann—Schwinger integral equation which is shown to have a unique solution.
Combining the Born approximation and microlocal analysis, we deduce a relationship
between the principal symbol of the covariance operator for the random source and
the amplitude of the displacement generated from a single realization of the random
source. Based on this connection, we obtain the uniqueness for the reconstruction of
the principal symbol of the random source. In this paper, the linear load is consid-
ered to be a smooth deterministic matrix. An ongoing project is to study the direct
and inverse scattering problems when both the source and the linear load are random.
Another challenging problem is to study the random source scattering problem for the
three-dimensional elastic wave equation. We hope to be able to report the progress
elsewhere in the future.
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