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Green’s tensor

RESUME

Le présent article concerne les problémes inverses de sources pour les équations
d’ondes élastiques et électromagnétiques en régime harmonique. L’objectif est de
déterminer respectivement la force externe et la densité de courant électrique &
partir de mesures des ondes sur le bord. Ces problémes inverses sont difficiles en
raison de leur caractére mal-posé et de la complexité des modeles associés. L unicité
et la stabilité de solutions sont établies pour les deux problémes inverses de source.
Une approche globale de stabilité croissante a été développée pour des données
continues et discretes. Ces estimations de stabilité contiennent un terme de type
Lipschitz et un reste contrélé par la plus haute fréquence de ’onde. Quand cette
derniére augment le reste devient négligeable. Ces estimations de stabilité révelent
que le caractére mal-posé des problémes inverses étudiés peut étre contourné en
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utilisant des données multi-fréquentielle. La méthode utilisée, est basée sur les
équations intégrales et la continuation unique, et nécessite uniquement des données
de type Dirichlet. L’analyse utilise des développements asymptotiques des tenseurs
de Green, et des conditions au bord de type transparente en utilisant ’opérateur
Dirichlet-Neumann. Enfin, pour la premiére fois des estimations de stabilité sont
établies pour les problémes inverses de source associés aux équations de Navier et
de Maxwell.

© 2019 Elsevier Masson SAS. All rights reserved.

1. Introduction

The inverse source problems in waves arise in many scientific and industrial areas such as antenna design
and synthesis, biomedical imaging, and photo-acoustic tomography [7]. For instance, in medical imaging,
such as magnetoencephalography (MEG), the imaging modality is a non-invasive neurophysiological tech-
nique that measures the electric or magnetic fields generated by neuronal activity of the brain [4,27,47].
The spatial distributions of the measured fields are analyzed to localize the sources of the activity within
the brain to provide information about both the structure and function of the brain. The inverse source
problems are also considered as a basic mathematical tool for solving many imaging problems including
reflection tomography, diffusion-based optical tomography, lidar imaging for chemical and biological threat
detection, and fluorescence microscopy [31].

Motivated by these significant applications, the inverse source problems, as an important research subject
in inverse scattering theory, have continuously attracted much attention by many researchers [2,4,8,9,11-13,
23,36,37,56]. Consequently, a great deal of mathematical and numerical results are available, especially for
the acoustic waves or the Helmholtz equations. In general, it is known that there is no uniqueness for
the inverse source problem at a fixed frequency due to the existence of non-radiating sources [18,24,28].
Therefore, additional information is required for the source in order to obtain a unique solution, such as
to seek the minimum energy solution [43]. From the computational point of view, a more challenging issue
is the lack of stability. A small variation of the data might lead to a huge error in the reconstruction.
Recently, it has been realized that the use of multi-frequency data is an effective approach to overcome the
difficulties of non-uniqueness and instability which are encountered at a single frequency. In [15], Bao et al.
initialized the mathematical study on the stability of the inverse source problem for the Helmholtz equation
by using multi-frequency data. The increasing stability was further studied in [20], [39] for the inverse
source problem of the three-dimensional Helmholtz equation. Based on the Huygens principle, the method
assumes a special form of the source function, and requires both the Dirichlet and Neumann boundary data.
A different approach was developed in [39] to obtain the same increasing stability result for both the two-
and three-dimensional Helmholtz equation. The method removes the assumption on the source function
and requires the Dirichlet data only. An attempt was made in [40] to extend the stability result to the
inverse random source of the one-dimensional stochastic Helmholtz equation. We refer to [1,16,26,57] for
the study of the inverse source problems by using multiple frequency information. A topical review can be
found in [14] on the inverse source problems as well as other inverse scattering problems by using multiple
frequencies to overcome the ill-posedness and gain increased stability. We also refer to [33] on the increasing
stability of determining potentials for the Schodinger equation. Related results can be found in [6,30,32] on
the increasing stability in the solution of the Cauchy problem for the acoustic and electromagnetic wave
equations.

Although a lot of work has been done on the inverse source problem for acoustic waves, little is known
on the inverse source problems for elastic and electromagnetic waves, especially their stability. This work
initializes the mathematical study and provides the first stability results of the inverse source problems
for elastic and electromagnetic waves. Our objective is to develop a unified stability theory of the inverse
source problems for elastic and electromagnetic waves. It significantly extends the previous approaches for
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the Helmholtz equations to handle the more complicated Navier and Maxwell equations. Especially, more
delicate studies are needed for sophisticated Green’s tensors of these two wave equations. The results shed
light on the stability analysis of the more challenging inverse medium and obstacle scattering problems
[14]. In addition, they motivate further study of the time-domain inverse problem where all frequencies are
available in order to gain better stability [17]. It should also be pointed out that the general case is widely
open for the inverse source problems on these vector wave equations in inhomogeneous media. General
references on elastic and electromagnetic wave scattering problems may be found in [3,10,21,35,38,44,46,53]
and [22,25,29,48,51,52,55], respectively.

For electromagnetic waves, Ammari et al. [4] showed uniqueness and stability, and presented an inversion
scheme to reconstruct dipole sources based on a low-frequency asymptotic analysis of the time-harmonic
Maxwell equations. In [2], Albanese and Monk discussed uniqueness and non-uniqueness of the inverse
source problems for Maxwell’s equations. A monograph can be found in [51] on general inverse problems for
Maxwell’s equations. We refer to [34,41,42,55] for solving inverse source problems on hyperbolic systems by
using Carleman estimates, and to [49,50] for inverse problems which are related to Maxwell’s equations. To
the best of our knowledge, there is no stability result for the inverse source problem of Maxwell’s equations
in a general setting. The questions are completely open regarding uniqueness and stability for the inverse
source problem of the elastic wave equation. In this paper, we develop new techniques and establish a unified
increasing stability theory in the inverse source scattering problems for both elastic and electromagnetic
waves, where the wave propagation is governed by the two- or three-dimensional Navier equation and the
three dimensional Maxwell equations, respectively.

For elastic waves, the inverse source problem is to determine the external force that produces the measured
displacement. We show a uniqueness result and demonstrate that the increasing stability can be achieved
by using the Dirichlet boundary data only at multiple frequencies. For electromagnetic waves, the inverse
source problem is to reconstruct the electric current density from the tangential trace of the electric field.
First we discuss the uniqueness of the problem and distinguish the detectable radiating sources from the
non-radiating sources. Then we prove that the increasing stability can be obtained to reconstruct the
radiating electric current densities from the boundary measurement at multiple frequencies. For each wave,
we give the stability estimates for both the continuous frequency data and the discrete frequency data. The
estimates consist of two parts: the first part is the Lipschitz type of data discrepancy and the second part
is the high frequency tail of the source function. The former is analyzed via the Green tensor. The latter is
estimated by the analytical continuation, which decreases as the frequency of the data increases. The results
reveal that the ill-posedness of the inverse problems can be overcome and the inverse problems are stable
when multi-frequency data is used. In our analysis, the main ingredients are to use the transparent boundary
conditions and Green’s tensors for the wave equations. The transparent boundary condition establishes the
relation between the Dirichlet data and the Neumann data. The Neumann data can not only be represented
in terms of the Dirichlet data, but also be computed once the Dirichlet data is available in practice.

Throughout, we assume that the source of either the external force or the electric current density has a
compact support Q C R%, d = 2 or 3. Let R>0bea sufficiently large constant such that Q C By ={x=
(1,...,24)" € R%: |z| < R}. Let R > R be a constant such that B, C Bg = {x € R?: || < R}. Denote
by 'r = {x € R?: |z| = R} the boundary of Br where the measurement of the wave field is taken. Let
Ur = (=R, R)? be a rectangular box in R?. Clearly we have  C By C Br C Ug. The problem geometry
is shown in Fig. 1.

The paper is organized as follows. In Section 2, we show the increasing stability of the inverse source
problem for elastic waves. Section 3 is devoted to the inverse source problem for electromagnetic waves. The
uniqueness and non-uniqueness are discussed and the increasing stability is obtained. In both sections, the
analysis is carried for the continuous frequency data, followed by the discussion for the discrete frequency
data. The paper is concluded with some general remarks in Section 4. To make the paper easily accessible,



G. Bao et al. / J. Math. Pures Appl. 134 (2020) 122-178 125

Fig. 1. Problem geometry of the inverse source scattering.

some necessary notations and useful results are provided in the appendices on the differential operators,
Helmholtz decomposition, and Sobolev spaces.

2. Elastic waves

This section addresses the inverse source problem for elastic waves. The uniqueness and increasing sta-
bility are established to reconstruct the external force from the boundary measurement of the displacement
at multiple frequencies.

2.1. Problem formulation

Consider the time-harmonic Navier equation in a homogeneous medium:
pAu+ A4+ p)VV -u +w’u=f in RY (2.1)

where w > 0 is the angular frequency, A and p are the Lamé constants satisfying 4 > 0 and A 4+ g > 0,
u € C? is the displacement field, and f € C? accounts for the external force which is assumed to have a
compact support  C R¢.

An appropriate radiation condition is needed to complete the definition of the scattering problem since
it is imposed in the open domain. As discussed in Appendix B, the displacement u can be decomposed into
the compressional part u, and the shear part ws:

w=1u, +u, inR\Q.

The Kupradze-Sommerfeld radiation condition requires that wu, and u satisfy the Sommerfeld radiation
condition:

lim r%(arup —ikpup) =0, lim r%(&,us —ikgus) =0, 7=z, (2.2)
r—00 r—o0

where &, ks are the compressional and shear wavenumbers, given by

= o E = e L =
where
cp=A+2u)2 co=p (2.3)

Note that cp, cs are independent of w and ¢, < cs.
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Given f € L2(2)%, it is known that the scattering problem (2.1)—(2.2) has a unique solution (cf. [12]):

M%@=/GM%MMJMM% (2.4)
Q

where Gy (z, y;w) € C4*? is Green’s tensor for the Navier equation (2.1) and the dot is the matrix-vector
multiplication. Explicitly, we have

1 1
Gn(z,y;w) = ;gd(w, y; ks)la + vav;(gd(aja Yi Ks) — 9a(x, Y; Kp)), (2.5)

where 14 is the d x d identity matrix,

1 elklz—yl

i
ga(@,yir) = 7H (wle —y) and  gs(,y:r) (2.6)

T

are the fundamental solutions for the two- and three-dimensional Helmholtz equation, respectively, and H, (()1)

is the Hankel function of the first kind with order zero.
Define a boundary operator

Du = pd,u+ A+ p)(V-u)r onTg, (2.7)

where v is the unit normal vector on T'g. It is shown in [19,38] that there exists a Dirichlet-to-Neumann
(DtN) operator Ty such that

Du =1Tnyu on g, (2.8)
which is the transparent boundary condition for the scattering problem of the Navier equation.

Problem 2.1 (Continuous frequency data for elastic waves). Let the external force f be a complex function
with the compact support Q. The inverse source problem is to determine f from the displacement u(x,w), x €
Ir,w € (0,K), where K > 1 is a constant.

Remark 2.2. The boundary data does not have to be measured on the sphere I'g. In fact, it can be measured
on any Lipschitz continuous boundary I' which encloses the compact support of f, e.g., take I' = 0Q2. When
u is available on I', we may consider the following boundary value problem:

pAu+ A+ p)VV-u+w?u=0  in Bp\Q,
u=u on T, (2.9)

D'U,:TN'LL on FR.

