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ABSTRACT. This paper is devoted to the mathematical analysis of the diffrac-
tion of an electromagnetic plane wave by a biperiodic structure. The wave
propagation is governed by the time-domain Maxwell equations in three di-
mensions. The method of a compressed coordinate transformation is proposed
to reduce equivalently the diffraction problem into an initial-boundary value
problem formulated in a bounded domain over a finite time interval. The
reduced problem is shown to have a unique weak solution by using the con-
structive Galerkin method. The stability and a priori estimates with explicit
time dependence are established for the weak solution.

1. Introduction. Consider the diffraction of an electromagnetic plane wave by a
biperiodic structure, where the wave propagation is governed by the time-domain
Maxwell equations in three dimensions. In optics, a biperiodic or doubly periodic
structure is called a crossed grating or a two-dimensional grating. Scattering theory
in periodic structures have many important applications in micro-optics, which in-
clude the design and fabrication of optical elements such as corrective lenses, antire-
flective interfaces, beam splitters, and sensors. The basic electromagnetic theory of
gratings can be traced back to Rayleigh’s time [36]. Recent advance has been greatly
accelerated due to the development of new mathematical and numerical methods
including analytical or approximation methods, differential, integral, or variational
methods, and many others. The time-harmonic problems, where electromagnetic
waves oscillate sinusoidally with respect to the time, have been well studied. A great
deal of results are available. An introduction to the grating problems can be found
in Petit [35]. We refer to [3, 7, 13, 17, 20, 21, 32, 34] for the mathematical studies on
the well-posedness of the diffractive grating problems. Numerical methods can be

2010 Mathematics Subject Classification. T8A45, 35A15, 35Q60.

Key words and phrases. Time-domain Maxwell’s equations, biperiodic structures, diffraction
gratings, well-posedness and stability, a priori estimates.

* Corresponding author: Gang Bao.

259


http://dx.doi.org/10.3934/dcdsb.2019181

260 GANG BAO, BIN HU, PEIJUN LI AND JUE WANG

found in [4, 5, 6, 8, 10, 11, 19, 42, 41] for various approaches including the integral
equation method and the finite element method. A comprehensive review can be
found in [9] on mathematical modeling, analysis, and computational methods for
diffrative optics.

The time-domain scattering problems have received ever-increasing attention due
to their capability of capturing wide-band signals and modeling more general ma-
terial and nonlinearity [37, 38, 39, 40, 16]. Compared with the time-harmonic
scattering problems, mathematical studies are much less done for the time-domain
counterparts due to the challenge of the temporal dependence. The analysis can be
found in [15, 25, 26, 27, 28, 33] for the time-domain acoustic, elastic, and electro-
magnetic scattering problems in different structures including bounded obstacles,
open cavities, and unbounded rough surfaces. In these works, the idea was to uti-
lize the Laplace transform as a bridge between the time-domain and the frequency
domain. The exact time-domain transparent boundary conditions were developed
to reduce the scattering problems into initial boundary value problems in bounded
domains. Using the energy method, the authors showed the well-posedness and
stability for these time-dependent problems. One of the key steps was to estab-
lish some desired properties of the time-domain transparent boundary conditions.
There are even fewer results for the time-domain grating problems. The numerical
solution and the mathematical analysis can be found in [24] and [25], respectively,
for the one-dimensional grating problem, where the two-dimensional scalar wave
equation was considered. It is left undone for the time-domain Maxwell equations
in a biperiodic structure.

Besides the time dependence, there is another challenge of the problem: an un-
bounded domain. The unbounded domain needs to be truncated into a bounded
one when doing analysis or numerical computation. An appropriate boundary con-
dition needs to be imposed on the boundary of the truncated domain in order to
avoid artificial wave reflection. Such a boundary condition is called a transparent
boundary condition (TBC) or a non-reflecting boundary condition (NRBC). It has
been an important and active research subject in the area of wave propagation
[1, 18, 22, 29, 30]. It still remains the subject matter of much ongoing research,
especially for the time-domain problems. We point out that the method proposed
in [25] cannot be adopted to handle the three-dimensional Maxwell equations. It
is too complicated, if not impossible, to show that the time-domain TBC has the
desired properties in three dimensions.

This paper is devoted to the time-domain analysis of the electromagnetic scat-
tering problem in a biperiodic structure by using a different method. It is known
that the electromagnetic wave has a finite speed of propagation in the time-domain,
i.e., it takes a certain amount of time for the wave to propagate over a distance.
This feature differs from the infinite speed of propagation for the wave in the fre-
quency domain. We make use of this fact and propose a compressed coordinate
transformation to reduce the problem equivalently into an initial-boundary value
problem in a bounded domain. Given any time 7', we consider the problem in the
finite time interval (0,7]. Unlike the time-harmonic problem, the solution does
not have quasi-periodicity with respect to the spatial variable » = (z1,22) € R?
in the time-domain. The method begins with change of variables to ensure that
the solution of the new equation is periodic with respect to the spatial variable ».
Hence, the periodic boundary condition can be used in the x; and x5 directions. In
the x3 direction, we first specify a rectangular slab which contains the biperiodic
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structure with a possible inhomogeneous medium. The medium is homogeneous in
the region above and below the slab, respectively. Then we pick two plane surfaces,
one is far away above and another one is far away below the rectangular slab, such
that the diffracted wave and the transmitted wave cannot reach the top surface and
the bottom surface at the time 7. Therefore the homogeneous Dirichlet boundary
condition can be imposed on these two surfaces. Although the problem is now re-
stricted into a bounded domain, the whole physical domain in the x3 direction may
be too large for actual computation. To overcome this issue, we apply the second
change of variables and compress those two surfaces towards to the specified rectan-
gular slab. This is done by mapping the two far away surfaces into the two surfaces
which are slightly above and below the rectangular slab. The reduced problem can
be formulated into a much smaller domain. Based on the Galerkin method and
energy estimates, we prove the existence and uniqueness of the weak solution for
the corresponding variational problem. Furthermore, we obtain a priori estimates
with explicit dependence on the time.

The paper is organized as follows. In Section 2, we introduce the model problem,
and present the change of variables and the compressed coordinate transformation to
reduce the problem equivalently into an initial boundary value problem formulated
in a bounded domain over a finite time interval. Section 3 is devoted to the analysis
of the initial boundary value problem. The well-posedness is addressed and a priori
estimates are obtained. We conclude the paper with some general remarks and
directions for future work in Section 4.

2. Problem formulation. In this section, we introduce the mathematical model
and define some notations on the time-domain scattering problem for Maxwell’s
equations in a biperiodic structure.

