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ABSTRACT
This paper concerns the stability on the inverse source scattering problem
for the one-dimensional Helmholtz equation in a two-layered medium. We
show that the increasing stability can be achieved using multi-frequency
wave field at the two end points of the interval which contains the compact
support of the source function.
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1. Introduction and problem formulation

We consider the one-dimensional Helmholtz equation in a two-layered medium:

u′′(x,ω) + κ2(x)u(x,ω) = f (x), x ∈ (− 1, 1), (1.1)

where ω > 0 is the angular frequency, the source function f has a compact support which is assumed
to be contained in the interval (− 1, 1), and the wave number κ satisfies

κ(x) =
{

κ1, x > 0,
κ2, x < 0.

Here κj = cjω, j = 1, 2, where cj > 0 are constants. The wave field u is required to satisfy the outgoing
wave conditions:

u′(− 1,ω) + iκ2u(− 1,ω) = 0, u′(1,ω) − iκ1u(1,ω) = 0. (1.2)

Given f ∈ L2(− 1, 1), it is known that the problem (1.1)–(1.2) has a unique solution:

u(x,ω) =
∫ 1

0
g(x, y)f (y)dy, (1.3)

where g is the Green function given as follows
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g(x, y) =
{
i κ1−κ2
2κ1(κ1+κ2)

eiκ1(x+y) + i
2κ1 e

iκ1|x−y|, x > 0,
i

κ1+κ2
ei(κ1y−κ2x), x < 0,

for y > 0,

and

g(x, y) =
{
i κ2−κ1
2κ2(κ1+κ2)

e−iκ2(x+y) + i
2κ2 e

iκ2|x−y|, x < 0,
i

κ1+κ2
ei(−κ2y+κ1x), x > 0,

for y < 0.

This paper concerns the inverse source problem: Let f be a complex function with a compact
support contained in ( − 1, 1). The inverse problem is to determine f using the boundary data
u( − 1,ω) and u(1,ω) with ω ∈ (0,K) where K > 1 is a positive constant.

The inverse source scattering problem has significant applications in antenna synthesis, medical
imaging, and optical tomography [1,2]. They been extensively investigated by many researchers [3–
8]. It is known that there is no uniqueness for the inverse source problems at a fixed frequency due
to the existence of non-radiating sources [9,10]. Recently, it has been realized that the use of multi-
frequency data cannot only overcome the difficulties of non-uniqueness, which are presented at a
single frequency, but also achieve increasing stability [11–15]. These work assume that the medium
is homogeneous in the whole space. In this work, we intend to establish the increasing stability on
the inverse source problem for the one-dimensional Helmholtz equation in a two-layered medium.

2. Main result

Define a functional space:

FM = {f ∈ Hn( − 1, 1) : ‖f ‖Hn(−1,1) ≤ M, suppf ⊂ ( − 1, 1)},

where n ∈ N andM > 1 is a constant. Hereafter, the notation "a � b" stands for a ≤ Cb, where C is
a generic constant independent of n,ω,K ,M, but may change step by step in the proofs.

The following stability estimate is the main result of this paper.
Theorem 2.1: Let f ∈ FM and let u be the solution (1.3) corresponding to f . Then we have

‖f ‖2L2(−1,1) � ε2 + M2(
K

2
3 | ln ε| 14

(6n−3)3

)2n−1 , (2.1)

where

ε =
(∫ K

0
ω2 (|u( − 1,ω)|2 + |u(1,ω)|2) dω

) 1
2

. (2.2)

Remark 2.2: The stability estimate (2.1) consists of two parts: the data discrepancy and the high
frequency tail. The former is of the Lipschitz type. The latter decreases as K increases which makes
the problem have an almost Lipschitz stability. The result explains that the problem becomes more
stable when higher frequency data are used. The stability estimate (2.1) also implies the uniqueness
of the inverse source problem.

3. Proof of theorem 2.1

Consider the following two functions:

f1(x) =
{
f (x), x > 0,
0, x < 0,

and f2(x) =
{
0, x > 0,
f (x), x < 0.

(3.1)
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Lemma 3.1: Let f ∈ L2( − 1, 1) with suppf ⊂ ( − 1, 1). We have

‖f ‖2L2(−1,1) �
∫ +∞

0
ω2 (|u( − 1,ω)|2 + |u(1,ω)|2) dω.