It can be shown that the problem (2.9) has a unique solution w in By \ Q [38]. Therefore, the Dirichlet data
u is immediately available on I'g once the problem (2.9) is solved, and then the Neumann data Txu can
be computed on I'p by using (2.8).

2.2. Uniqueness

This section is concerned with uniqueness of the inverse problem. Introduce two auxiliary functions:

u;nc(w) _ pefinpa:-d

and  ul"(z) = ge =T (2.10)
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where d € S?! is the unit propagation direction vector and p,q € S ! are unit polarization vectors.
These unit vectors may be chosen as follows:

(i) For d=2,d(0) =
(ii) For d = 3, d(0,¢
q(0,¢) - d(0,¢) =

(cosf,sin @) ", p(f) and q(0) satistfy p() = ( ) and q(0) -d(0) = 0 for all 6 € [0, 27].
) = (sinfcos p,sinfsinp,cosd) T, p(d,p) and q(0, p) satisfy p(0,p) = d(f, ) and
0 for all 8 € [0, 7], ¢ € [0, 27].

In fact, 'u,;nc and u!" are known as the compressional and shear plane waves. It is easy to verify that they
satisfy the homogeneous Navier equation:

pAu+ A4 p)VV-u +w’u =0 in RY (2.11)

Theorem 2.3. Let I C RT be an open interval. Then the external force f can be uniquely determined by the
multiple-frequency data {u(x,w): x € Tr, w € I}.

Proof. We prove the two dimensional case in details, and then briefly present the proof for the three
dimensional case since the steps are similar. Let u(x,w) = 0 for & € T'g and w € I. Tt suffices to show that
f=0.

(i) Consider d = 2. Let £, = spd. The compressional plane wave in (2.10) can be written as w'(

x) =
pe” €@ Multiplying the both sides of (2.1) by u(x), using the integration by parts over Bg, and noting

(2.11), we obtain

/ (pe— ™) . f(a)da — / (™ (@) - Tyu(@,w) + u(z,w) - Dull(@)) dy(@), (2.12)

Br I'r

which means

p-F(&) =0 Vwel

Since f(mpd) = }(cpwd) is an analytic function with respect to w € C, for each fixed d and p, we have
p- f(€,) =0 for all k, € (0,+00).

Let &, = —ksd with [€] = ks € (0,00). The shear plane wave in (2.10) can be written as ul"®(z) =
ge™'%®. Multiplying u!™® on both sides of (2.1), using the integration by parts, we may similarly get
q- F(£,) =0 for all k, € (0,+00). Hence, for each & > 0, we have both p- f(rkd) = 0 and q - f(rd) = 0. Let
p(0) = (cosf,sinf) " and take q(0) = (—sinf,cosd) . Then p() - g(f) = 0 and they form an orthonormal
basis in R? for any 6§ € [0,27]. Hence we have from the Pythagorean theorem that

[f (k) = |p- f(rd)]® + g - F(rd)|* = 0

for each k > 0 and d € S, which means f = 0 and then f = 0.

(ii) Consider d = 3. Repeating similar steps, we get both p - f(nd) = 0 and q - f(nd) = 0.
Let p(f,¢) = (sinfcosy,sinfsinp,cosf)’. We choose q,(,p) = (cosfcosp,cosfsingp,—sinf)" and
a5(0,0) = p(0,0) x q,(0,0) = (—sinp,cosp,0) " for the shear plane wave. It is easy to verify that p, q;, q,
are mutually orthogonal and thus form an orthonormal basis in R? for any 6 € [0, 7], ¢ € [0, 27]. Using the
Pythagorean theorem yields

[F(kd)* = |p- F(rd)]® + gy - F(rd)|” + gz - F(rd)* = 0

for each k > 0 and d € S2, which means f =0 and then f = 0. O
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2.8. Stability with continuous frequency data

This section discusses the stability from the data with frequency ranging over a finite interval. Given the
Dirichlet data u on I'g, Du can be viewed as the Neumann data. It follows from (2.8) that the Neumann
data can be computed via the DtN operator Ty once the Dirichlet data is available on I'. Hence we may
just define a boundary measurement in terms of the Dirichlet data only:

lu(,w)lE, = / (ITvu(z, w)]? + w’lu(z,w)?) dy().
'r

Denote a functional space:

Far(Br) = {f € H™ N (Br)* : | £l grm+1(Brys < M, suppf = Q},

where m > d is an integer and M > 1 is a constant. Hereafter, the notation “a < b” stands for a < Cb,
where C > 0 is a generic constant independent of m,w, K, M, but may change step by step in the proofs.
The following stability estimate is the main result for Problem 2.1.

Theorem 2.4. Let u be the solution of the scattering problem (2.1)~(2.2) corresponding to the source f €
IF]\/[(BR), Then

M2

) ! Im—2d+1°
K3|lne |4
(R+1)(6m—6d+3)°

IFIZ2(Baye S €1+ (2.13)

where

K 3
(o = / W e, w) |2, deo

0

Remark 2.5. The stability estimate (2.13) consists of two parts: the data discrepancy and the high frequency
tail. The former is of the Lipschitz type. The latter decreases as K increases which makes the problem have
an almost Lipschitz stability. The result reveals that the problem becomes more stable when higher frequency
data is used.

Lemma 2.6. Let u be the solution of the scattering problem (2.1)—(2.2) corresponding to the source f €
L?(Bgr)®. Then

oo

T / (-, )12, deo.
0

Proof. Again, we prove the two dimensional case in details, and then briefly present the proof for the three
dimensional case.
(i) Consider d = 2. Let &, = xpd with [£,]| =}, € (0,00). We have from (2.12) that

/(pe*igp'm) - f(x)dx = / (ug‘c(m) -Thvu(z,w) + u(x,w) - Du;nc(:c)) dvy(x).

BR FR
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A simple calculation yields that
Dup(x) = —irp, (u(p-v)p+ (A + p)v) e 7%,
which gives

|Duy(z)| < #p.
Noting suppf C Bgr, we get
[ i) s@az = p- [ s =p- e,
BR R2
Combining the above estimates and using the Cauchy—Schwarz inequality yields
- F(&)1 S / (ITvu(z,w)? + wplu(z,w)?) dy ().
'r

Hence

/|p P Pg, < [ [ (Bvute o) + k2 Julz.w)?) dy(@)i,,

R2Tr

Using the polar coordinates, we have

/\p F(&,)1PdE, < 7 7 / Tyvu(z,w)? + K lu(z, w)[*) dy(z)ds,

oo

< 27r//£p/(|TNu(m,w)|2+n§\u(:c,w)|2) dvy(x)dkp
0 Tg
S/w/ (| Thvu(z,w)|* + w?lu(z, w)[*) dy(z)dw
0 Ig
— [wlut. @, d. (2.14)
0

Let &, = ked with |€,| = ks € (0,00). The shear plane wave in (2.10) can be written as ul"(z) = ge~'6:"®.
Multiplying u" on both sides of (2.1), using the integration by parts, and noting (2.11), we may similarly
get

2

[la-f€orde = [ | [ (@ &= fa)aa) ae,
R? R? R?

oo

5/ns/(|TNu(m,w)|2+m§|u(m,w|2) dy(x)dks

0 I'r
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2., 2 2
So/wr/ (| Tvu(z, w)* + w?|u(z, w)]?) dy(z)dw
:/w\|u(~,w)\|12~Rdw. (2.15)
0

Using the polar coordinates, we deduce that

2 o0
/ - F(&,)2, = / o / bl @(8) - F(1ap) Py
R2 0 0
27 o
- / a0 / tepl(8) - F (o) Py = / - F&,) e, (2.16)
0 0 R2

Let p(0) = (cos®,sinf) " and take q() = (—sin,cosd)". Then p(#)-q(f) = 0 and they form an orthonor-
mal basis in R? for any 6 € [0, 27]. Hence we have from the Pythagorean theorem that

F(E)1P = Ip- F(E)1 +a- F(&)F. (2.17)

Noting suppf C Bpg again, we obtain from the Parseval theorem and (2.14)—(2.17) that

1F12s e = 1125y = 1312 a0mep = / F(€,)I2¢,
RZ

- / - F(€,)12dE, + / - F&,)12de,
R2 R2

- / - F(€,)12dE, + / - F(e)Pde,
R2 R2

< / Wl )2, d,

0

which proves the lemma for the two-dimensional case.
(ii) Consider d = 3. Repeating similar steps and using the spherical coordinates, we get

2
/|P b3 Qdf —R[ /3( e 6 ®) . f(x)de de,
/ /ﬂsmwdw? /(|TNU(CB,w)\2+n§|u(m,w)|2) dy(a)d,

I'r

IN

QWQ/HIQ)/(|TNu(m,w)|2+ng|u(m,w)\2) dvy(x)dkp
0 Tg

< wz/(|TNu(m,w)|2+w2|u(w,w)|2) dvy(x)dw

I'r
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o0

= /w2||u(-,w)||12~Rdw. (2.18)

0

Let p(0,p) = (sinfcos¢,sinfsinp,cosf) . We choose q;(0,p) = (cosfcosp,cosBsinp, —sinh)’ and
q>(0,¢) = p(0,0)xq,(0,¢) = (—sinp,cos p,0) " for the shear plane wave. It is easy to verify that {p, q;, -}
are mutually orthogonal and thus form an orthonormal basis in R? for any 6 € [0, 7], € [0, 27]. Using the
Pythagorean theorem yields

A

[F €N =1p- F(&)1 +lar - FE)1 +lax - F(&,). (2.19)

Following similar arguments as those in (2.15)—(2.17), we get from (2.18)—(2.19) that

£ = 1 ey = / 7l Pde,

S [t @)l de.
0
which completes the proof. O
For d = 2, let
2
- / [ ex@ye) £y (@), (2.20)
C'r 1Q
s 2
- / / / Da(Gx(, y) - £(y))dy| dy(@)deo. (2.21)
0 Tr
For d = 3, let
s 2
0 = [ [| [ Gxtayio) fu)y] o) (2.22)
0 TIglQ
s 2
i) = [« [| [ De(@xlayie) £w)dy| (e (2.23)
0 TIglQ
Denote a sector
V={zeC: 77<argz< }

The integrands in (2.20)—(2.23) are analytic functions of the angular frequency w. The integrals with respect
to w can be taken over any path joining points 0 and s in V. Thus I;(s) and I2(s) are analytic functions of
s =81 +isg € V, 51,82 € R.
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Lemma 2.7. Let f € H3(Br)?. For any s = s1 +1isa € V, the following estimates hold:
(1) when d =3,

11(8)] S IsPe ™o £ 13 gy,

[La(5)] S [s1®e*  £ 1 3o oy
(#) when d =2,

3 1
111(8)] S IsP(Is]2 + Is[2 + 1) 1| £32 3,00

3 1 csR|s
112()| S sl(Is[= + |52 +1)2e M| £l 2

(2.26)
(2.27)

Proof. We first prove the three-dimensional case and then show the corresponding two-dimensional case.