2.1. Maxwell’s equations. Let us first specify the problem geometry, which is
shown in Figure 1. Since the structure is biperiodic in r = (z1,22) € R?, the
problem can be restricted into one periodic cell

R={x=(rz)cR®:0<z; <Ay, 0<ao <Ay},
where Aj,j = 1,2 is a positive constant. Let
Qh:{$€R320<$1<A1,0<(£2<A2,h2<$3<h1},

which may be filled with an inhomogeneous medium. Here h;, 7 = 1,2 is a constant.
Denote

Qf ={x e R’| 0 <21 <A1, 0< a2 <Ag, 23> I},
Q, ={xeR* 0<a; <A1, 0< 29 < Ag, 23 < ha},

which is assumed to be filled with a homogeneous medium, respectively. Define the
boundary
th :{ZBER3ZO<$1<A1,0<$2<A2,1‘3:hj}.

Consider the time-domain Maxwell’s equations

{v x E(x,t) + poH(z,t) = 0, (1)

0
V x H(z,t) — 0 E(x,t) = 0.
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FIGURE 1. Problem geometry of the time-domain scattering by a
biperiodic structure.

where (z,t) € R x RT, E, H are the electric and magnetic fields, and &, y are the
dielectric permittivity and magnetic permeability and satisfy

e(x1 + niA1, x2 + nolo, x3) = e(x1, T2, T3),
p(zy + i, xo + nolo, x3) = p(1, 22, 23),

for all r = (z1,72) € R ,n = (ny,n2) € Z. Since the medium is assumed to be
homogeneous away from £, there exists constants ¢;, 1,7 = 1,2 such that

e(x)=e1, plE)=pm, =xeq,
e(x) =e2, plx)=p2, x€.
Throughout we also assume that ey > 11 and
0 <émin €€ < €max <00, 0 < pimin < f < flmax < 00,

where €min; Emaxs Mmin, Mmax are constants.
Let (E™°, H™°) be the electromagnetic plane waves that are incident upon the
structure from QZ Explicitly we have

E™ =pf(a-r—Brz—ct), H™ =qf(a r— s —ct), (2)

where f is a smooth function and its regularity will be specified later, ¢ = 1/, /g1y is
the light speed in Q;, a = (a1,as),a1 = sinfy cosbs, ay = sin by sin by, § = cos by,
f1 and 03 are latitudinal and longitudinal incident angles satisfying 0 < 6; < 7,0 <
0, < 2. Denote by d = (a1, a0, —() " the unit propagation direction vector. The
polarization vectors p = (p1,p2,p3) " and g = (q1,¢2,q3) " satisfy

€
p-d=0, q= ,/flpr.
241
It is easy to verify that

V x E™(x,t) + 10, H™ (x,) =
V x H™(z,t) — 2,0, E™(x,t) = 0.

To impose the initial conditions, we assume that the incident fields and total
fields vanish for ¢t < 0, i.e.,

E™|,_g=El—o=0, H™|—g=H|i—c=0, xR (3)
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2.2. Change of variables. The incident fields (E™, H™®) are not periodic func-
tions in 7, but we can verify that

(EinC7Hi“C)(’I‘ + A, x3, ) (p ) ( . (T‘ + A) — Brs — Ct)
=(p,q)f(a-r—Bas—c(t—c 'a- A))
(Emc Hmc)(’r,ﬂj’g,t o cila . A),

where A = (A1,0), (0, Az), or (A1, A2). Motivated by the uniqueness of the solution,
we assume that the total fields satisfy the same translation property, i.e.,

(E,H)(r +A,z3,t) = (E,H)(r,z3,t —c ‘- A).
Define
(U, V)(r,z3,t) = (E,H)(r,23,t +c ‘a- (r — A)). (4)
A simple calculation yields that
(U, V)(r+A,x3,t) = (E,H)(r + A,z3,t +c ‘- 7)
=(E,H)(r,z3,t +c 'a-(r — A)) = (U,V)(r,z3,1),

which shows that U and V are periodic functions with a period (A1, Ag) in 7. It is
clear to note that

(UinC,VinC)(T‘,xfg,t) _ (EinC,HinC)(T‘,JTg,t—F C_la A (,’, _ A))
= (P, @)f(e-r —fas —c(t +¢ e (r—A)))
=(p,q)f(—fBrs —ct+a-A), (5)

which shows that U™ and V'™ are also periodic functions of r, since they do not
depend on 7.
Using the change of variables, we have from straightforward calculations that

8t(E,H):8t(U7V), 8$3(E7H):813(U’V))
0, (B.H) = 0,,(U,V) = ZLo(U. V), j=12

J
It is easy to verify that
VXE=VxU-c'taxdU, VxH=VxV-cltaxoV

where & = (ay,@2,0). Hence, the Maxwell equations (1) can be reduced to the
system of coupled equations for (U, V) in R x RT:

{v x U(r,x3,t) — ¢ 'é x QU (7, 23, 1) + uatV( 3,1) -

0,
V x V(’I‘,:L’g,t) —cla x atV( T,%3, ) — e U ( ) 0.

Clearly, (U™, V') satisfy (6) in R x R with e = €1, = p1. By (3), we
assume that the incident fields (E™°, H'"™¢) vanish for ¢ < 0. Combining (2) and
(5), we obtain that U™°|;—¢g = V'"°|;—o = 0, which implies the initial condition

U|t=0 = V|t:0 =0 in R.
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2.3. Compressed coordinate transformation. It is known that the scattered
field U = U — U™ has a finite speed of propagation in the time-domain. For
any given time T' > 0, we may always pick a sufficiently large Hy (H; > h;) and
a sufficiently small Hy (H2 < hg) such that the scattered field U® cannot reach
the surface I'y, = {z € R3 : z3 = H;},j = 1,2. Hence the following boundary
conditions can be imposed:

v X Ulpy,, =1 x U™, , 1o xUlp,, =0, t€(0,T],

where v; = (0,0,1)7 and v, = (0,0,—1)" is the unit normal vector on I'y, and
I, , respectively. Pick another two constants hy, hy satisfying hy < hy < Hy, Hy <
ho < ha. Define Fﬁj = {:l: S R3| O0<z < Al, 0<zo < AQ, T3 = hJ}
Consider the change of variables
T3, Z3 € (ha, h1),

x3 =P(T3) = ¢ m(T3), T3 € [h, ],

n2(Z3), T3 € [ha, hal,

where . .
_ . h3(Hj —hy) + @[} + (hy — 2hy)Hy]
nj(Z3) = L 2 < , j=1,2.
(hj —&3)(Hj = hj) + (hj — hy)?
A simple calculation yields that
2(7 2
77;({5,3) _ (HJ h]) (hJ h]) >0

[(hy — &3)(H; — hy) + (hj — hy)?)2

and

ni(hi) = hy,  ni(hy) = H;,  nj(hy) =1,
which imply that the function ¢ € C''([hs, h1]). Define
O ={xeR}0<z <A, 0<z2 <Ay, ho <3 <hi},
QH:{ZBER3|O<(E1<A1, 0<£L'2<A2, H2<£L'3<H1}.

Clearly, the transform 1 keeps the domain ); unchanged, while compresses the
domain €2 into the domain €2;.