Proof: Choosing ξ1 ∈ R with |ξ1| = κ1, multiplying both sides of (1.1) by e−iξ1x , and integrating
over (0, 1) with respect to x, we have from the integration by parts that

e−iξ1u′(1,ω) + iξ1e−iξ1u(1,ω) − u′(0,ω) − iξ1u(0,ω) =
∫ 1

0
e−iξ1xf1(x)dx. (3.2)

Similarly, choosing ξ2 ∈ R with |ξ2| = κ2, multiplying both sides of (1.1) by e−iξ2x , and integrating
over ( − 1, 0) with respect to x, we have from the integration by parts that

−e−iξ2u′( − 1,ω) − iξ2eiξ2u( − 1,ω) + u′(0,ω) + iξ2u(0,ω) =
∫ 0

−1
e−iξ2xf2(x)dx. (3.3)

It follows from (1.3) and (3.1) that

u(x,ω) =
∫ 1

0
g(x, y)f (y)dy =

∫ 1

0
g(x, y)f1(y)dy +

∫ 0

−1
g(x, y)f2(y)dy,

which gives

u(0,ω) =
∫ 1

0
g(0, y)f1(y)dy +

∫ 0

−1
g(0, y)f2(y)dy

=
∫ 1

0

i
κ1 + κ2

eiκ1yf1(y)dy +
∫ 0

−1

i
κ1 + κ2

e−iκ2yf2(y)dy. (3.4)

On the other hand, we have from a simple calculation that

u′(0,ω) =
∫ 1

0
g ′(0, y)f1(y)dy +

∫ 0

−1
g ′(0, y)f2(y)dy

=
∫ 1

0

κ2

κ1 + κ2
eiκ1yf1(y)dy +

∫ 0

−1

−κ1

κ1 + κ2
e−iκ2yf2(y)dy. (3.5)

Letting ξ1 = −κ1, we have from (3.4) and (3.5) that

u′(0,ω) − iκ1u(0,ω) =
∫ 1

0
eiκ1yf1(y)dy. (3.6)

Combining (3.6) and (3.2), we obtain

eiκ1u′(1,ω) − iκ1eiκ1u(1,ω) = 2
∫ 1

0
eiκ1xf1(x)dx,

Using the outgoing radiation condition (1.2), we get from the above equation that

eiκ1 iκ1u(1,ω) − iκ1eiκ1u(1,ω) = 2
∫ 1

0
eiκ1xf1(x)dx,
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which implies

|f̂1( − κ1)|2 � ω2|u(ω, 1)|2. (3.7)

Letting ξ2 = κ2, we have from (3.4) and (3.5) that

u′(0,ω) + iκ2u(0,ω) = −
∫ 0

−1
e−iκ2yf2(y)dy, (3.8)

Combining (3.8), (3.3), and (1.2), we obtain

e−iκ2 iκ2u′( − 1,ω) − iκ2eiκ2u( − 1,ω) = 2
∫ 0

−1
e−iκ2xf2(x)dx,

which shows

|f̂2(κ2)|2 � ω2|u(ω,−1)|2. (3.9)

Letting ξ1 = κ1, we get from (3.4) and (3.5) that

u′(0,ω) + iκ1u(0,ω) =
∫ 1

0

κ2 − κ1

κ1 + κ2
eiκ1yf1(y)dy −

∫ 0

−1

2κ1
κ1 + κ2

e−iκ2yf2(y)dy

= κ2 − κ1

κ1 + κ2
f̂1( − κ1) − 2κ1

κ1 + κ2
f̂2(κ2). (3.10)

It follows from (3.10), (3.2), and (1.2) that we obtain

e−iκ1 iκ1u(1,ω) + iκ1e−iκ1u(1,ω) − κ2 − κ1

κ1 + κ2
f̂1( − κ1) + 2κ1

κ1 + κ2
f̂2(κ2) = f̂1(κ1),

which means

|f̂1(κ1)|2 � ω2|u(1,ω)| + |f̂1( − κ1)|2 + |f̂2(κ2)|2. (3.11)

Finally, letting ξ2 = −κ2, we have from (3.4) and (3.5) that

u′(0,ω) − iκ2u(0,ω) =
∫ 1

0

2κ2
κ1 + κ2

eiκ1yf1(y)dy +
∫ 0

−1

κ2 − κ1

κ1 + κ2
e−iκ2yf2(y)dy

= 2κ2
κ1 + κ2

f̂1( − κ1) + κ2 − κ1

κ1 + κ2
f̂2(κ2). (3.12)