(i) Consider d = 3. Recalling (2.5), we split the Green tensor Gy (x,y) into two parts:

Gn(z,y;w) = Gi(z,y;w) + Go(z, y;w),

where

1 eiﬁslm_y‘

Gi(z, y;w) = T o =y

1 eiﬁ,s|a:—y\ eiﬁ,p|m—y\
Go(z, y;w) = ——Va Vg —
o) = % (T T

Let w = st,t € (0,1). Noting (2.3), we have from a simple calculation that
[1(s)] S Tua(s) + 1a2(s),

where

dv( )dt

Iia(s /||t4/‘/Gmy,st f(y)dy
/l | t‘*/‘/ e y‘lg F(y)dy
T'r

dv()t

and

dy(x)dt

Iia(s /It“/’/szy,st f(y)dy2
e | (-5 o

2

Here we have used

- V_l_(einsw—y B einpw—y|> _v v_r(eircskn—y B eimp|w—y)
“\le—yl |-yl YOz -yl eyl

dvy(x)dt.
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First we estimate I7 1(s). Noting that suppf = Q C Br and

|elesstiz=yl| < 2 Blsl - yp e Tp oy e Q)

we have from the Cauchy—Schwarz inequality that

; 2¢, R|s|
11 ()] £ /W/]/' v)ldy
0
e4csRls|
/\ |5t4//|f |2c1y/| dydv( )dt

dv( )dt

I'r Br
S IsPet = Bl £ 122 e (2.28)
Next we estimate I1 2(s). For any ¢ € R, considering the following power series
elestlz=yl 1 (cst)? i(cst)? 5 (est)? 3
— 3 t —_ —_ —_ J— - pa— oo
T = g i) — Gl el - 25 e — v+ e w4
we obtain
1 T eicsst|m—y\ eicpst|m—y\ 1 ) 9 T
s (o~ o)~ e
(st st)?
(3! )( A\ V@ —y|* + ( 4!) (cd =)V Vylo —y[>+--. (2.29)
Substituting (2.29) into I 2(s) and using the integration by parts, we have
2
I 5(s /||t4/’/v VT c—c)\az—y|—|— ) f(y)dy| dy(z)dt
; 1
= [0 [] [ (362 - @ia = vl +--)v,9, - fw)an] s
0 e Q

Noting ¢, < ¢, we have

1 i(st st)?

3@ le—yl+ e - - of - SR - ey

< Loyl + Llta g+ Ll ta g 4

—2° 3! G 4!

2 ;. Glsllz — vl cls|*|@ — y/?
S Gle - y‘( 3 4l +)
(2.30)

< 962 Recslslla—yl < (2euRls|

Using (2.30) and the Cauchy—Schwarz inequality gives
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[12(s)] 5 / sPet [ (19,9 swPay)( [ e milay)as @
0

I'r Br Q

S ‘3‘564651%‘5‘||f||%12(BR)3- (2.31)

Combining (2.28) and (2.31) proves (2.24).
For I5(s), we have from (2.7), (2.29), and the integration by parts that

2(s)] S I2,1(s) + I2,2(s),

where
1 2
Rt = [1582 [ | [ Vo (@xtew) - ) viehty| asfalar
0 I'r Q
= [1502 [| [ exte.) (7w vt ay| asfagar
0 T'r Q
and
1 2
La(s) = / 52 / / Vo (Gx(@,y) - £(0) v(@)dy| dy(e)dt
0 T'r Q
1 2
- / 52 / / Gu(2.y) - (Vy - F()v(@)dy| dy(z)ds
0 I'r Q
; elrs|z—yl 2
sfiee [ T Vu F@)l@)ly| dy(@)
0 T'r Q
s f1spe [] [ (3= @le- v+ e - e - o2
0 T'r Q '
S 2 2
B eyl )y (V- F))v(@dy| dyfa)at

Following the similar steps for Iy 1(s) and I 2(s), we may estimate I ;(s) and I22(s), respectively, and
prove the inequality (2.25).
(ii) Consider d = 2. Similarly, let w = st,¢ € (0,1) and
Gn(z,y;w) = Gi(z,y;w) + Go(z, y; w)
where

i
Gi(z,y;w) = @Hé”wm —y|)L,

i
G, y5w) = 5 Va Vi (H (mile = yl) — HY (mplz — y) ).
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Noting (2.3), we get

() < 11,1(s) + L1,2(s),

where

dv( )dt

Ia(s /4t3/’/G11’y78t F(y)dy
/ 1 / ] / HO (eostl — y)Ta - F(y)dy

dv( )dt

and

dv( )dt

Ias /\ 4t3/‘/G2wy,st Fly)dy

/ e / \ / VT (D (st — y)) — H (epstle — o) - Fly)dy| dy(@)a.

Here we have used
1 1 1 1
Vo Vi (H® (ks — yl) — HY (kplz — yl)) = Vy V) (HS (ks — yl) — B (ko — y])).

First we estimate I1 1(s). Recall Hél)(z) = Jo(z) +1Yp(z) and the expansions of Jy, Yy in [54]:

k 221@ 2k

= (-1 2 2 &
=3 e Vo) = 7T(111(2)+co) ;; e e

k=0

where ¢y = 0.5772... is the Euler-Mascheroni constant and Hy, is a harmonic number defined by

1 1
H,=1+-+ -+ —.
k +2+ +k

It is easy to verify
4R (kN2 > (2k)!, (2.32)

which gives

(cast)?* 2]~y
AR (k)2

| Jo(esstle —y|)| = | (=1

k=0
<c2|a;_y| Z Cs| Hm ) <03|m_y|2€cs\s||mfy\ §€255R‘S|'
On the other hand, it can be shown that

< (2.33)
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which yields

> (s sit|lx —vy 2k
Maleastle — y)| < Vo(eusle — yl)| + 3 S SIIS < el
k=1 ’

It follows from the Cauchy—Schwarz inequality that

1
1A S [ 15/ [ ) £, e ()
0 I'r
3 1 csR|s
S Il 1oy S 155l + 1ol + 1268 £ (231

Next we estimate I; 2(s), which requires to evaluate the integral

2

[ Galaw)- fwy

Q
where

i
Go(@, y510) =g Va3 (ol — ) — Jo(spla — y1)
1
— Ve VI Yolsl — yl) — Yolsple — u1)).
Letting w = st and using the expansion of Jy, we obtain
1 T

?vyvy (Jo(csst|le — y| — Jo(cpst|z — yl))

o, o) . . (Csst)2k72vyvg|m _ y|2k ) 00 . . (Cpst)2k72vyv;‘m _ y‘Zk
=cZ Z(— ) (1) —c; Z(— ) ()2

k=1

It follows from the integration by parts that

/ ﬁ (VyV;(Jo(Csstlw —y| — Jo(cpst|x — y\))> - f(y)dy
Q

> CsS 2k—2 _ a2k
:/ (CS Z(_l)k( t) 41@(]!;?2 y| )Vyvy ’ f(y)dy
Q

00 o st)2E—2| g — 4|2k
052(71)’“( P t)4k(k!)2 vl )vyvy.f(y)dy. (2.35)

k=1

ol
Ve

Using the inequality (2.32), we get for any ¢ > 0 that

2

2k—21,, _ 212k
CSt |.’13 y| <02|9c y| Z C| H:E <62|w_y|26c\s\|m—y\. (236)

¢ Z Ak (k1)2

k=1

Combining (2.35)—(2.36) and using the Cauchy—Schwarz inequality, we obtain
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2

V; (Jo(csstle — y| — Jo(cpstle —yl]))) - fly)dy

/ ¥y Vy - £ dy / A — ylteeblo=vlay | < ARl g2,

Q
Let
1
—(st)vav; (Yo(csstlxe — y| — Yo(cpstlx — y|)) = A+ B,
where
2 1 T 1
A== (st)vavy [(ln(§csst|w —y|)+ 7) Jo(csstx — y|)]

2 1 1
-2 259,y [ (ntgeastle — ) + 1) leustle — )

We consider the matrix B first. Using the integration by parts yields

2 = (custlx — )
B. d — 2.2 _ 2 -1 k+2H
[ B st = [ Zele— ol S0 A G VeV Sy
Q Q
(20 ok (cpstlz — y|)**
Q/chkc y| kZ:O( 1) Hk+14k+1((k+1>) VyVy - £(y)dy
It is easy to verify from (2.33) that
Hyin _ 1

Sk + D)2 ~ (2k)0

which gives for any ¢ > 0 that

+ (CStl:I} y| CI ||$ 2 -y
E ( 1) Hiy % 1( k 1 E <6(’5 -
k=0 k=0

Using the Cauchy—-Schwarz inequality and noting ¢, < ¢s, we have

B f(y)dy| < IV, V- fI°d |z — y[te2eslelle—ylg
-t s et

R >
S el £l (e

137

(2.37)

(2.38)
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Now we consider the matrix A. Using the identity for any two smooth functions [ and h:
YV, Ve l)h(y) = h(y)V, Vi ly) + Uy)Vy Vi hy) + V1) Vyh(y) + Vyl(y) Vyh(y)
and
1 1
ln(icsﬂm — y|) = ln<§cst) + In(jz — y|),
we split A into three parts:

A=A +Ar+ Az,

where
2 1 .
Al :;—( )vavy (ln(\:c —y|)) J()(CSSt‘il: —y‘)
2 T
- (St) —5 VyVy (In(lz — yl)) Jo(cpstx — yl),
2 1 -
Az = ropp (Vuo(estl —yl) = VyJo(epstle —yl)) - ¥y (n(lz —y)))
2 1
02 (VyJolcsstlx — y|) — VyJolcpstle — y)) " - Vy (In(|z — y]))
2 1 1
As = (51)? (ln(5csst\m ~yl) Jr’y)VyV;Jo(csst\:c —y))
2 1 1
- ;@(ln(50p8t|w —yl)+ ’y)VyV;Jo(cpsﬂ:c —yl).

For A;, we have from (2.32) and the expansion of Jy that

1 _
‘ Gz olessle = y) = Jo(epstle - y|))‘ < Ja — y[2ess syl (2.39)

Noting In|z — y| is analytic when & € T'g,y € 0, we get from the Cauchy—Schwarz inequality that

2 S
/A1 y)dy| < etficsls] / VyVyn(lz —yl) - f(y)| dy < Pl £]72 5,2 (2.40)
Q

For A, using the analyticity of In|x — y| for @ € T'g, y € Q, the integration by parts, and the estimate of
(2.39), we have

2

[ Az swdy| S s e (241)
Q

Now we consider Ag. Noting

1 1
ln<§cst|:c - y\) +co = ln<§c|ar: - y|> + ¢ + In(st)

and using the expansion of Jy:



G. Bao et al. / J. Math. Pures Appl. 134 (2020) 122-178 139

o0
VyVy Jo(estla —y|) = VyVy >
we have from the integration by parts that

/A3 y)dy = As1 + As g,

where
2 1 o (=1 (cyst|x — y|)?F 1
2 -
2 1 5 (1) (epstla — y))* 1
- ! I s A [ R B
and

Ay = / 2 (81)2 (st) Jo(csstle — y))Vy ¥y - F(y)dy
Q

Q

Since the function In(3c|z — y|) + co is analytic for y € Q, @ € T'g, we have from (2.36) and the Cauchy—
Schwarz inequality that

| A3z 1

)

S €4RCS|SI||f||%12(BR)2- (2.42)

It is easy to verify that

1

< |s|3 341
Ty ) S 1ol

(1)} n(st)| < (sln)? (st +

Hence

(I[t)*In(st) (Jo(csst|e — yl) = Jo(cpst|x — yl))‘

(st)2

DR (st — g%
< (sl + sl + 1) |2l — yP Z =

N (CESIE

D (epstl — )
2 P
—cple -yl Z 4k+1 (k+1))?