Let (U, V) be the transformed total fields of (U, V) under the change of vari-
ables, i.e.,

(U, V)(w1,22,%3,1) = (U, V)(21, 22, 9(33), 1).
It follows from a straightforward calculation that

VxU=VgxU, VxV=VgxV, 9U=08U, 8V =09V,

where
10 0 7 [a, Ba,
vo=[01 0 ||o,|=]| 0
1 1 N
00 Y/ (Zs) O, QZJ’(fﬁs)aI3
With the aid of the function ¢ € C*([hg, h1]) and the definition of the operator

V17> we assume that

— < —~ <
max |Vie(x)| < d. < oo, max V()| < dy < oo,

where d. and d,, are constants.
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The system (6) can be written into a coupled system of equations for ([7, ‘7) in
sz X (O,T]Z

Vo x U(r, &3,t) — c ' x 9,U(r, &3,t) + pd, V (r, 73,t) = 0, o
Vi X V(r,@3,t) — ¢ 'a x 9,V (r, &3, t) — edU (r, 73, t) = 0.
In addition, ([7, ‘7) satisfy the initial condition
fj‘t:o = 0, v‘tzo =0 in Qi” (8)

the periodic boundary condition

ﬁ(o,$27,’i3,t) = ﬁ(A17m27j3at)7 ﬁ(xlu()?‘%fﬂat) = ij(thQ?jSut)a

V(Oaan*’z&t) = V(Alax%‘%&t)? V(xl,ovi'ffnt) = V($1,A2,i’3,t),

and the boundary condition

~ inc

V1 X fjh—‘ﬂ,l =1V X U |F}31’ Vo X ﬁ|1"ib2 = O, te (O,T),

where
~inc

U (r,@3,t) = U (r,(23),t) = pf(—B(F3) — ct + a - A).

Eliminating the magnetic field V' from (7), we get the wave equation for the
electric field U:

(Vi — ¢ t@d,) x Wi (Vi — ¢ '@d,) x Ul + €020 =0 in Q;, x (0,T].  (9)
It is also easy to get
U ="'V x V + (cep) La x (Vg x U) — (Pep) e x (@ x &,U).  (10)

Noting that —(c?ep)~!|&|? < 0 and 1 — (c2ep) " '&|? > 1 — |&|? =1 —sin®6; > 0.
Taking the dot product of (10) with & and using (8), we obtain

1= (Pen) M @P)(@:Uli=o) - &) = ~(Pep) | *[(3:U o) - &,

which shows that (9,U],—o) - & = 0 for any 6; € [0, %),02 € [0,27). Since 6, and 6
are arbitrary, we have the initial condition

atﬁ|t:0 == 0

Similarly, we may eliminate the electric field U from (7) and obtain the wave
equation for the magnetic field V:

(Vi —ctady) x [ (Vg —c'a@dy) x VI +pd2V =0 in Q; x (0,7]. (11)

It is clear to note from (9) and (11) that these two model equations can be handled
in a unified way by formally exchanging the roles of € and u. Hence we shall only
present the results by using (9) in this paper.
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2.4. The reduced problem. Let H(cAu/rl;Q;l) and H(&R/,Qh) be the Sobolev
spaces which are defined by

H(cwr;Q;) = {u € L2(Q;)? x u e L*(Q

H(div; ;) = {u € L*(;)°

Vi (2)°},
Vi -u € L2(Q;)}.
Define a biperiodic subspace of H(Cfar/l, Q;):

Hpero(curl; ;) = {u € H(curl; ;) : (0, 22, &3) = u(Ay, x9, 73),
u(x1,073~33) = U(.’I/'17A27573),
V1 X u‘rﬁl =1y X u‘r‘ﬁz = 0}
Now we define a biperiodic function space
Hpeno(C’lIITl, (ii\{/'; Qﬁ) = Hper,o(cfl,{_r/l; Qﬁ) N H(&I\//, Qﬁ),
which is a Sobolev space with the norm given by
1/2
1l gy, e divin,) = |2, + 1V X wllizq,)s + Vi wlizo,)

~inc

For a given U | there exists a smooth lifting ﬁo, which has a compact support
contained in ©; x (0,7] and satisfies the boundary conditions:

~ ~inc ~
V1 X Uo‘rﬁ =1 X U |FE1’ vy X Uolr‘h =0.

Let W U - UO We may consider an equivalent initial boundary value problem
for W to find a biperiodic function W(r Z3,t) such that

Vi X [TV X W]+ eORW = Fi(r,@s,t)  in @ x (0,T],
W|t:0N: }2(7",573% Natﬁvfh:o = }'3(7“7533) in in (12)
vy X W|Fi,,1 =1y X W|F;”2 =0 in (O,T],

where the operator
V?w’d (V"“ —c a@t)

and
Fle ¥ ()% f,e H(cwl Q)N H(iv;), Fye L)%
The following results show that the operator Vt

satisfies the usual divergence
free conditions for the electromagnetic fields in Maxwell s equations.

Lemma 2.1. If (U,V) satisfy (7), then the following divergence free conditions
hold

Vita (EU) =0, Vi - (uV)=0 inQ; x(0,T].

Proof. It follows from (7) that

Vi (e0U) =V (Ve x V)

M.& M,&
= (VM —ctady) (Vi — ¢ lady) x V]
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= VM' (VAN/[ X ‘7) — 071VM' (d X 3t‘7)
—cla (Vg x V) +c2a- (& x 3217)
=V (Vi x V)= 9V (@xV)+a (Vg x V)
+ ¢ 2@ (@x V)] in Q; < (0,77 (13)
A simple calculation yields that
Vi (Vi x V)
1 ~
= v (8m2‘/é ,(/) (x ) 13 27 ( ) a:tlv-?)? aﬁl% a:EQVl)T
(69:18$2VE3 axlamg‘/Z) ( 8ZQaI3V1 81?2811‘73)
Y’ ( 3)
1
1/1'( )(8933811V2 89:3812 Vl) 0
Vi (& x V)

= VM ’ (aQ‘A//éu _al‘f;}nal% - OZ2‘71)T

~ 1 ~
= 20y, Vs — 10, V3 + (@) (alaac3‘/2 20z, V1),
a- (Vg xV)
- ~ 1 ~ 1 ~ ~ ~ ~ T
= (amzvé - w,(ig)awgwa w,(jg)aﬂcg‘/l - 6301V37 a:x:1‘/2 - awzvl)
1 ~
- 028];1‘/3 0518.1:2‘/3 dl (fI,'3) (ala.tg‘/Q a26-'33vl)

= -V (@xV)
It is easy to note that
a-(@axV)=V-(axa)=0.
Substituting the above equations into (13), we get
V»M - (0U)=0 in Q;, x (0,77. (14)

We deduce from (14) that
0 = VL _-(e8,U) = 8t[VL~~(5l~J')}

s
= 0l(Vye) U+e(Vi,-U)
= 8,5[(V]\7€)'U+6(VM~ U-—cta-9,0)] inQ;x(0,T].  (15)

Combining (15) and Uli—o = 8;U;—¢ = 0, we obtain
Viia (EU)=0 inQ; x(0,7].
Similarly, we may show that