Using (3.12), (3.3), and (1.2), we have

eiκ2 iκ2u( − 1,ω) + iκ2e−iκ2u( − 1,ω) + 2κ2
κ1 + κ2

f̂1( − κ1) + κ2 − κ1

κ1 + κ2
f̂2(κ2) = f̂2( − κ2),

which means

|f̂2( − κ2)|2 � ω2|u( − 1,ω)|2 + |f̂1( − κ1)| + |f̂2(κ2)|. (3.13)
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Therefore, it follows from (3.7) that we get

∫ ∞

0
|f̂1( − κ1)|2dω �

∫ ∞

0
ω2|u(ω, 1)|2dω. (3.14)

Using (3.9) gives

∫ ∞

0
|f̂2(κ2)|2dω �

∫ ∞

0
ω2|u( − 1,ω)|2dω. (3.15)

It follows from (3.11), (3.14), and (3.15) that we have

∫ ∞

0
|f̂1(κ1)|2dω �

∫ ∞

0
ω2|u( − 1,ω)|2dω +

∫ ∞

0
ω2|u(1,ω)|2dω; (3.16)

Finally following from (3.13), (3.14), and (3.15), we obtain

∫ ∞

0
|f̂2( − κ2)|2dω �

∫ ∞

0
ω2|u( − 1,ω)|2dω +

∫ ∞

0
ω2|u(1,ω)|2dω. (3.17)

We obtain from the Plancherel theorem that

‖f ‖2L2(−1,1) = ‖f ‖2L2(−∞,∞)
= ‖f̂ ‖2L2(−∞,∞)

� ‖f̂1‖2L2(−∞,∞)
+ ‖f̂2‖2L2(−∞,∞)

.

On the other hand, we have

‖f̂1‖2L2(−∞,∞)
=

∫ ∞

0
|f̂1(ω)|2dω +

∫ ∞

0
|f̂1( − ω)|2dω.

Using (3.14) and (3.16) yields

‖f̂1‖2L2(−∞,∞)
�

∫ +∞

0
ω2 (|u( − 1,ω)|2 + |u(1,ω)|2) dω.

Similarly, we have from (3.15) and (3.17) that

‖f̂2‖2L2(−∞,∞)
�

∫ +∞

0
ω2 (|u( − 1,ω)|2 + |u(1,ω)|2) dω.

The proof is completed by combining the above estimates.

Lemma 3.2: Let f ∈ L2( − 1, 1). We have

ω2|u( − 1,ω)|2 �
∣∣∣∣
∫ 1

0
eic1ωyf1(y)dy

∣∣∣∣
2

+
∣∣∣∣
∫ 0

−1
e−ic2ωyf2(y)dy

∣∣∣∣
2

+
∣∣∣∣
∫ 0

−1
eic2ωyf2(y)dy

∣∣∣∣
2

,

ω2|u(1,ω)|2 �
∣∣∣∣
∫ 1

0
eic1ωyf1(y)dy

∣∣∣∣
2

+
∣∣∣∣
∫ 1

0
e−ic1ωyf1(y)dy

∣∣∣∣
2

+
∣∣∣∣
∫ 0

−1
e−ic2ωyf2(y)dy

∣∣∣∣
2

.
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Proof: It follows from (1.3) that we have

ωu( − 1,ω) =
∫ 1

0

i
c1 + c2

ei(c1ωy+c2ω)f1(y)dy +
∫ 0

−1

i(c2 − c1)
2c2(c1 + c2)

e−ic2ω(−1+y)f2(y)dy

+
∫ 0

−1

i
2c2

e−ic2ω(−1−y)f2(y)dy

and

ωu(1,ω) =
∫ 1

0

i(c1 − c2)
2c1(c1 + c2)

eic1ω(1+y)f1(y)dy +
∫ 1

0

i
2c1

eic1ω(1−y)f1(y)dy

+
∫ 0

−1

i
c1 + c2

ei(−c2ωy+c1ω)f2(y)dy.

The proof is done by taking square of the amplitudes on both sides of the above equations.

Next, let
I(s) = I1(s) + I2(s),

where
I1(s) = ω2

∫ s

0
|u( − 1,ω)|2dω, I2(s) = ω2

∫ s

0
|u(1,ω)|2dω.