> (csls|lz — = (cpls||e —
§c§|w—y|2(|s|g+ws§+l)<z( | |( y‘ +Z pl || y‘) )
k=0

k=0

S e —y[2(ls|? + als|? + 1)eslell=vl,

Multiplying As o by (\s|t)% and using the Cauchy—Schwarz inequality, we obtain
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1(1[t)% A 2] < / VyVy - Fy)dy /c;*|w—y|4<\s\%+7r|s|%+1>2e2°'s‘s“m—y‘dy
R Q

S UslF emslt 12l 19,9, - sy
Br

< (112 + 7l 2 + 1)2e Rl £ 5. (2.43)
Combining (2.37)—(2.43), we obtain

2

1 3 i cs|s
(Is[t)> /G2($ay%8t) F@)dy| S (Is2 + sz + D)2 =2 £ e 50,
Q

which implies
[T12(s)| S IsIP(1s]% + [s]2 + 1)2etBeclsel £)12, s (2.44)

Combining (2.34) and (2.44) completes the proof of the inequality (2.26).
For I5(s), we have from (2.7) and the integration by parts that

/ Dy (G, y;w) - F(y)) dy = g / G (@) - (Vy f(y) - v(x)) dy

) / ﬁﬂé”msm Yy F@)r(@) dy
Q

+ O [ o (B Gl = y) — B (lz ~ yD) 9y - (V, ¥y - F@)w(@)dy.
Q

Using the estimates for the integrals involving Gi(x,y) and Ga(x,y), which we have obtained for I;(s),
and the Cauchy—Schwarz inequality, we may similarly get

3 1 cs|s
|1a(5)] S Isl(1s]= + [s]2 + 1) B2 £ g e,
which shows (2.27). The proof is now complete. O

Lemma 2.8. Let f € Fp(Bg). For any s > 1, the following estimate holds:

oo

/ Wl w) 2 de S 5@ R F2

S

Proof. Let

oo

[ttt ), do

:/wdfl /(|T1\1u(ac,w)|2 + w?|u(z,w)|?)dy(x)dw = L1 + Lo,
S FR
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where

S

Ly :/wd+1/|u(w,w)|2d'y(w)dw
I'r

oo

Ly = / i1 / Tau(z, ) [2dy(z)dw.
'r

S

(i) Consider d = 3. Using (2.4) and noting s > 1, we have

Li= [ [ lutew)Pdy@)ds € Lia+ Lia

T'r

where

2
dy(z)dw,

= [ f| [ s
] [|foi -

SFR

2
dy(x)dw.

Noting Q C Bp C Bg, using the polar coordinates p = |y — x| originated at x with respect to y and the

integration by parts, we obtain

e’} 27 T R+R 2
Li1= /w4/ /dH/Sincpdgp / eI - (fp)dp| dy(x)dw
S FR 0 0 R*R
00 2 T irap om 2
z/w4/ /dG/sm(pdgo / c Is- (‘fp)dp dy(z)dw,
(ikg)™ Op™
s I'r O 0 R—R

which gives after using ks = csw that

R+R

Lii S / /’/df)/smgpdgp/ -m
2
( X i)
lo|=m—1
0o 2t ox R+R
/w4/’/dn9/sin<pd<p/wm
s Tr O 0

R—R
(PRI
la|l=m

dy(x)dw

Z ﬁgf‘erm

lee|=m

dv( )dw

o

lee|=
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JF

<Jot | fonss ]

(> "‘f‘ Xy 3"f‘ ) (@
loe|= loe|=m
0o 2 ™ e}
S/w4/'/d9/sin<pd<p/w_7”
s Tgr O 0 0
(¥ "‘f‘ St X onr s ) (e,
la|= la]=m—1
Changing back to the Cartesian coordinates with respect to y, we have
Lya <//
s I'p
2
(| = “f‘ G X m s )] e
= o] =m—1 R)?
oo
Sl e [t
S e El Fi S5 I (2.45)
~\2m-5)° H™(Br)® S 8 H™(Bg)®» :
where we have used the fact that m > d = 3.
For L, 2, it follows from the integration by parts that
//‘/( mg\m y| mpz—y|)v v f( )d 2d ( )d
- J\y)ay| dy(x)dw
z—yl  Jz-yl )
ms\:c y| 2
/ /] / o VT Fl)dy| ()
S FR
”‘Cp‘w y|
//‘/l V.7, Fwdy| @
S FR
We may follow the same steps as those for (2.45) to show
Lis < //’/ ~lm= 2>( > 0g(VyVy f)’
a|l=m-—2 ( R)
s I'r loe|=
> 95 (VyYy f)’g)dy zdv( )dw
(R— R)?

|a|=m—3
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oo

< = 2| / W2

S

m—2 N\ _em-5) g2 —(2m—5) || £||2
S <2m - 5> s~ F I s 57N E N (5 (2.46)

Noting s > 1, using (2.7) and the integration by parts, we get

- foﬂ / ' / Do (G, y5w) - f(y))dy
< 7w2 / ' / G(@yiw) - (V,F(¥) - v(@))dy
s I'r Q
o | ]

7 1 /’/(einsm—y eima-'lc—?JI)v (V - f) (@) dy| dy(@)d
+ — - . -J)vix T)aw.
N AN A 1%

s R

Again, we may follow similar arguments as those for (2.45) and (2.46) to get

2

dy(z)dw

2
dy(x)dw

dy(x)dw

Ly S 57| F [ (e (2.47)

Combining (2.45)—(2.47) completes the proof for the three dimensional case.
(ii) Consider d = 2. Noting s > 1, we have

o0

L = /w3 / (@, w)Pdy(@)dw < Lot + Lo,

S

where

2

// / '(kslz — YLz - f(y)dy| dy(z)dw,

s I'r

2

Liz= / / /v VI (sl = ) = B syl = 9])) - @)y ()i

S FR
The Hankel function can be expressed by the following integral when ¢ > 0 (e.g., [54], Chapter VI):

o0

2 ; 1
Hj(t) = - /eltT(TQ —1)72dr.

1

Using the polar coordinates p = |y — x| originated at & with respect to y and noting  C R C R, we have
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2 R+R
Lll*/ /‘/de / H (k)T - (Fo)dp]| o)

Let

2 s eltT
Wi(t) = — | i k=12 (2.48)
1

It is easy to verify that

dWi(t)
dt

Wo(t) = H(t) and = Wi_1(t), t >0, k€ N.

Using the integration by parts yields

2

0o R+RW P 2
Lllz/w3/ /d9 / 1(HSP)I2_ (fp)dp
’ Ks dp

s I'r O R—R

dy(x)dw

[eS) 27 R+RW 8m+1(f ) 2
m ’fsp P
:/w?)/ /de / —:714-1 I - gyt dp| dy(x)dw.
S FR
Consequently,
[e*9) 27 R+R 7 ( ) P +1(f ) 2
m+1(Ksp m p
L, §/w3 /d0 / Jm+1 ‘ Dyt ‘dp dy(z)dw
s I'r O R—R
[e%9) 2m R+R % ( )
3 m~+1\Rsp
< / w / / ap [ | )
s Tr O R_RA
2
( Z Oy f| + 3°‘f‘ )pdp dy(x)dw
|a|=m—+1 |a|=m
[e*9) 27 R+R I ( )
3 m+1(Ksp
<[ [|f [ [P \
s I'r O R—R
( > oo+ ) pdp dv( )dw.

|a|=m+1 |cx|—m
It is easy to note from (2.48) that there exists a constant C' > 0 such that |H, (kp)| < C for m > 1. Hence,

R

27 R—‘r
LllN/ /‘/de —(m+1)

(Zaz‘f

|a|=m—+1

2
dy(x)dw.

) pdp

af‘

|ee|=m
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Changing back to the Cartesian coordinates with respect to y, we have

2

T 1)
Lng/wB/’/w(erl)( Z aa af‘ m + )dy d( )dw
s T'n Q |a]=m+1 |a|=m
,S (m + 1)“f| 2H7n+1(BR)2 /w1*2mdw
m+1 —(2m— —(2m—
N <2m - 2> s Fllrrmii e S 5T F s (52 (2.49)
Using the integration by parts yields
. 2
1
Lia= [ 5[] (HO Gk = )~ B (solo = 9D) V¥, Flu)dy| d(e)d
s T'r IQ
o 2
1
s[5 [|[)E e - ViV Fwdy] dre)de
s T'r IQ
o 2
1
s [ ke = ¥,y Sy ane)d
s I'r IQ
We may follow a similar proof for (2.49) to show that
71
Ly 5/;/‘/“’_(7”_1)(‘ Z 83(Vyvy'f)‘
s T Q |er|=m—1
2
1
Z 0y (VyVy f)’(m )>dy dy(x)dw
(R—R)
|a|=m—2
(oo}
g (m — 1)||f||%{nL+1(BR)2 /wl—dew
S
(2.50)

m—1 —(2m— —(2m-—
:(gm—_z) D)\ £ smia(pye S ™D | Flpres (-

Next is to consider Lo. Again, we use (2.7) and the integration by parts to get

2

700/ /Dm (Gn(z,y) - fy)dy| dy(x)dw
s T'r I1Q

2

57w / / G (,9) - (Vyf - v(x)) dy| dy(z)dw
I'r IQ

S

LQ(S)

00 2

+/ //H(l) ksl = y)(Vy - f(y))v(z)dy| dy(z)dw

S FR
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+/$/ Q/(Hél)(*”vslw—yl)—lﬁfé”(feplw—y)) Vy - (VyVy - fv(z) dy|* dy(z)dw.

S FR

Following similar arguments as those for (2.49) and (2.50), we have
Ly < 87(2m72)||f||§1m+1(33)2' (2.51)
Combining (2.49)—(2.51) completes the proof for the two dimensional case. O

Lemma 2.9. Let f € Fp;(Bgr). Then there exists a function B(s) satisfying
(2.52)

such that
IT1(s) + Io(s)] S M2e@RHDes 280) g e (K o0).
Proof. It follows from Lemma 2.7 that
| (I1(s) 4 Iy(s)) e URFDelsl < A2 s e V.
Recalling (2.20)—(2.23), we have
I1(s) + I(s)) e WhHes| < 2 s e 0, K].
1

A direct application of Lemma Appendix C.2 shows that there exists a function S(s) satisfying (2.52) such
that

| (I1(s) + Ia(s)) e~ (AFHDess| < N2e2P 0 ys e (K, o0),

which completes the proof. O
Next we prove Theorem 2.4.