Vira (V) =0 i x(0,T],

which completes the proof. O
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Lemma 2.2. For any function u € Hper,o(cflrﬂxﬁ;f; Q;) with dyu € L?(Q;)3, there
exist two positive constants C1,Co such that

G [H@tu%z(%)s + V7 % U’H%?(Q,»L)?’ + 11V u|%2(§2}1):|

< Hatu”%"’(ﬂflﬁ + ||Vt’1q,& X u”%?(ﬂﬁﬁ + HV?’V{& : U‘HQL?(QE)

<Cy |:||6tu||2L?(Q;L)3 + IV < ullfag, ) + 11V u|%2(n,;,)],
where C = 1/ max{4,4c=2 + 2} and Cy = max {3, 3c72 + é}

Proof. For any function u € Hper’o(c/ﬁ?l, div; Q;) with ,u € L?(Q;)3, we have
[fes 8tu||2L2(QH)3 < |d|2Hatu||%2(Q}~l)3 = sin® 91||8tu||%2(93)3 < ||8t’UJH%2(Q;L)3 (16)
and

||th\z)d x u||%2(sz,~l)3

= / (Vi —c'ady) xu] - [(Vi; — ¢ 'ady) x ulde
Q

R

= / (Vi xu) - (Vg X u)dz — 2071/ (Vi x u) - (& x Oyu)dx
Q Q

h h

+ 0_2/ (& x Opu) - (& X Opu)da
Q

3

> [|Viz x ulliagq,)s + ¢ ll6 x pulfaq, s
1 oy~
- §HVM x u||%2(9,~1)3 —2¢ %)@ x at“”%z(gﬁ)B
1 9~
= §||V1\7 X U||%2(Q;L)3 —c?|e % atu”%z(QfL)S
1 _
> §||V1\7 X ulFaq e — 20| Za g, o (17)
From (16) and (17), it is easy to obtain that
1 2 1 2
§||V1\7 X w720, + §||3tu||L2(QH)3

_ 1
< ||V%Z’& X UH%Q(Qﬁ)ii + <C 2 + 2) HatUHQLQ(Qa)S

_ 1
< max {I,C 2 + 2} (”V%/[f’& X ’UJHQLQ(Q’})S + Hatuuiz(gh)s) ;

which gives

20V o % llEzae + 100llEa,)e
1 ) ,
> max{2,2c¢=2 4+ 1} (HV]\N/[ X U||L2(Qi1)3 + H&:UHLQ(QRV.) .
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On the other hand, we have

IV & > ullZaq,)s

= /Q (Vi — ¢ tady) x u] - (Vi — ¢ @dy) x u]de
= / (Vi x ) (V7 x u)de — 27! / (Vi x u) - (& x Oyu)dx
Q5 Q;
+c” /Qg (& x Oyu) - (& x dyu)dx

< SlIVar % UH%Q(QEP +3¢7?|@ x 5tu||%2(sz;1)3

N W N W

< SlIVar % U||%2(sz,1)3 + 30—2”&5“”%2(%)3 (18)
and

2||Vt~d X U||%2(Q,1)3 + HatuH%?(Qﬁ)S

<231V x ullqo, o + 3210l ) + 00l

= 3197 x ullang + (6072 4 1) Iocule,

< max {3,662 + 1}(||VA7 X U||2L2(Qh)3 + ||atu\|%2(nﬁ)3)- (19)

Combining (18) and (19) gives

1
max{2,2¢2 41}

< 2||Vt;\z,& X UHQL?(QEP + Hatu||2L2(Q;L)3

(1957 % ull3aca, o + 10ul3a, )

< max {3,60_2 + 1}(IVM X u||%2(9ﬁ)3 + Haﬂt”%'z(ﬂms). (20)

Similarly, we have

1
max{2,2c¢2 41}

S max {3,602 + 1}(|VM . U/H%z(gh) + ||6t’ul||i2(gh)3) (21)

IV - ullZag,) < QHV%Z’& “ulZagq,) + [10ullizg, )

The proof is completed by combining (20) and (21). O

Lemma 2.3. For any function w € L*(Q;)? with Oyu € L?(Q;)3, we have
max ||u||i2(ﬂh)3 < 2||U\t=0||2L2(Qh)3 +27? tg%g%] ||6tu||i2(ﬂﬁ)3'

t€[0,T]

Proof. For any t € (0,7, we have

t
u(x,t) = u(x,0) +/ Opu(z, 7)dr, x € Q.
0
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It follows from the Cauchy—Schwarz inequality that

Ju(, )Lz (a;)2 < luli=ollr2(q;)s +

¢
’/ Oru(x, T)dr
0

L2(;)3
1
2

T
< uli=ollz2(@,) + T (/ |atu('7t)|%2(9}~t)3dt>
0

A simple calculation yields

T
ey  2NlEoll s+ 27 | 100 ) s ot

< 2f|ulisollL2 (o, s + 277 . 18wl P20, ye,  VE € (0,T],

which completes the proof. O

3. Well-posedness. In this section, we present the main results of this work, which
include the well-posedness and stability of the scattering problem and related a
priori estimates.

3.1. Existence and uniqueness. Suppose that W = W(r,ig,t) iAs/a ir/nooth
solution of (12) and define the associated mapping W : [0, 7] — Hper o(curl, div; Q;)
by

(W(t)|(z) == W(z,t), xecQ;, tecl0,T).
Introduce the function f; : [0,7] — L*(;)? by

[fl(t)](w) = }l(wvt)v T e Q}}v te [OaT]

Multiplying a test function @ € Hpcr’o(cfl\l?l,&i;/; €2;,) on both sides of the first
equation in (12) and using the integration by parts, we obtain

(EW", Q) +a[W,Q;t] = (f1,Q), t€[0,T], (22)

where

aW.Qit] = [ (1IVh X W) (T < Q. te0T) (2)

3
Here (-,-) in (22) is the inner product in L?(€2;)®. We seek a weak solution W
satisfying W” € H;elrjo(curl,div;ﬂfl) for a.e. t € [0,T], where H;elrjo(curl,div;ﬂfl)
is the dual space of Hpeno(c’uvrl7 (ﬁ:/; ;). Hence the inner product (-,-) can also be
interpreted as the pairing (-,-), which is defined between H_.! ,(curl,div; ;) and

per,0
Hyero(curl, div; ;).

Definition 3.1. We say that a function W € L2[0, T} Hper,o(ﬂ,d’ivv;Qh)] with
W’ e L?[0,T; L*(2;,)*] and W” € L?[0,T; Hl;i’o(curl, div; ;)] is a weak solution
of the initial boundary value problem (12) if it satisfies

(i) (eW”,Q) + a[W,Q;t] = (f,Q), VQ € Hpero(curl,div; ;) and ae. ¢ €
[0, T]; i )
(ii) W(0) = f5, W'(0) = f3.