We have the following explicit representations for I1(s) and I2(s):

I1(s) =
∫ s

0

∣∣∣∣
∫ 1

0

1
c1 + c2

ei(c1ωy+c2ω)f1(y)dy +
∫ 0

−1

c2 − c1
2c2(c1 + c2)

e−ic2ω(−1+y)f2(y)dy

+
∫ 0

−1

1
2c2

e−ic2ω(−1−y)f2(y)dy
∣∣∣∣
2
dω (3.18)

and

I2(s) =
∫ s

0

∣∣∣∣
∫ 1

0

c1 − c2
2c1(c1 + c2)

eic1ω(1+y)f1(y)dy +
∫ 1

0

1
2c1

eic1ω(1−y)f1(y)dy

+
∫ 0

−1

1
c1 + c2

ei(−c2ωy+c1ω)f2(y)dy
∣∣∣∣
2
dω. (3.19)

Lemma 3.3: Let f ∈ L2( − 1, 1) and cmax = max{c1, c2}. We have for any s = s1 + is2, s1, s2 ∈ R

that

|I1(s)| � |s|e4cmax |s2|
∫ 1

0
|f (y)|2dy,

|I2(s)| � |s|e4cmax |s2|
∫ 1

0
|f (y)|2dy.

Proof: Let ω = st, t ∈ (0, 1). A simple calculation yields

I1(s) = s
∫ 1

0

∣∣∣∣
∫ 1

0

1
c1 + c2

ei(c1sty+c2st)f1(y)dy +
∫ 0

−1

c2 − c1
2c2(c1 + c2)

e−ic2st(−1+y)f2(y)dy

+
∫ 0

−1

1
2c2

e−ic2st(−1−y)f2(y)dy
∣∣∣∣
2
dt
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and

I2(s) = s
∫ 1

0

∣∣∣∣
∫ 1

0

c1 − c2
2c1(c1 + c2)

eic1st(1+y)f1(y)dy +
∫ 1

0

1
2c1

eic1st(1−y)f1(y)dy

+
∫ 0

−1

1
c1 + c2

ei(−c2sty+c1st)f2(y)dy
∣∣∣∣
2
dt.

Noting
|e±i(c1sty+c2st)| ≤ e2cmax |s2|, |e±ic2st(−1±y)| ≤ e2cmax |s2|, ∀y ∈ ( − 1, 1),

we have from the Schwartz inequality that

|I1(s)| � |s|e4cmax |s2|
∫ 1

−1
|f (y)|2dy.

Similarly noting

|e±ic1st(1±y)| ≤ e2cmax |s2|, |e±i(−c2sty+c1st)| ≤ e2cmax |s2|, ∀y ∈ ( − 1, 1),

we get from the Schwartz inequality that

|I2(s)| � |s|e4cmax |s2|
∫ 1

−1
|f (y)|2dy,

which completes the proof.

Lemma 3.4: Let f ∈ Hn( − 1, 1), suppf ⊂ ( − 1, 1). We have for any s > 0 that
∫ ∞

s
ω2(|u( − 1,ω)|2 + |u(1,ω)|2)dω � s−(2n−1)‖f ‖2Hn(−1,1).

Proof: It follows from Lemma 3.2 that we have
∫ ∞

s
ω2|u( − 1,ω)|2dω +

∫ ∞

s
ω2|u(1,ω)|2dω

�
∫ ∞

s

∣∣∣∣
∫ 1

0
eic1ωyf1(y)dy

∣∣∣∣
2

dω +
∫ ∞

s

∣∣∣∣
∫ 1

0
e−ic1ωyf1(y)dy

∣∣∣∣
2

dω

+
∫ ∞

s

∣∣∣∣
∫ 0

−1
eic2ωyf2(y)dy

∣∣∣∣
2

dω +
∫ ∞

s

∣∣∣∣
∫ 0

−1
e−ic2ωyf2(y)dy

∣∣∣∣
2

dω.

Using the integration by parts and noting suppf1 ⊂ (0, 1) and suppf2 ⊂ ( − 1, 0), we obtain

∫ 1

0
e±ic1ωyf1(y)dy = 1

( ± ic1ω)n

∫ 1

0
e±ic1ωyf (n)

1 (y)dy

and ∫ 0

−1
e±ic2ωyf2(y)dy = 1

( ± ic2ω)n

∫ 0

−1
e±ic2ωyf (n)

2 (y)dy,

which give ∣∣∣∣
∫ 1

0
e±ic1ωyf1(y)dy

∣∣∣∣
2

� c−2n
1 ω−2n‖f1‖2Hn(0,1) � c−2n

1 ω−2n‖f ‖2Hn(−1,1)
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and ∣∣∣∣
∫ 0

−1
e±ic2ωyf2(y)dy

∣∣∣∣
2

� c−2n
2 ω−2n‖f2‖2Hn(−1,0) � c−2n

2 ω−2n‖f ‖2Hn(−1,1).