Proof. We can assume that €; < e™!, otherwise the estimate is obvious. Let

— L Ki|lnels, 2i((AR+3)em)iK3 < |lnes,
s = ¢ ((4R43)com)3

K, |Ine |7 <23 ((4R + 3)eem)3 K3,
If 23 (4R + 3)csm)3 K3 < |Ine |, then we have from Lemma 2.9 that

11(5) + Io(s)] < M2e(HR¥3)eas =25 () 1)~

(4R+3)cs K%|1n61|i72|1261‘(%)2
< M?e (@R+8)esm) 3

1
2 2\3 2 1 _1
2 _2(&) K3 |ney? (1= ma| )
= (& .
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Noting

™

1
1 1 4R +3)%\?
§|1n61|_% < 5’ <g> > 1’

we have
2 1
[11(s) + Ta(s)| S M2em (RO Tl
Using the elementary inequality

— |
or < Bm—GdE3

13(2m—2d+1)
we get
M2

5 N\ 2m—2d+1°
K?2|Ine|2
(6m—6d+3)3

If |Ine;|3 < 25 (((4R + 3)7)3 K3, then s = K. We have from (2.20)-(2.23) that

[1(s) + Ia(s)| S

[11(s) + Ia(s)] < €.

Here we have used the fact that

S

Li(s)+ I2(s) = /wd_1||u(-,w)|\%Rdw, s> 0.
0

Hence we obtain from Lemma 2.8 and (2.54) that

oo

/ (-, w) 12, dw
0

o0

< I(s) + In(s) + / Wl w3, dw

S

~ M?2 M?
~ €1 + 3 2m—2d+1 + 1 1 2 1 2m—2d+1"
()™ (s K

By Lemma 2.6, we have

M2 M2

2 < 2
£z S €1+ T~ om—odiT T 2 N 2m—2d+1"
K2|Inei|2 K3|lne |4
(6m—6d+3)3 (R¥1)(6m—6d+3)3

147

(2.53)

(2.54)

Since K3|Ine|i < K2|Ine |2 when K > 1 and |Ine;| > 1, we finish the proof and obtain the stability

estimate (2.13). O
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2.4. Stability with discrete frequency data

In this section, we discuss the stability at a discrete set of frequencies. Let us first specify the discrete
frequency data. For n € Z?\ {0}, let n = |n| and define two angular frequencies

nm nmw
Wpp = —=, Wsn= .
p,n ’ s,n
cpR ’ R
The corresponding wavenumbers are
nm nm
Kpn = CpWpn = N Ksn = CsWs,n = = (2.55)

Recall the boundary measurement at continuous frequencies:
lu(, w)lIE, = / (I Tvu(z, ) + w’lu(z,w)[?) dy(@).
I'r
Now we define the boundary measurements at discrete frequencies:
(-, wp,n) I, = / (ITvu(@, wpn)|* + n®fu(z, wp,n)|?) dy(z),
I'r

)l = [ (T o)+ 0 (o)) dife).

I'r
Since the discrete frequency data cannot recover the Fourier coefficient of f at n = 0, i.e., }‘0 =
ﬁf[m f(x)dx is missing, we assume that f, = 0. Otherwise we may replace f(x) by flx) =

f(x) — ([, F(x)dx) xa(x), where x is the characteristic function, such that f has a compact support
Qand [, f(x)dx = 0. In fact, when w = 0, the Navier equation (2.1) reduces to

pAU+ A+ p)VV - u = f. (2.56)

Integrating (2.56) on both sides on By and using the integration by parts, we have
/TNu(:c)d’y = / f(x)dz,
FR BR

which implies that }0 can be indeed recovered by the data corresponding to the static Navier equation.

Hence we define

Q

Problem 2.10 (Discrete frequency data for elastic waves). Let f € Fpr(Br). The inverse source problem is
to determine f from the displacement u(x,w),x € T'g,w € (0, LPLR] UUN_ {wpn,wWsn}, where 1 < N € N.

The following stability estimate is the main result for Problem 2.10.
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Theorem 2.11. Let u be the solution of the scattering problem (2.1)~(2.2) corresponding to the source f €
]FM(BR) Then

M2

- N\ 2m—dt1’
N8|Ineg|9
(6m—3d+3)3

£ 117250 S €3+ (2.57)

where

N=

N
€= <Z (s w7, + U(',ws,n)ll%R> ;

n=1

es3= sup Ju(,w)p,-
wG(O,C;'R]

Remark 2.12. The stability estimate (2.57) for the discrete frequency data is analogous to the estimate
(2.13) for the continuous frequency data. It also consists of the Lipschitz type data discrepancy and the
high frequency tail of the source function. The stability increases as N increases, i.e., the inverse problem
is more stable when higher frequency data is used.

The rest of this section is to prove Theorem 2.11. Similarly, we consider the auxiliary functions of
compressional and shear plane waves:

ll’lC 7mp’nw~n

=ppe e M (2.58)

and umC =gq,

where i = n/n represents the unit propagation direction vector and p,,, g,, are unit polarization vectors
satisfying p,, = n and q,, - = 0. Substituting (2.55) into (2.58) yields

ul® =p e (BT and ul =g, (FTn
It is easy to verify that u‘“C and u““C satisfy the homogeneous Navier equation in R%:
uAumC A+ p)VV - u“‘C + wp nu;“; =0 (2.59)
and
pAUSE + (X + p)VV - umC + wg, nu;nfL =0. (2.60)

Lemma 2.13. Let u be the solution of the scattering problem (2.1)—(2.2) corresponding to the source f €
L?(Bg)?. For allm € Z%\ {0}, the Fourier coefficients of f satisfy

‘fn|2 S ||u('va,n)H12“R + Hu('vws,n)||12“,g~

Proof. (i) First consider d = 2. Multiplying the both sides of (2.1) by umc ¢ (x), using the integration by
parts over B, and noting (2.59), we obtain

/(pnefi(%)m'") - f(x)de = / (ugl%(a:) Inu(x, wp p) + (e, wp ) - Du;nfl(a:)) dvy(x).

Br I'r

A simple calculation yields that
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i 1 m —i(E)xn
Dus (@) = =in( % ) (4(Pr - v)Pn + (A + ) e B,

which gives

|Du;n°(a:)| < n.

Noting suppf C Br C Ug, we get from Lemma Appendix C.1 that

1 —i(%)xn 1 —i(E)Yn-x ~
Br Ur

Combining the above estimates and using the Cauchy—Schwarz inequality yields
o Fal’ 5 [ (Tl + 0@, on)P) & (@),
T'r

Using u!"¢ and (2.60), we may repeat the above steps and obtain similarly
g s,n

4 Fal? S [ (Tyute o)+ wfule,wen)) dro).
'r
It follows from the Pythagorean theorem and the above estimates that we get
|}n|2 = ‘pn : ./fn‘2 + |qn : }.n|2

< [ (Tto o+ (e, ) (2
I'r

+ [ (@) P+ *fu(e, w0 ) dr(a)
I'r

= ||u('7wp,n)H12“R —+ ||U('7Ws,n)||12“R~

(ii) Next is to consider d = 3. Let p,, = n. We pick two unit vectors q;,, and g, such that
{Pn> 41 n> 92} are mutually orthogonal and form an orthonormal basis in R3. Thus

|fn|2 = |pn ' fn|2 + ‘ql,n ! fn|2 + |q2,n ! fn|2'

: : ; inc : : inc ; 9K
Using p,, as the polarization vector for w ', and g, ,,, g5 ,, as the polarization vectors for ug’y; in (2.58), we

may follow similar arguments for d = 2 and obtain
[Ful? S llul,wpn)lif, + u( wsn)IE
which completes the proof. O

Lemma 2.14. Let f € H™ Y (Bg)Y. For any Ny € N, the following estimate holds:

o0
- —(2m—d+1
z : |fn|2 <N, (2m )HfHZH"H’l(BR)d'
TL:N()
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Proof. Let n = (n,...,nq)" and choose n; = max{ni,...,nq}. Then we have n? < dn?, which implies

that n ~(mHD) o g =) et f=(f1,.-.,f4)". Noting suppf C Br C Ur and using integrating by
parts, we obtain

2 2

/fl(m)e—i(%)n»mdw < /n;(erl)e—i(%)n-wa;r;-‘rlfl(w)dm S 2 £ e

R
Hence

2

‘}n|25 /f(a;)e_i(%)"“”dw 5n_2(m+1)||.f||§—[m’+l(BR)d.

R

It is easy to note that there are at most O(n?) elements in {n € Z¢ |n| = n}. Combining the above
estimates yields

S FuP < (z " m+1>) T
0

’I’L:NO n—=

A

[ Qo4 032t | £ 5,
0

N—(2m—d+1)

2m—d+1
= m\lﬂlimﬂwmd SN, )||f||§1m+1(BR)da

which completes the proof. O

Lemma 2.15. Let u be the solution of the scattering problem (2.1)~(2.2) corresponding to the source f €
L*(Bg)?. For any k € (0, %] and d € S, the following estimate holds:

2

/f(a:)e_im'ddw <€l

Proof. Taking the compressional plane wave uij‘c(m) =de (%)w'd and using similar arguments as those
in Lemma 2.13, we obtain

2
d~/f(a:)e*i’“”'dda:
Br

/f ()2 g
S (e o)+ (2) e (=2)

I'r
Let the shear plane wave be ul"(x) = pe_ics(%)w‘d, where p is a unit vector such that d L p. We may
similarly get

) dvy(x).
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2 2

p- f(m)eiilim‘ddm =|p- f(m)efics(i)w.ddm
/ /

<f (el ()

R
Noting ¢, < ¢s, we have from the Pythagorean theorem that

K
ulx,—
Cs

2
) dvy(z).

2 2

2
/f(x)efina:-ddm — d,/f(x)efinm-ddm + p,/f(m)efinmddx 5,6%
R Br Br

The proof is the same for the three-dimensional case when we take two orthonormal polarization vectors p;
and p, such that {d, p;, p,} form an orthonormal basis in R3. The details are omitted for brevity. O

Lemma 2.16. Let f € Fpr(Bgr). Then there exists a function B(s) satisfying

NG
ev/El

se(%, 2

s € (

);
);

)

el

(2.61)

[N}
N

=l
3

)

—
™ @
— —
w o
z 2
(AVARAVS
A= D=
— =
—
T
N—

T~

|

—_
SN~—

|

(NI

such that

2

/f(iv)e_i(%)"'mda: < MQeQnRegnﬁ(%), Vn e Z% n> 1.
R

Proof. We fix a propagation direction vector d € S9~! and consider those n € Z¢ which are parallel to d.
Define

I(s) = /f(ac)e_is‘i'mdm .

It follows from the Cauchy—Schwarz inequality that there exists a positive constant C' depending on R, d
such that

I(s) < C(R,d)e?*IE M2, Vs eV,
which gives
e MIRI(5) S M2, Vse V.

Noting fQ f(x)dx = 0 and using Lemma 2.15, we have

2

e 2IsIR /_f(q;)e_“d'wdw 563, Vs € 0, %}
R

Applying Lemma Appendix C.2 shows that there exists a function 5(s) satisfying (2.61) such that
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[I(s)e~2B| < M22°, s e (%, o),

which yields that

[I(s)| < M2e*Re2P | Vs e (%, 00).

Noting that the constant C(R,d) does not depend on d, we have obtained for all n € Z% n > 1 that

2

2
/f(m)efi(%)nmdx — /j:(a})efi(%‘)ﬁ,-mdsc SJMQ(BQ“RG;“B(%),
R R

which completes the proof. O
Next we prove Theorem 2.11.