MAXWELL’S EQUATIONS IN BIPERIODIC STRUCTURES 271

We adopt the Galerkin method to construct the weak solution of the initial
boundary value problem (12) by solving a finite dimensional approximation. We
refer to [23] for the method to construct the weak solutions of the general sec-
ond order differential equations. The method begins with selecting smooth func-
tions &, = &,(x),k € N by requiring that {£,}72, is an orthogonal basis of
Hpero(curl,div; ;) and {£€,}72, is an orthogonal basis of L?(€;)%. For a posi-
tive integer m, let

W (1) ==Y wh (D&, (24)
k=1
where the coefficients w¥, (t) satisfy
- dwﬁ -
wn(0) = (F2.8), =3 = (Fs ) (25)
t=0
and for t € (0,7, we have
(W e 1€,) + a[Wo, e '€t = (Fre7'€,), k=1,...,m. (26)

Theorem 3.2. For each m € N, there exists a unique function W,,, which is given
in the form of (24) and satisfies (25)—(26).

Proof. Since {£,}7°, is an orthogonal basis of Hpcr,o(al?l, &‘i;/; Q;,), we have from

(24) that
. 2,1 2,k
EW(t).e7'6) = { [, &saef S0 = TR0 en

It follows from (23) that

a[ m7€ £k7 ]

— [ X Wil [V X ()l de

h

= /Q (Vi — c'ady) x Wy ] - [V x (e71¢;)]de

R

— / W'V x W] - [V x (e71€,)]de

Q,

- c_l/Q W la x O W] - [V x (7€) da

R

IS S RAC) (28)
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where
o= [l ax &l (V5 x (€,
h

d, = /h I X & [V % (716, ]de,
k, l=1,...,m. Denote

R = (Fi(t), 7€), k=1,...,m. (29)

Substituting (27)—(29) into (26), we obtain the matrix form of the linear system of
ordinary differential equations

d®w,, () dw,, (t)
B
a0

where Wy, (t) = (wk, (t),...,wn ()T, £@#) = (f*@t),..., @), B = [bi]mxm, C =
[ct]xm. Subject to the initial conditions (25), it follows from the standard the-
ory of ordinary differential equations that there exists a unique C? function w,, (t)
satisfying (30) and (25) for ¢ € (0, T]. O

+ Cwan(t) = £(t), te(0,T), (30)

Theorem 3.3. There exists a positive constant C depending only on Q,T and the
coefficients of the problem (12) such that

2 ! 2
max. (W, o, = WOz,

" 2
+ me(t)||L2[0,T;H;elr,0(arﬂ,dni:/;9ﬂ)]
<O (I3 rze@um + 1F22 | amdma, © st ) m=12...

Proof. For any W, € Hper’o(cftrﬂ, div; ;) with W, e L*(©;)? , we have

€ N; / + a|Wn, ,;tz 1, ' , fora.e. te|0,T].
W, W_ W.., W, fi,W,, fi 0,7 31
Observe that
1" / d 1 ’
Wi W = 5 (GIVEW e, ) (32)

and

a[Wp, W, t] = / (u 'V X W) (V- x W, )de

Q;,

d /1
= a (2”1 /[IJ71 V%}L& X Wm||%2(gh)3> . (33)

Combining (31)—(33) and using the Cauchy—Schwarz inequality, we obtain

. 1 ,d /
min{emins i} 32 (IWon 320,50 + | Vi 5 % Winll3a(a, )

d ,
<% (IIﬁWmII%Z(QA)a + VBT VY L % Wm||2LQ(Qﬁ)3)

= 2(f1, W,,) < 2|(fs, W,,))| < W, 720,00 + IIf1172(q, - (34)
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It follows from Lemma 2.1 and the Cauchy—Schwarz inequality that

2
3o (195 4 Walliaa,))
= /Q (vth W) - (Vi 4 ‘W, )da

a
1 1 ,
< *||VtN 5 'Wm||2L?(Q}~L) + §HV§\77& 'WmH%%Qﬁ)
1 _ /
= *|| Ma m||2L2(Q;L) + §H —e (Vo) Wm”iz(gﬁ)
< §||vz\7,a ‘Wm||2L2(Q;L) +€rnl2n max{|V~5( )|2}me||2L2(Q )3

1 _
< §||thq’& 'Wm||2L2(Q,) + e d2 W, 1720, )3 (35)
Combining (34)—(35) yields

CIWal2agapys + 1 Vs g X WonllZagap s + 195 o Wil

< [min{emin, ] (Wl 2y 0 + 611320, 0 )
+ ||Vt~,d “Wonllfaq,) + 26mindz Wil 2(q, )2

< ([min{eminvﬂr;}ax}] + 25m12nd3)||WmH%2(Qﬁ)3 + ||V%Z7d : WmH%Q(QE)

+ [mln{gmmv /'Lmax ]_1 ||f1 ||L2(Q» )3

<cs(||wm||m s+ IV o X Wil o + 195 m%mw)
+ Callfill2 0, )2 (36)

where C5 = max{1,Cy + 2¢..2 d?} and Cy = [min{emin, pmie ] ™"
Let

alt) = W22, s + 195 & X WonllZaga o+ 195 o - Wonlaca,
5(t) = [1£1]122 g -
Then (36) implies
a'(t) < Csa(t) + Cad(t), t€10,T).
Integrating the above inequality from 0 to ¢ gives

at) < Cs /Ot a(s)ds + (a(O) +Cy /Ot 5(s)ds)

<Cs /Ota(s)ds + (a(O) +C, /OT §(S)ds> , tel0,T],

which gives after applying the Gronwall inequality that

T
a(t) < e <a<0> +0u [ 5(8)(15)
0
T ~
< 08T <a(0) + 04/0 ||f12L2(Qﬁ)3dt>
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=T (04(0) + 04”}‘1||%2[0,T;L2(Qﬁ)3]) . te[o,T]. (37)
It follows from Lemma 2.2 that
a(0) = Wiyl o + IV 5 % WinlicolZa(a, 0 + 195 o - WanlicolEaa
< Cs (W, limo 30,0 + V57 X Wnlizoll (a0 + V57 - Winli=oll3z gy )

= Cs (IF3l3ayys + 1957 % Falliaayys + 1957 Fallizay) ) (38)
where Cy = max {;’, 3c72 + ;} Combining (37) and (38), we obtain

a(t) = meH%ﬁ(QBP + ||V§q’d X Wm||%2(9a)3 + ||vt’]\/j’d 'Wm||2L2(QR)

< et [02 (17132ys + 1957 % FallZaaye + V7 - Falliaca,))

+ C4||}1|%2[0,T;L2(Q;L)3]:|
<C (||}1H%2[07T;L2(Q;L)3] + IV x FallZaga,ye + IVar - Fallizo,)
175132 0,2) (39)
On the other hand, it follows from Lemma 2.2 that
alt) = ||W;n||%2(9ﬁ)3 + ||Vt~7d X Wm”QL?(Q;L)?‘ + ||th\/7,d 'Wm”%ﬁ(ﬂﬁ)
> C1 (W32, + V57 X WanlZagays + V57 - Winll3agayy ) - (40)
Noting that ¢ € [0, 7] is arbitrary and using (39)—(40), we have

"2 2 2
tg&§]{||wm||L2(sziL)3 TV X Winllz2(0,)s + 1V - Wanllz2(0, )}

< C(I1F 132000220y + V57 X Fall3aay s
+ 157+ Fall3zay) + 1320, )- (41)
We conclude from (41) and Lemma 2.3 that

)
tg[%{IIWmIILzWa + [ W

= tg&’;]{HWmHsz(Qﬂ)s + ||Wm\|%2(gﬁ)3 + Va7 x Wm”%’é’(ﬂﬁ)?’