Hence we have

∫ ∞

s

∣∣∣∣
∫ 1

0
e±ic1ωyf1(y)dy

∣∣∣∣
2

dω � c−2n
1 ‖f1‖2Hn(0,1)

∫ ∞

s
ω−2ndω � c−2n

1
s−(2n−1)

(2n − 1)
‖f ‖2Hn(−1,1)

and

∫ ∞

s

∣∣∣∣
∫ 0

−1
e±ic2ωyf2(y)dy

∣∣∣∣
2

dω � c−2n
2 ‖f2‖2Hn(−1,0)

∫ ∞

s
ω−2ndω � c−2n

2
s−(2n−1)

(2n − 1)
‖f ‖2Hn(−1,1),

which completes the proof.

The following lemma is proved in [13].
Lemma 3.5: Denote S = {z = x + iy ∈ C : −π

4 < argz < π
4 }. Let J(z) be analytic in S and

continuous in S̄ satisfying ⎧⎪⎨
⎪⎩

|J(z)| ≤ ε, z ∈ (0, L],
|J(z)| ≤ V , z ∈ S,
|J(0)| = 0.

Then there exists a function μ(z) satisfying
{

μ(z) ≥ 1
2 , z ∈ (L, 2

1
4 L),

μ(z) ≥ 1
π
(( zL )4 − 1)− 1

2 , z ∈ (2
1
4 L, ∞)

such that
|J(z)| ≤ Vεμ(z), ∀ z ∈ (L, ∞).

Lemma 3.6: Let f ∈ FM. Then there exists a function μ(s) satisfying
{

μ(s) ≥ 1
2 , s ∈ (K , 2

1
4K),

μ(s) ≥ 1
π
(( s

K )4 − 1)− 1
2 , s ∈ (2

1
4K , ∞),

(3.20)

such that
|I(s)| � M2easε2μ(s), ∀s ∈ (K , ∞),

where a = max{5c, 3}.
Proof: It follows from Lemma 3.3 that

|I1(s)e−as| � M2, |I2(s)e−as| � M2, s ∈ S.

Recalling (2.2), (3.18), and (3.19), we have

|I1(s)e−as| � ε2, |I2(s)e−as| � ε2, s ∈ [0,K].

A direct application of Lemma 3.5 shows that there exists a function μ(s) satisfying (3.20) such that

|I1(s)e−as| � M2ε2μ, |I2(s)e−as| � M2ε2μ, s ∈ (K ,∞),
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then we have
|I(s)e−as| = |I1(s)e−as + I2(s)e−as| � M2ε2μ, s ∈ (K ,∞),

which completes the proof.

Now we show the proof of Theorem 2.1.

Proof: We can assume that ε < e−1, otherwise the estimate is obvious. Let

s =
⎧⎨
⎩

1

(3π)
1
3
K

2
3 | ln ε| 14 , 2

1
4 (3π)

1
3K

1
3 < | ln ε| 14 ,

K , | ln ε| ≤ 2
1
4 (3π)

1
3K

1
3 .

If 2
1
4 (3π)

1
3K

1
3 < | ln ε| 14 , then we have

|I(s)| � M2ease−
2| ln ε|

π
(( s

K )4−1)−
1
2 � M2e

a

(3π)
1
3
K

2
3 | ln ε| 14 − 2| ln ε|

π
( Ks )2

= M2e
−2

(
a3
3π

) 1
3 K

2
3 | ln ε| 12

(
1− 1

2 | ln ε|− 1
4

)
.

Noting 1
2 | ln ε|− 1

4 < 1
2 and a ≥ 3, we have

(
a3
3π

) 1
3 ≥

(
33
3π

) 1
3 > 1 and

|I(s)| � M2e−K
2
3 | ln ε| 12 .

Using the elementary inequality

e−x ≤ (6n − 3)!
x3(2n−1) , x > 0,

we get

|I(s)| � M2(
K2| ln ε| 32
(6n−3)3

)2n−1 .

If | ln ε| ≤ 2
1
4 (3π)

1
3K

1
3 , then s = K . We have from (2.2) and Lemma 3.2 that

|I(s)| ≤ ε2.

Hence we obtain from Lemma 3.4 that∫ ∞

0
ω2 (|u( − 1,ω)|2 + |u(1,ω)|2) dω

� ε2 + M2(
K2| ln ε| 32
(6n−3)3

)2n−1 + ‖f ‖2Hn(−1,1)(
2− 1

4 (3π)− 1
3K

2
3 | ln ε| 14

)2n−1 .