Proof. Applying Lemma Appendix C.1 and Lemma 2.13, we have

No o0
/|f|2dwsz|fn|2+ S Fal
Br n=0 n=Np+1
Let
[Ni|lnes|s], N§ < —lu|lnes|s,
Ny = , 2073 L (2.62)
N, N§2212|h’163|§
613

Using Lemma 2.16 leads to

2
’/ f(m)efi(%)n»mdm < Mzeanegnﬁ < M2e2nR o2nf] In €5

Br
< 2 _2nR —3(n4—1)_%\1n63| < 2 2nR—2n"2|1n 3]
S Mee e S Mee G
-2 3 —1
5 MZe—%n [Ines|(1—27n°| In €a| )’ Vn € (Qi, OO)
Hence
(= 2 2 A2 478 —1
‘/f(x)eﬂ<ﬁ>"'wdm < M2e~ s N Inesl(1=2r" N nes|™5) -y e (23 Norr]. (2.63)
Br

5

If N¥ < 1 |Ines|s, then 27 Nj|Inez| ™' < L and
T3

26
z 1 9
9 |Ines) -2 [In eg| 2 |lneg|® 2 2%°7%|lnc3|9N4 1 3
~ a3 N2 ™ Bl 5 3 E — 9N4a
e ® M <e Nimeglh < ™ Nz <e 7 N — ¢ 64m[Inesg[9 N1 (2.64)

Combining (2.63) and (2.64), we obtain

o 2 - )
‘/f(w)eﬂ(ﬁ)"'mdsc ,SMZe’w%No2|1n63|(1727r4N3\1n62\ 1

Br

PN

1 3
2 — L N;7?|Ine 2 —327|lnes|9 N1
< M2emmslolnel < pp2e=32nlInes| SN =y e (23 Nyn].
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It follows from the elementary inequality e™* < % that

ity |? M?
‘/f(:z:)e (%) d:c‘ < —— a1 n=1,..., Np.
|Ineg|3 N4
(6m—3d+3)3)
Consequently,
No 2
—1 n-xr M NO
Z /f(as)e (%) dar:‘ S L o N\ 2m—d+1
n:lB |Inez|3 N4
R (6m—23d+3)3
M2Ni|Inegls M2 M2

<
~ 19 2m—d+1 ~ 2 3 2m—d+1 ~ 1 3 2m—d+1"
|Ineg|3N4 |Ineg|9N2 |Inez|9 N2
(6m—3d+3)3 (6m—3d+3)3 (6m—3d+3)3

Here we have used that |Ines| > 1 when N¥ < —1—|Ines|s. If N§ < —1—|Ines|s, we have
2673 2673

L s 2m—d+1 2m—d+1
([|ln63|§NZ] +1) <|1H63| N4> .

3

If Ns > 251 = | In 63|é, then Ny = N. It follows from Lemma 2.13 that
673

2
Bnedyl <

n= 1BR

Combining the above estimates and Lemma 2.14, we obtain

M2
S| [ staretomeas] s+

1 3 2m—d+1
=, bmogfad )
R (6m—3d+3)3
M2 (Q%W%)me&%l
+ 1 3\ 2m—d-+1 2m—d+1 "
(Ines] %) (ImesfsNF)

Noting that N§ < Ni<N2%and28ns < < (6m — 3d + 3)3, Vm > d, we complete the proof after combining
the above estimates. O

3. Electromagnetic waves

This section concerns the inverse source problem for electromagnetic waves. Following the general theme
for the elasticity case presented in Section 2, we discuss the uniqueness of the problem and then show
that the increasing stability can be achieved to reconstruct the radiating electric current density from the
tangential trace of the electric field at multiple frequencies. The technical details differ from elastic waves
due to different model equations and Green’s tensors.
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3.1. Problem formulation

We consider the time-harmonic Maxwell equations in a homogeneous medium:
VxE—ikH=0, VxH+ikE=J inR? (3.1)

where £ > 0 is the wavenumber, E € C? and H € C? are the electric field and the magnetic field,
respectively, J € C? is the electric current density and is assumed to have a compact support . The
problem geometry is the same as that for elastic waves and is shown in Fig. 1. The Silver—Miiller radiation
condition is required to make the direct problem well-posed:

lim (VX E)xx—ikrE)=0, r=]|x| (3.2)

r—00

Eliminating the magnetic field H from (3.1), we obtain the decoupled Maxwell system for the electric
field E:

V x (Vx E)—k’E =ikJ in R3, (3.3)

Given J € L%(Q)3, it is known that the scattering problem (3.2)—(3.3) has a unique solution (cf. [45]):

E(z,r) = / Gu(@,y: ) - I (y)dy, (3.4)
Q

where Gy (e, y; k) is Green’s tensor for the Maxwell system (3.3). Explicitly, we have

. i
Gu(,y; k) = ikgs(x, y; k)13 + ;valgs(w, Y; k), (3.5)

where g3 is the fundamental solution of the three-dimensional Helmholtz equation and is given in (2.6).
Let F x v and H X v be the tangential trace of the electric field and the magnetic field, respectively. It
is shown in [5] that there exists a capacity operator Ty such that

HXV:TM(EXI/) on FR, (36)

which implies that H x v can be computed once E X v is available on I'g. The transparent boundary
condition (3.6) can be equivalently written as

(Vx E)xv=ikTu(E xv) onTg. (3.7)

It follows from (3.7) that we define the following boundary measurement in terms of the tangential trace of
the electric field only:

|E(-, k) x V||%R = / (\TM(E(:B,K) X 1/)|2 +|E(x, k) x V|2) dvy(x).

T'r

Problem 3.1. Let J be the electric current density with the compact support 2. The inverse source problem
of electromagnetic waves is to determine J from the tangential trace of the electric field E(x,k) x v for
x €.
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3.2. Uniqueness

In this section, we discuss the uniqueness and non-uniqueness of Problem 3.1. We begin with a simple
uniqueness result.

Theorem 3.2. Let I C R™ be an open interval. If V- J = 0, then the multiple-frequency data {E(x, k) X v :
x € g, w € I} can uniquely determine J.

Proof. We assume E(z,k) x v = 0 on T'g for all & € I. Let E™ and H™ be the electric and magnetic
plane waves. Explicitly, we have

Einc — peimmd and Hinc — qeiﬁmd7 (38)

where d(6, p) = (sinf cos p,sinfsin p,cos#) " is the unit propagation vector, and p,q are two unit polar-
ization vectors and satisty p(60, o) - d(8, ) = 0,q(0, ) = p(0,¢) x d(0, ) for all 6 € [0,7],¢ € [0,27]. It is
easy to verify that E'™ and H™ satisfy the homogeneous Maxwell equations in R3:

V x (V x E™) - g2E™ =0 (3.9)
and
V x (V x H™) - g?H™ = 0. (3.10)
Let € = kd with || = & € I. We have from (3.8) that E™ = pe=¢® and H™ = ge~ €. Multiplying
the both sides of (3.3) by E™°, using the integration by parts over Br and (3.9), we obtain
ik / pe €. J(x)dx = — / (ikTm(E(z, k) x v) - B + (E(z, k) x v) - (V x E™)) dy,
Br I'r

which means p - j(/{d) = 0 for all w € I. Similarly, we have gq - j(ﬁd) =0 for all K € I. On the other hand,
since J(kd) is an analytic function with respect to x € C, where C denotes the complex number domain,
we have both p- j(nd) =0andq- j(nd) = ( for all kK > 0. Since p, q, d are orthonormal vectors, they form
an orthonormal basis in R®. We have from the Pythagorean theorem that

TP =1p- T +g- JEF +d- (€.
On the other hand, since V - J = 0, we have for each x € I that

ikd - J(€) =ik / de"® . J(z)dx = / Vered . Jda = / " dy . Jdx =0,
Br

BR BR

which yields that
TP =1Ip-JEI+q- (] =0,
which means J(£€) = 0 for all £ € R?, and then J(z) =0. O

Next we discuss the uniqueness result much further. The goal is to distinguish the radiating and non-
radiating current densities. We study a variational equation relating the unknown current density J to the
data E x v on I'p.
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Multiplying (3.3) by the complex conjugate of a test function &€ on both sides, integrating over Bg, and
using the integration by parts, we obtain

/(VxE-VxE—nQE-E)dw—/[(VxE) xu]fdv:im/JEd:c. (3.11)
Br I'r Br
Substituting (3.7) into (3.11), we obtain the variational problem: To find E € H(curl, Bg) such that
/(VxE-Vxé—m2E-é)dw—if<;/TM(E><V)~EFRd7
Br I'r

:m/J-édw, V¢ € H(curl, Bg). (3.12)

Br

Given J € L?(Bg)3, the variational problem (3.12) can be shown to have a unique weak solution E €
H(curl, Bg) (cf. [45,48]).

Assuming that £ is a smooth function, we take the integration by parts one more time of (3.12) and get
the identity:

_ / ((E x ) (V x &) +ikTu(E x v) - &) d. (3.13)
I'r

Now we choose & € H(curl, Bg) to satisfy
/(VX&-VX¢—K2£-¢) de =0, Vi € C°(BRr)?, (3.14)
Br
which implies that £ is a weak solution of the Maxwell system:
Vx(Vx€—k’6€=0 in Bpg.
Using this choice of €, we can see that (3.13) becomes
ir / J-&dx = —/ (B xv)-(Vx&+ikTu(E xv)-&p,)dy (3.15)
Br T'r

for all £ € H(curl, Br) satistying (3.14).
Denote by X(Bg) the closure of the set {E € H(curl, Bg) : E satisfies (3.14)} in the L?(Bg)3 norm.
We have the following orthogonal decomposition of L?(Bg)?:

L*(Bgr)® = X(Br) @ Y(Bg).

It is shown in [2] that Y(Bg) is an infinitely dimensional subspace of L?(Bgr)?3, which is stated in the

following lemma.

Lemma 3.3. Let 1 € C3°(Br)?. If ¢ =V x (V x ¢) — k%1, then ¢ € Y(Bg).
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It follows from Lemma 3.3 that X(Bg) is a proper subspace of L?(Bgr)3. Given J € L?(Bg)?, only the
component of J in X(Bg) can be determined from the data E X v on I'g. Moreover, it is impossible that
some other equation could be derived to determine the component of J in Y(Bg) from the data E x v
on I'g.

Theorem 3.4. Suppose J € Y(Bg). Then J does not produce any tangential trace of electric fields on T'r
and thus cannot be identified.

Proof. Since J € Y(Bg), we have from (3.15) that

/ (Exv) (Vx&+ikTu(E xv) &, )dy=0, V&eX(Bg),
I'r

which yields

/(E X V) (V % € — 6T (€r,))dy = 0. (3.16)
I'r

Here Ty is the adjoint operator of Ty;. Let

V x & —ikTy(€sp,) =N onI'g.
More precisely, & € H(curl, Bg) satisfies the variational problem
/(V x€-V x ¢— K- ¢p)dx + /(7_] — kT3 (&ry,)) - (@ X v)dy =0, V¢ € H(curl, Br).
BR FR

It is shown in [2] that there exists a unique solution & € X(Bg) to the above boundary value problem for
any n € H=/?(curl,T'), where Vr,, is the surface gradient. Hence we have from (3.16) that

/(E xv)-ndy=0, ¥Yne H ?(curl,Tg),

I'r

which yields that E x v =0 on I'g and completes the proof. O

Remark 3.5. The electric current densities in Y(Bpg) are called non-radiating sources. It corresponds to find
a minimum norm solution when computing the component of the source in X(Bg).