+ Vi Wanllfzq,)}
<C (H}IH%Q[O,T;L?(Q;LP] + IV x }QH%?(Q;L)?’ +IV- J~c2||2L2(Q,»L) + ||J~cs||%2(szﬁ)3)

2
+ max, W72, )s

<C (||j~"1||%2[0’T;Lz(Q;L)3] + | V47 % f2||%2(9ﬁ)3 +IVar }2||%2(Q;L) + ||}3||%2(Q,»L)3)
T 2 2 "2
+ 2H.f2||L2(Q;L)3 +2T tgf(?,)}] ||Wm||L2(Q;L)3

.
Hyper,o(curl,div;Q;,)
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< C (171320202200 + IFal3a(ys + 1957 X FallZaqayys + 1957 FallZaqay
+||f3\|%2(9ﬂ)3) +2T2%C (H}IH%Q[O,T;L%Q;LP] + V7 % }2||%2(Q,~L)3
V57 - Fallfaay) + 1 Falaa,)0)

< C (I rzr@pm + 1F22 i, + MFalEza,e) (42)

For any v € Hper)o((/?ar/l,d/{;/;Q;l) with ”vHHper,o(cTrl,JR;Q;l) <1, let v =uv+

vy, where vy € span{¢,,...,&,,} and (vy,€,) = 0,k = 1,...,m. Thus we have
(v1,v2) =0 and

2 _ 2 2

il o cmdve,) = 1, . @ v,y — 102, o@mdo,) < 1
It follows from (24) and (26) that

(EW,,0) = (W, 01) + (W, v2) = (€W, 01) = (f1,01) — a[ W, w151,
which gives

Emin| (W, V)]

= 6min|<w;,m'v1>| = ‘<5minw;;u'vl>|

< (W, v1)| = |(f1,01) — a[Wn, 013 1]

< [(f,v0)] + [a[Win, w152

< Fillz2 ;e lvallze g, e il V7 & X Winllz20,)2 1 V57 & % v1llz20; )2
< maX{L#;nln}<|f1||L2(Q,~l)3 + ||Vt1\7}d X Wm|L2(Q;L)3> ||leHper,O(Crl;],&§;;QiL)
< mas{L il (12l + 195 % Wolioy ). (43)

By (39) and (43), we have

T T
W// 2 o _ W// 2
LW eyt = e Wt

\IHper@(Jﬂ,a‘i;;nﬁ):l
T
T T 2 T 2
<c| (f g + ORI e0,mzemye + 1520y, e
2
SR

< C (IR rze@m + 172w, + WFslfe@pe) - (49)
The proof is completed after combining (42) and (44). O

Now we pass to limits in the Galerkin approximations to obtain the existence of
a weak solution.

Theorem 3.4. There exists a weak solution of the initial boundary value problem
(12).
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Proof. 1t follows from the energy estimate in Theorem 3.3 that

{W,,}_, is bounded in L0, T; Hyer,o(curl, div; )],

(W, }2°_, is bounded in L2[0,T; L(€2;)%],

{W 1°_ s bounded in L?[0, T H;elno(cfuvrl, div; ;)]
Therefore, there exists a subsequence still denoted as {W,, }5°_; and W € L?(0, T}
Hyer o(curl, div; ;)] with W' € L2[0,T; L3(Q;)%] and W' € L?[0,T; H,.! o (curl,

P per,0

div; ;)] such that
W, -~ W weakly in L2[0, T Hpeno(a;l, div; Q)]
W, - W weakly in L2[0,T; L%(9;)°], (45)
W, = W' weakly in L2[0, T; H,_} o(curl, div; 2;)].

Next we fix an integer N and choose a function u € C1([0, T}; Hper,o(cfuvlrl7 div; 979))
of the form

N
u(t) = ut (), (46)
k=1
where v* k= 1,..., N are smooth functions. Selecting m > N, then we have
T ., T
/ (<5wm, w) + a[W,,, u; t]) dt = / (£1, u)dL. (47)
0 0

Using (45) and taking the limits m — oo in (47) yields

T T
/ (<€W”,u> +a[W,u;t}) dt = / (fl,u)dt, (48)
0 0
which holds for any function u € L?[0, T} Hper,o(c/uvrlﬂgf; ;)] since functions of
the form (46) are dense in this space. Moreover, we have from (48) that
(W' u) +a[W,u;t] = (f,u), Vue Hper,o(éa/rl,&g;ﬁﬁ), a.e. t € [0,
and
W € C([0, T); Hypero(curl, div; 2;)), W' € C([0,T]; L*(2;)%).
Next is to verify
Wleo = F>. W0 = fs. (49)
Choose any function u € C’Q([O,T];Hpcrﬂo((;ﬁ,(,liz;Q};)) with u(T) = u'(T) = 0.
Using the integration by parts twice with respect to ¢ in (48) gives
T
/ ((su”,W) +a[W, u; t]) dt
0

= /0 (£, uw)dt — (eW(0),u (0)) + (W' (0), u(0)). (50)

Similarly, we have from (47) that

/OT (0" W) 4+ a[Woust]) i :/OT(fl,u)dt (W, (0),1 (0))
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Taking the limits m — oo in (51), using (25) and (45) yields

T " T ~ / ~
/ ((Eu ,W)+a[W,u;t]) dt:/ (£, )dt — (e Fo,u (0) + (£ F5, u(0)). (52)
0 0

Comparing (50) and (52), we conclude (49) since u(0) and u' (0) are arbitrary.
Hence W is a weak solution of the initial boundary value problem (12). O

Theorem 3.5. The initial boundary value problem (12) has a unique weak solution.

Proof. Tt suffices to show that W = 0 if f; = f, = f3 = 0. Fix 0 < s < T and let

() = {({: W(r)dr if0<t<s,

fs<t<T.
Then v(t) € Hper,o(c/uvrl,agf; ;) for each t € [0,7], and satisfies
/OS ((eW”,v> + a[W,v;t]) dt =0.
Since W' (0) = 0 = v(s), from the integration by parts, we obtain
/OS (—(aw’,v') +a[W,v; t}) dt = 0. (53)
It is easy to note that v’ (£) = =W (t), 0 <t < s, from (53), we have

0 /0S ((EW/,W) - a[v/,v;t]) dt

= 5| 5 (WEWIEao,p —alv.vit))ar
= 5| 5 (WEWIEayp — IVl o x Vi, )
which gives
[VeW (s) ||L2(Q s T ||th ||L2(Q pp =0, s€[0,T].  (54)
Since ||th ||L2 q,)s = 0, we obtain from (54) that W = 0, which
completes the proof O

3.2. Stability. In this section we discuss the stability estimate for the unique weak
solution of the initial boundary value problem (12) and present a priori estimates
with an explicit dependence on the time.