By Lemma 3.1, we have

‖f ‖2L2(−1,1) � ε2 + M2(
K2| ln ε| 32
(6n−3)3

)2n−1 + M2(
K

2
3 | ln ε| 14

(6n−3)3

)2n−1 .

Since K
2
3 | ln ε| 14 ≤ K2| ln ε| 32 when K > 1 and | ln ε| > 1, we obtain the stability estimate.
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4. Conclusion

In this paper, we show that the increasing stability can be obtained for the inverse source scattering
problemof the one-dimensionalHelmholtz equation in a two-layeredmediumusingmulti-frequency
Dirichlet data at the two end points of an interval which contains the compact support of the source.
The stability estimate consists of the data discrepancy and the high frequency tail of the source
function. We believe that the proposed method can be extended to handle a multi-layered medium.
Another possible future work is to investigate the higher dimensional problem.
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Appendix 1. Green’s function in a two-layeredmedium
Consider the equation

d2g(x, y)
dx2

+ κ2(x)g(x, y) = −δ(x − y), (A1)

where δ is the Dirac delta function and the wavenumber κ is a piecewise constant, i.e.

κ(x) =
{

κ1, x > 0,
κ2, x < 0.
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If y > 0, the solution of (A1) has the following form

g(x, y) =

⎧⎪⎨
⎪⎩
Aeiκ1x , x > y,
Beiκ1x + Ce−iκ1x , 0 < x < y,
De−iκ2x , x < 0,

where A,B,C,D are to be determined. Using the continuity conditions

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
g(x, y)|x=y+ = g(x, y)|x=y− ,
dg(x,y)
dx |x=y+ − dg(x,y)

dx |x=y− = −1,
g(x, y)|x=0+ = g(x, y)|x=0− ,
dg(x,y)
dx |x=0+ = dg(x,y)

dx |x=0− ,

we get a linear system: ⎧⎪⎪⎪⎨
⎪⎪⎪⎩
Aeiκ1y = Beiκ1y + Ce−iκ1y ,
iκ1Aeiκ1y − iκ1Beiκ1y + iκ1Ce−iκ1y = −1,
B + C = D,
iκ1B − iκ1C = −iκ2D.

A simple calculation yields that ⎧⎪⎪⎪⎨
⎪⎪⎪⎩
A = i κ1−κ2

2κ1(κ1+κ2)
eiκ1y + i

2κ1 e
−iκ1y ,

B = i κ1−κ2
2κ1(κ1+κ2)

eiκ1y ,
C = i

2κ1 e
iκ1y ,

D = i
κ1+κ2

eiκ1y ,
which gives

g(x, y) =
{
i κ1−κ2
2κ1(κ1+κ2)

eiκ1(x+y) + i
2κ1 e

iκ1|x−y|, x > 0,
i

κ1+κ2
ei(κ1y−κ2x), x < 0.

If y < 0, the solution has the following form

g(x, y) =

⎧⎪⎨
⎪⎩
Ae−iκ2x , x < y,
Be−iκ2x + Ceiκ2x , y < x < 0,
Deiκ1x , x > 0.

Using the continuity conditions ⎧⎪⎪⎪⎨
⎪⎪⎪⎩
g(x, y)|x=y+ = g(x, y)|x=y− ,
dg(x,y)
dx |x=y+ − dg(x,y)

dx |x=y− = −1,
g(x, y)|x=0+ = g(x, y)|x=0− ,
dg(x,y)
dx |x=0+ = dg(x,y)

dx |x=0− ,
we obtain ⎧⎪⎪⎪⎨

⎪⎪⎪⎩
Ae−iκ2y = Be−iκ2y + Ceiκ2y ,
−iκ2Ae−iκ2y + iκ2Be−iκ2y − iκ2Ceiκ2y = 1,
B + C = D,
−iκ2B + iκ2C = iκ1D.

It follows from solving the above linear system that

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
A = i κ2−κ1

2κ2(κ1+κ2)
e−iκ2y + i

2κ2 e
iκ2y ,

B = i κ2−κ1
2κ2(κ1+κ2)

e−iκ2y ,
C = i

2κ2 e
−iκ2y ,

D = i
κ1+κ2

e−iκ2y ,

which yields

g(x, y) =
{
i κ2−κ1
2κ2(κ1+κ2)

e−iκ2(x+y) + i
2κ2 e

iκ2|x−y|, x < 0,
i

κ1+κ2
ei(−κ2y+κ1x), x > 0.
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