It is shown in Theorem 3.4 that J cannot be determined from the tangential trace of the electric field
E xvonTgif Je€ Y(Bg). We show in the following theorem that it is also impossible to determine J
from the normal component of the electric field E - v on 'y if J € Y(Bg).

Theorem 3.6. Suppose J € Y(Bg). Then J does not produce any normal component of electric fields on Tg.

Proof. Let ¢ € C*°(Bg). Multiplying both sides of (3.3) by V¢ and integrating on Br, we have

/(Vx(VxE)—/@QE)~V¢da;:m/J-V¢dm.

Br Br
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It follows from the integration by parts that
/(Vx (VX E)) -Véde = /(VxE)-(VxV¢)dw—/(ux(VxE))~V¢d’y.
Br Br I'r
Noting V x V¢ = 0 and (3.7), and using Theorem 3.4, we obtain
/(VX (VX E))-Vody =0.
I'r
Combining the above equations gives
—K? /E -Vodx = ix / J - Vodz,
BR BR
which implies
iK / E -Vodx = /J - Voda. (3.17)
BR BR
We have from the integration by parts that
ix / E - -V¢dx = —ix / V- E¢dx + ik /(E -v)pdry. (3.18)
Bgr Br T'r

On the other hand, since
VxH+ikE=J,

then by taking the divergence on both sides, we have

ikV-E=V-J.
Hence
im/V-Eqﬁdx:/V-quw:—/J-V(bdsc. (3.19)
Br Br Br

Combining (3.17)—(3.19), we get

/(E V)¢dz =0, Yo e C(Bp),

I'r

which implies that E - v on I'p and completes the proof. 0O
The following theorem concerns the uniqueness result of Problem 3.1.

Theorem 3.7. Suppose J € X(Bg), then J can be uniquely determined by the data E X v on I'g.
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Proof. Tt suffices to show that J =0 if E x v =0 on I'g. It follows from (3.15) that we have

/ J-€&dx =0, V&eX(Bg).

Br

Taking & = J yields that

/ |J|?dx = 0,
Br

which completes the proof. O

Taking account of the uniqueness result, we revise the inverse source problem for electromagnetic waves,
which is to determine J in the smaller space X(Bpg).

Problem 3.8 (Continuous frequency data for electromagnetic waves). Let J € X(Bg). The inverse source
problem of electromagnetic waves is to determine J from the tangential trace of the electric field E(x, k) X v
forx € T,k € (0,K), where K > 1 is a constant.

8.8. Stability with continuous frequency data
Define a functional space
Iar(Br) = {J € X(Br) N H™(Br)* : ||| gm(sr)s < M},

where m > d is an integer and M > 1 is a constant. The following is our main result regarding the stability
for Problem 3.8.

Theorem 3.9. Let E be the solution of the scattering problem (3.2)—(3.3) corresponding to J € Jy(BRr).
Then

M2

2 1 2m—>5"
K3 |Ineq|d
(R+1)(6m—15)3

HJ||2L2(BR)3 Se+ (3.20)

where
1
K 2
_ 2 E( 2 d
€4 = K E(, k) X V||f,dR

0

Remark 3.10. The stability estimate (3.20) is consistent with that for elastic waves in (2.13). It also has two
parts: the data discrepancy and the high frequency tail. The ill-posedness of the inverse problem decreases
as K increases.

We begin with several useful lemmas.

Lemma 3.11. Let E be the solution of (3.2)—(3.3) corresponding to the source J € X(Br). Then

o

19130 S [ W2IECR) % v
0
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Proof. Let E'™ and H™® be the electric and magnetic plane waves:

EinC(x) — pefinwd and Hinc(m) — qefinwd7 (321)
where d(6, p) = (sin f cos p,sin fsin p, cos#) T is the unit propagation vector, and p,q are two unit polar-
ization vectors and satisty p(6,¢) - d(8,¢) = 0,q(0, ) = p(0,¢) x d(0, ¢) for all § € [0, 7], € [0,27]. The
electric and magnetic plane waves satisfy

V x (V x E™) - g2E™ =0 (3.22)
and
V x (V x H™) - s>?H™ = 0. (3.23)

Let £ = rd with |§] = k € (0,00). We have from (3.21) that E™ = pe %® and H™ = ge €=,
Multiplying the both sides of (3.3) by E™°, using the integration by parts over Bg and (3.22), we obtain

ik /(pe*ig'm) -J(x)dx = f/ (inTM(E(m, K) X V)" E™c 1 (E(z, k) x v) - (V x Ei“C)) dry.
Br I'r

A simple calculation yields that
V x EM¢ = —ikd x pe "®d
which gives
|V x B™| = k.

Since suppf = Q C Bg, we have

[ e €=y @ae =p- [ T@)eedz —p- ().
BR R3
Combining the above estimates yields
p-JEF S /(\TM(E(GC,H) x V)] +|E(z, k) x v[*)dy(z) = | E(,K)|E,-
'r

Hence

/ - J(E)Pde < / IEC, )12, dé.
R3 R3

Using the spherical coordinates, we get

2 T ') oo
/ - J(E)dE < / a0 / singdg / B )2, dr < / IEC R, dr.
R3 0 0 0 0

Similarly we may show from (3.23) and the integration by parts that
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2 9

[1[@e e g@ae) a6 = [1a-T@Pdg < [W21BC w0l
&

R3 R3 0

Since p, q, d are orthonormal vectors, they form an orthonormal basis in R?. We have from the Pythagorean
theorem that

TP =Ip-JEI+Iq- JEF+|d- T

On the other hand, since J has a compact support {2 contained in Br and J € X(Bg), we obtain that
J is a weak solution of the Maxwell system:

V x (VxJ)—k*J=0 in Bg.

Multiplying the above equation by de'*®® and using integration by parts, we get

/(v x J) - (V x (de"® %)) de = x*d - / J(z)e"®ddx = k2d - J(¢).

BR BR
Noting V x (de"®4) = ird x de"* 4 = 0, we get d - J(&) = 0, which yields that
[TE =p- TP +g- T€).

Hence, we obtain from the Parseval theorem that

19135y = 19 gy = 19 Baqmne = [ 13(@)Pde
R3

- / - T(E)Pde + / - T(&)[2de < / W2 B w)|12, dr,
R3 R3 0

which completes the proof. O
Eliminating E from (3.1), we obtain
Vx(VxH)-«xk*H=VxJ inR> (3.24)
It is easy to verify from (3.1) that V - H = 0. Using the identity
Vx(VxH)=-AH+VV-H=-AH,
we get from (3.24) that H satisfies the inhomogeneous Helmholtz equation:
AH + rx*H = -V xJ in R3. (3.25)

It is known that (3.25) has a unique solution:

H(z, ) = — / g3(@ )T -V x J(y)dy. (3.26)
Q
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Let
s 2
1) = [0 [ | Gule.yin) - J(@)dy x vie)| drias (3.27)
0 rglo
s 2
= [ K2 g3(x,y; K)I3 -V x J(y)dy x v(zx)| dy(x)dk. (3.28)
[/

Again, the integrands in (3.27)—(3.28) are analytic functions of k. The integrals with respect to k£ can be
taken over any path joining points 0 and s in V. Thus I (s) and I5(s) are analytic functions of s = s1 +1iss €
V, 51,82 € R.

Lemma 3.12. Let J € H?(Bg)®. For any s = 51 +1isy € V, the following estimates hold:

11(8)] S (sl + IsDe ™ T 1372 ,2- (3.29)
La(8)] S 1P ™[ T30 3,00 (3.30)

Proof. Let x = st,t € (0,1). Noting (3.5), we have from direct calculation that

[11(s)] < I 1(s) + I1,2(s),

where

1 2

Li(s) = / 52 / / stga(@, v W)Ls - I (y)dy| dy(@)dr,
0 T'r IQ
1 2

1

na() = [ [ | [ 4ViViate.) Twiy| dr@).

0 T'r IQ

Since suppJ = ) C Bg and
|eist|m—y|| < @2R‘S|7 Va € FRvy € Q’

we get from the Cauchy—Schwarz inequality that

2R|s
fale /t/‘/| Wl
€4R\s|
< / spet [ (B TPy | | [ oz | drtaar
0 I'r R Q Y

S IslPe T30 g - (3.31)

dv( )dt

On the other hand, we obtain from the integration by parts that

2

1
Ias / 12 / / SV asle.y) - T(y)dy| dyfe)dr
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2

1
< / sl / / g5(@, y)V, ¥y - Jdy| dr()dt

0 Txl0
S Isle T 132 - (3.32)
Combining (3.31) and (3.32) yields (3.29).
Using the Cauchy—Schwarz inequality and (3.31), we have

2

1
I(s) < / 582 / / ga(@, v 1)Is - ¥ x J(y)dy| dy()ds
0

; 64R|s|
< [ | [1vcawiay) [ [ =i ) araar
0 R

I'r Q

S ‘3|3€4R‘S|HJ||§{1(BR)37
which complete the proof of (3.30). O

Lemma 3.13. Let J € Jy(Bgr). For any s > 1, the following estimate holds:

//12||E xv|[f, de < s‘<2m_5)|\Jqum(3R)3.

S

Proof. Let

oo
//n2||E x v||f,dk = L1 + Lo,

SFR

where

L = /Oo [ 1B x ve) P ),

s I'r
Ly = S/F/ w2 H(z, k) x v(z))|*dy(z)ds.

First we estimate L;. Using (3.4) and noting s > 1, we obtain

L= [ [ #1B@ 0 x v@)Pdr@ds £ Ly + L

SFR

where

o0 2

4 ei’ilmfy‘
Ly = K HIS -J(y)dy| dy(z)ds,
Q

SFR
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L”‘/ / ‘/ VL Gy T

SFR

2

dy(x)dk.