Theorem 3.6. Let W be the unique weak solution of the initial boundary value
problem (12). Given fi € L'0,T; L*(;)%], f4 € H(curl; ; i), F3 € L2(Q;)%, then
there exists a positive constant Cs such that

max {0 (,0) 30,0 + IV o X W0 [3200, |

t€[0,T]

< Cs (IF1 13 0,rez2py + 157 X Fallizaye + 1 Fsl3aye)

o —1 —1 €min
where Cs = max{2e,.}, 2! | emax +4c2p 1}/ min{&ain gyt 3
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Proof. Tt follows from the discussion in the previous section that the initial boundary
value problem (12) has a unique weak solution

W (2,t) € L*[0, T; Hper,o(curl, div; ;)] 0 H'[0, T3 L2(2;)°).
For any ¢ € [0, T, consider the energy function

E(t) = |[VeaW 32,0 + Vit Vi o X Wliaq, e

A simple calculation yields that
t
/ E'(r)dr
0
— E(t) - E(0)
= (IVEOW 3200 + IViT T o X W20, )0)
— (IVERW li=oll3z oy e + IVITT 9 o X Wizol22(0,6)
= (||\@3tW||2L2(Qﬁ)3 Vet Vi 4 W||i2(9,1)3)
— (IVEOW im0 30y s + Vi (Vi x Wizo = & x 0, W o) 320, )2
= (VW 320y ys + VBT T o X WZagq, )
— (IVEFsl3aq@ys + IVITT (Vg x Fo = €71a % Fo)l3aqye) (55)
On the other hand, it follows from (12) and the integration by parts that

t t — — —~ -~
/ E'(r)dr = 2/ / |:gat2W COW + u—l(vvgﬁd x W) - (V';Wd X 8tW)}dwdt
0 0 JQy 7 7

—Q/Ot/ﬂ {[safvTuvéMﬁ (1 (Vi 4 X W) .athf}dmdt

t
:2// fi-OWdadt
0 JQ;

T —~ ~
<2 [ 10 a1 il i
<2 max {||3tW('7t)|\L2(Qf)3}||}1HLl[O,T;L?(Qﬁ)Sy (56)
t€[0,T] v
Combining (55)—-(56) and using Young’s inequality, we obtain
IVEOW (720, s + Vit Vi o X Wiz, e

< max 10 (Dl 0} (2151 iom20,m)

+ (IVEFal2 gy + VAT (T3 x }2 — T x B3, 0 )

< €min

<=3 tgg§]{||8t SOz, + —— ||f1||L1[0TL2<Q )]

+ <€max||f3|‘%2(§z )3 + 2:u’mln”v X fZHLZ(Q;L)3 +2c” IumlnHa 2 fSHLz(Q )3 )

emln
<= tgg§]{||3tw( Dz} + ||f1||L1[0TL2<9 ]
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+ (emaxll FslZ2qays + 2mmllViz x Fall2a,s + 4 2umhall Fsl22ca, )

é\n’lll'l —
< 5 tn%ax {||6tW( )||L2(Q )3} + max {25mm, 2t Emax + 4c” 2Nm11n}
€lo

x (17102500, 20p0 + 1957 % Fallbaqayys + 1Fal3za,)0 ) - (57)
It is clear that
VB W [[72q, s + 1V it Vita X Wlli2q, )
2 Emin”atWHé(Qﬁ)'d + MQ;XHVL@ X WHZLZ(QEP' (58)

It follows from (57)—(58) that

. Emin -1 A7 2 t 112
min { =52 il b max {1060z, 0 + Vi 6 < W e, 0
2 -1

S maX{QeI;iln’ 2#1':111n7 €max T dc” :u’mln}
x (IF 1130232200, + 1957 % FallZaqayys + 1Fsl3aa,0)
which completes the proof. O

Next we derive a priori estimates for the electric field with a minimum regularity
requirement for the data and an explicit dependence on the time.

The variational problem of (12) is to find W € Hper, o(curl, div; ; ;) for t € [0,7]
such that

/QA c?W - Qdu + /Q u_l(V%jd x W) - (V%Z,a x Q)dx

}1 . Qdma Vé S Hper,O(C:I;L &R/? Qﬁ) (59)
Q;

Theorem 3.7. Let W be the unique weak solution of the initial boundary value
problem (12). Given f, € L'[0,T;L*()%], fo € H(curl; ), Fs € L2(;)3,
there exist positive constants Cy, Cg such that

IW 12 o720, < Cr (11138 zietas) + 1FallBeanye + 1 Fsl3zye)
and
IW 12200 rozsye) < Cs (IF1Es 0 zizziagm + 1 F2laaps + 1 Fsl32@y )

where Cq; = Cg max{8CsT?, 2C6E max, 8Cs2,,. T2}, Cs = C7T, and

Ce = <€min — Job )_1'

2 limin

max

Proof. Let 0 < s <T and define an auxiliary function
®(x,t) :/ W(z,7)dr, e, 0<t<s.
t

It is clear to note that

(x,s) =0, 0,P(w,t)=—-W(x,t). (60)
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For any W(z,t) € L?[0,s; L*(£2;,)?], using integration by parts and (60), we have

Next, we take the test function C} =& in (

t = s yields that

/(/ eaEW-@dm>dt+/
0 Q: 0

h

:/Os </Q;Lf1-<1>dw>dt.

From (60), we now derive that

[ ( | corw @dx> |
/ 0.7

'8) =

oW

g

BtW

3

i 0

€ |W‘ )dt — fs(x

o
<
(2
(L

"@\o\@\o\@\

h

1 —~
— SIVEW ()l

M2,y —

1
5”\51‘2“%2(9@)3

S

S

(61)

()3

9) and integrating from ¢ = 0 to

([

h

NV x W) (VE X <I>)da:> dt

(62)

€ (/ 8t2W-<I>dt) dx
8tt1>dt>

oW

&(x,0) /8tW )

x) - cp(x,())) d

) Oz, 0)) dz

€ <2W(m,s) — §|W/(ac,0)\2 — }‘3(3;) . ¢($’0)> dz
— 1 B _
= 5 /Q;L ‘\/gW(HZas)‘?daj -3 /QE \\/EfQ(;c)Pdm —/ gfg(;c) . ‘I)(J:,O)d.’z:

Q;

/ eFy(@) B(z,0)dx  (63)
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/ (/ pUVE X W) (VE % cp)dm> dt

0 Qs ’ ’

/ (Vi x W —ctax W) (Vg x @ — ¢ tax 8t<1>)dt) da
0

/ (Vi x W —ctax W) - (Vi x4 ¢ '@ x Wf)dt) dz
0
/

(Vi X W) - (Vg % <I>)dt> dz

;—1 /Q ! (/Os(vﬂnZ < W) - (6 % W)dt) dz

h

! /Q pt (/OS(& X QW) - (Vg7 X <I>)dt) dz

h

_ c—Q/Q ! (/Os(a < W) - (& x ﬁ?)dt) dz. (64)

R

_|_

With the aid of (62) and (63), we have

1~ s —
SIVEW (,9)32,0 +/O (/Q (Tl X W) (VY L X <I>)d:c> at

R

t/ (/'fa @dx)dt+ IVeFalliee, 3+3/ eFo(x) - (x,0)dz.  (65)

In what follows, we estimate the three terms of the right-hand side of (64) sepa-
rately. By the property of integration, we have

/QA w (/OS(VM x W) - (Vg x <I>)dt> d

h

= /Q ot (/0 /:(VM x W (z,1)) - (V7 % ﬁv/(w,T))det) da

_ ;/Q o1 ((Vﬁ « /OSW(m,t)dt> . (vﬁ y /O W(a:,r)dr)) dz

1 -
=iéﬂlwﬁxﬂnmwwM 0(,0))d

*||\/ “IVa X 8, 0)||72q, - (66)
We obtain from (60) and using integration by parts that

¢! /Q pt (/OS(VM x W) - (é x W)dt) da

h

¢! /Q pt (/OS(VM X (—9,®)) - (& X W)dt) dz

h

- cfl/ﬂ p! ((VM x ®(x,0)) - (& x vT/(w,O))) da

R
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+ct /Q pt (/OS(VM x ®) - (& x 8tf/17)dt> dz

h
and

c*z/QA ot </Os(a x W) - (& x W)dt) dz

h

_92 s
76 1 d 5 —
=5/, ] (/0 dtaxW|dt>d:c

Substituting (66)—(68) into (64) yields that

/OS (/Q _1(V'§\7 X W) (V%Zd X <I>)dm) dt

h

= *H\/ Vi x @ HLZ(Q )3

te /Q ! ((VM X ®(x,0)) - (& x ﬁ?(w,o))) de

3

4+t /Q ot </Os(vﬁ x ®) - (& x atﬁ?)dt> da

h

—c! /Q pt (/Os(a X W) - (V7 % <I>)dt> dz

h

— -2 —
—c—dQ Wz, s de—i—c— “a x W(z,s)|*dz
Q 2 Jo :
A 3

+ 5 ptéa x Wz, 0)*de
2 Ja

R

= *H\/ Vi x @ HLZ(Q )3

teo /Q p! ((VM % ®(x,0)) - (& W(%o))) da

072 - 1.7 672 1~ o
S5l [ W s Pde+ S [ i e Wias)Pda
Q Q

h h

+ 5 ptéa x Wz, 0)*de
2 Jo,

h

*H\/ IV x O HL?(Q )3
(w IV 5 00y + Vi x W >|2L2(Q,;)3)
*7|0‘| I/ W (. ||L2(Q )3+7||\/ Lo W (- ||L2(Q )3
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4‘7”\/ Lo x W(- 0)[Z2(q, )2
= —7|a| I/ TW (- )20, )0 + 7||\/ “la-W( s)|Z2(, e

|&?
2c2lumin

Combining (65) and (69), we obtain

27

W 8) 1720, 00 (69)

/ ( f1<m,t>-¢><m,t>dm> &t + 5 IVERl o + | eFsl@): 2(e,0)de
o \Je, ' Q;,

I &? | =
> SV 50,0~ o [ W) gy
1 &\ o
> § <5min — 62/1) HW(,S)”%'z(Qh)s (70)

Since by assumption €myinfmin > €11 and |&|? = sin? 6, (0 <61 < 3), we can con-
|&|?

clude that Em;:# = EminMminc® > 1 > |&|?. This implies that (smin - c2um;n) >
0.

In what follows, we estimate the two terms on the left-hand side of (70) sepa-
rately. It follows from the Cauchy—Schwarz inequality that

/Qh efs(x) - ®(x,0)de :/Q efs(x </ W (x t)dt) de
[ U,

< o / 17l W (- Dl 2 e, ot
0

efs(x) - (ar: t)da:) dt

h

< (snslFsllzaye) [ IWCDzyeat (70)

For 0 <t < s <T, we have from (61) that

/(/ Fi(z,t) - mt)dm)dt
_ /Q (/O (/O }l(gc,r)dr> -<1>(m,t)dt> dw

//”fl HLQ(Qh)3 HW( )HLZ(QE)Sdet

< ([ 176 0lapa) ([ I C0llago, it

< Falloorsza, / W (o) e ol (72)
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Substituting (71)—(72) into (70), we have for any s € [0, 7] that

W ()220, )2
< C’ﬁ“\@fz”%zmﬁ)a

+2Cs (H}1||L1[O,T;L2(Q;L)3]+5max||}3||L2(Q;L)3)/ HW('at)HL%Qﬁ)Sdt? (73)
0

~ 12 —1
where Cg = (5min - CZ,'E‘I ‘ ) .

Taking the L>°-norm with respect to s on both sides of (73), we get by applying
the Young inequality that

W (., S)H%w[O,T;L?(Q;LP]
< 20semaxl| Fll72(0, )0 + RO6T(1F1l210,7:2(0,)7) + Emal| Fallz2(ayy))?
< maX{SCGQTQ, 2CVGEmaxv SCgTQ‘ErQnaX}

(17212 poz,z2 51 + 1 F2l22apy0 + 1l y0) -
Similarly, we can get

IW ()l 220,220,

~ 3, ~ T
< 2CsemanT | FallF (o, + ROTH (I F 1o rizac0, %) + Emaxl Fallzaca,0))®
S maX{SC§T3, 2Cvﬁf':maxjﬂa 8062512naxT3}

(1721350222000 + 1l 2y + 1 Fsl3acay )

which completes the proof. 0

4. Conclusion. In this paper, we have studied the time-domain electromagnetic
scattering problem in a biperiodic structure. The three-dimensional Maxwell equa-
tions are considered. By developing the method of a compressed coordinate trans-
formation, the scattering problem is reduced equivalently into an initial boundary
value problem in a bounded domain. The well-posedness of the corresponding vari-
ational problem is proved by using the constructive Galerkin method. Moreover, by
directly considering the variational problem of the time-domain Maxwell equation,
we obtain the a priori estimates with explicit dependence on the time. The main
ingredients of the proofs are the change of variables, the Galerkin method, and the
energy method.

The method does not introduce any approximation or truncation error. It avoids
the complicated error or convergence analysis which is needed for the TBC method.
The reduced model problem is particularly suitable for numerical simulations due to
its simplicity and small computational domain. We believe that the method is ap-
plicable to many other time-domain scattering problems imposed in open domains.
Another possible research direction is to study the time-domain inverse diffractive
grating problem, which is to determine the periodic structures giving rise to the
measured wave patterns [2, 12, 14, 31]. We hope to report the work on the nu-
merical analysis and computation, as well as the inverse problem elsewhere in the
future.
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