Noting suppJ = Q C By C Bpg, and using integration by parts and the polar coordinates p = |y — x|
originated at & with respect to y, we have

g R+R 7 2
Lll—// singodgo / 6( p>dp dvy(x)dk.
M
s I'rp R—R
Consequently,
R+R
L1 <// de sm<pd<p / K™
S FR R— R
2
( Soogdlp+m| Y agJde dvy(z)dx
|a|=m |a|=m—1
// do Slncpdgo / K™
s I'p
( > an dooogd ) 2dp‘ dy(x)dk
|a|=m la|]=m—1
// do smcpdga / K™
S FR
1 m 2
OgJ|——— + ooJ 7> *dp| dy(z)dr
(mz_m ey PP )]
// de smgodap/ -m
S FR
2
( > an > an‘ > p>dp| dy(x)ds
la|=m la|=m—1 )
Changing back to the Cartesian coordinates with respect to y, we have
Lis < / / (3.33)
s FR
2
< > an‘ Z an‘ g )dy dy(x)dk (3.34)

loe|=m lee|=

Sl e [ 42 (3.35)

S
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m —(2m—5 2 —(2m—5 2
S (2m — 5) s~ )”‘]HH’"(BR)3 Ss ( )||J||Hm(BR)3~ (3.36)

For L, 2, it follows from the integration by parts and similar steps for (3.33) that we obtain

m\z y| 2
12N//’/ VV -J(y)dy| dy(x)dk
s I'r
< 1 o 1
~ Km—2 Z y (VyVy - J) m
s ' Q |a|:m—2
(m-2)\,
05 (VyVy - J)|——= |dy| dy(x)dk
a|_zn:1—3 y( yVy >‘(RR)2> y| dy(z)
S (= D i gy [ 642"
m — 2 —(2m— am
s <2m—5>s NIy S 57T i (- (3.37)

Following from the similar steps as those for (3.33) and (3.37), we may obtain from (3.26) that

ws] 14,

SFR

m|:c y| 2

ey Vo x J@)dy| di(e Jdr S s~ T |G (e (3.38)

Combining (3.33)—(3.38) completes the proof. O
Lemma 3.14. Let f € Jy(Bgr). Then there exists a function B(s) satisfying (2.52) such that
I11(s) + Io(s)| < M2e@RHDs286) - yg e (K, o).
Proof. It follows from Lemma 3.12 that
| (I1(s) 4 Ix(s)) e AEFDISl < M2 s e .
Recalling (3.27)—(3.28), we have
| (I1(s) + In(s)) e UE+Ds| <2 se 0, K].
Using Lemma Appendix C.2 shows that there exists a function 8(s) satisfying (2.52) such that
| (I1(s) + Io(s)) e~ B3| < M228 ) Vs e (K, o),
which completes the proof. O
The proof of Theorem 3.9 is similar to that of Theorem 2.4. We sketch it here for completeness.
Proof. Let

s mK ‘1n€4|4 2%((4R+3)7T)%K% < |h’l€4|%,

K, |neq) < 25 ((4R + 3)m)5 K 3.
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If 25 (4R + 3)m)3 K3 < |Iney|7, then we have from Lemma 3.14 that

2\ % 2 1 1
(@)u@\lneﬂé(l—%\ 1n64|*z)

11 (s) + Io(s)| < M2e?

which gives
2 1
111(s) 4 Ix(s)| S M2e K3 el
It follows from the elementary inequality (2.53) that we get

M2

[11(s) + I2(s)| S T 2m 5
K2|Iney|2
( (6m—15)3 )

(3.39)

We have from Lemma 3.1 and (3.27)—(3.28) that
[11(s) + I2(s)| < €.

Note that for s > 0,

S

Ii(s) + Ix(s) = /R2|E(',I€) x v[g, dk.
0

Hence we obtain from Lemma 3.13 and (3.39) that

oo

/n2|E(~,/@) X V|%Rd’yd/£
0

< Li(s)+ Ix(s) + //£2|E(-7 k) x v[p dk

S

M? M?
Sei+ a\om—5 T . T N2m—5"
()" (HaRsIm I )
By Lemma 3.11, we have
M? M?

1117255 < €5 +

3\ 2m—>5 + 2 1 2m—>5"
K2|Iney|2 K3|lneq|4
(6m—15)3 (R+1)(6m—15)3

which completes proof. O
8.4. Stability with discrete frequency data

First we specify the discrete frequency data. For n € R\ {0}, let n = |n/|, denote the wavenumber

nmw
Kp = —.

R
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We define the discrete frequency boundary data:
IE(, k) x V][, = / (1T (EB(z, 50) x V) |* + |E(@, 5n) x v[?) dy().
T'r

Similarly, the Fourier coefficient Jo cannot be recovered by the discrete frequency data. It is necessary to
revise the functional space. Denote

I0(Br) = {J € Jar(Bp) / J(@)dz = 0}.
Q

Problem 3.15 (Discrete frequency data for electromagnetic waves). Let J € jM(BR). The inverse source
problem of electromagnetic waves is to determine J from the tangential trace of the electric field E(x, k) X v
Jor € Tg,k € (0, F]UUN_ {kn}, where 1 < N € N.

The following stability estimate is the main result of Problem 3.15.

Theorem 3.16. Let E be the solution of the scattering problem (3.2)—(3.3) corresponding to the source J €
Jr(Br). Then

M2

5 1 2m—4"
N3B8|Ineg|9
(6m—12)3

T2 (ppye S €3 + (3.40)

where

=

= > IBCRIF, |

n<N

€6 = Sup ||E(7K/)HFR
k€0, %

Remark 3.17. The estimate for the discrete frequency data (3.40) is also consistent with the estimate for
the continuous frequency data (3.20). They are analogous to the relationship between (2.57) and (2.13) for
elastic waves.

We begin with several useful lemmas.

Lemma 3.18. Let E be the solution of (3.2)—(3.3) corresponding to the source J € X(Bgr). Then for all
n € 74\ {0}, the Fourier coefficients of J satisfy

[ Tnl? SIECw0) |12,
Proof. Give any n € Z3, let i = n/n. Consider the following electric and magnetic plane waves:
Einc(.’B) _ pefinnmﬂfl — pefi(%)cc-n and HiHC(m) — qefi/{nmeL — qefi(%);c-n7

where p and q are chosen such that {f, p, q} form an orthonormal basis in R3. It is easy to verify that E™™
and H'™C satisfy the Maxwell equations:
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V x (V x E™) - k2E™ =0 (3.41)
and
V x (V x H™) - s2ZH™ = 0.

Multiplying the both sides of (3.3) by E™¢, using the integration by parts over Bg and (3.41), we obtain

in / (pe i Fm ). J(x)de = — / (ikTm(E(z, kn) x v) - E™
BR FR

+(E(z, kn) x v) - (V x E™))dy.
A simple calculation yields that
V x E™ = —in x pe” "n® ™
which gives

|V x E2¢| =n.
Combining the above estimates leads to
p-Jnl* < /(ITM(E(-’&%) < V)] + |E(@, kn) x v[*)dy(x) S | EC, k)R-
T'r
Similarly, we have
40 - Inl* S /(ITM(E(w, kin) X V)| + |E(x, ) x v?)dy(@) S [ E(, m0)lI7,-
T'r

On the other hand, since J has a compact support Q contained in Br and J € X(Bg), we obtain that
J is a weak solution of the Maxwell system:

V x(VxJ)—k2J =0 in Bg.

—ikpx-T

Multiplying the above equation by ne and using integration by parts, we get

/(V x J) - (V x (e M) dx = k27 - / J(@)e (e = 2a - J,.

Br Br

Noting V x (fe™ ™) = —ix, A x Re "= = (), we get 7 - J,, =0, which yields from the Pythagorean
theorem that

[Tal? =1 Inl* + g Inl* S IEC, k)2,

which completes the proof. O
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Lemma 3.19. Let J € H™(Bg)3. For any No € N, the following estimate holds:

3 —(2m—4
ST Tnl? S N BT INT e 10)5-
’I’L:N()

Proof. Let m = (n1,n2,n3) and choose n; = max{ni,n2,ns}. Then we have n? < 3n§, which means that
nj_Qm < 3mn=2m Let J = (Ji, Jo, J3). Noting suppJ C Br C Ug and using integration by parts, we obtain
2 2
/ Jy(z)e IFm e < /n;me’i(%)"'mcr);';Jl(w)dw < n*2m||J||?{m(BR)d.

R R
Hence
2
Tnl® S /J(w)efi(%)"'wdm ST (Bgya-

R

Noting that there are at most O(n?) elements in {n € Z3, |n| = n}, we get

o0
A (
’I’L:N()

(

2 4
NO(m )
(2m —4)

iMS

n(32m)> 1T 1 ()
0

A

(No + )@= dt 1T m ()

A

2m—4
1T 13 (mrye S No " NI 3 ()

which completes the proof. O
Lemma 3.20. Let E be the solution of (3.2)~(3.3) corresponding to the source J € X(Bgr). For any x € (0, %]

and d € S, the following estimate holds:

2
/J(ac)eim'ddw <€l
R
Proof. Let p,q € S% ! such that p-d = 0 and g = p x d. Consider the electric plane wave E™¢ = pe~ine-d
and magnetic plane wave H'™ = ge~""*'4_ Noting suppJ C Bp and using similar arguments as those in
Lemma 3.18, we get

2

lp-J(kd))*> = |p- /J(m)e*im'ddw
Br

S /(|TM(E($,%) xv)? +|E(z, k) x v[*)dv(2) < | B, R)E,
'r

and



G. Bao et al. / J. Math. Pures Appl. 134 (2020) 122-178 171

2

lq- J(rd))? = q-/J(:c)e*im'ddac
Br

S /(\TM(E(%H) < V)2 + |E(x, k) x v[*)dy(@) S B, 6)|f,-

I'r

Hence we have from the Pythagorean theorem that
[T (rd)* = p- T(xd)]* + g - T (rd)|* S <,
which completes the proof. 0O

Lemma 3.21. Let J € Jy(Bgr). Then there exists a function ((s) satisfying (2.61) such that

2
/J(m)efi(%)"'mdm ,SMQeQ”Rean(L’g), Vn € (1, o0).
R

Proof. We fix d € S~ ! and consider n € Z3 which parallel to d. Define

2

I(s) = /J(a:)efi&d'mda:

R

It is easy to show from the Cauchy—Schwarz inequality that there exists a constant C' depending on R, d
such that

I(s) < C(R,d)e**1B M2 Vs eV,
which gives
e IR (s) S M2, VseV.

Using Lemma 3.20 yields

2
672|5\R /J(w)e*iSd'mdm < Eg, Vs € [07 %]

R

An direct application of Lemma Appendix C.2 shows that there exists a function 5(s) satisfying (2.61) such
that

[I(s)e 2R < M2e2P, Vs e (%, 00).
Hence

(s)] S M2e*RP, s e (%

E, OO)

Noting that the constant C(R,d) does not depend on d, we have obtained that for all n € Z3 with n > 1
such that
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2 2
/J(Sﬂ)eii(%)n.mdaj _ /J(m)eii(%)ﬁ'zdm §M262nR€§nﬁ(%)7

R R

which completes the proof. O

The proof of Theorem 3.16 is similar to that for Theorem 2.11. We also briefly present it for completeness.

Proof. Applying Lemma Appendix C.1 and the Parseval identity, we have

No o)
/ TRz S TP+ S 1Tl
Bg n=0 n=Np+1

where Ny is given in (2.62). Using Lemma 3.21 leads to

‘/ J(w)e—i(%)n.wdw‘2 5 ‘2\426—%n’2\lneg\(l—27rn3|1n56|’1)7 Vn € (2%7 OO)
Br

Therefore

sl 2 -2 4 3 -1
‘/J(az)e‘l(ﬁ)"‘mdx‘ < M2ewsNo el 1=2mNolInesl™) vy ¢ (23 Ny,
Br

If N5 < —L>|lneg|5, then 274 N§|Ineg| ™! < § and

5 2
2673

— 6 1 3
=N < e—647r\1n65|9N4'

Combining (3.42) and (3.43), we obtain
m 2 1.8 1
’/ J(w)e_‘(f)"'wdw’ < M2e 32 ONG -y o (21, Ny
Br

Using an elementary inequality of e~* similar to that of (2.53), we have

1

1 9\ 2m—4>
|Ineg|3 N4
(6m—12)3

o 2
‘/ J(az)eﬂ(ﬁ)"‘mdw‘ < M? n=1,...,Np.
Br
Consequently,

ol (o 2 M?
Z /J(w)e“(ﬁ)"'mdw‘ <

1 3\ 2m—4"
n=0pg [Ines|9 N2
R (6m—12)3

It follows from Lemma 3.18 that

(3.42)

(3.43)
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Combining the above estimates and Lemma 3.19, we obtain

= x 2 M?
Z‘/ J(:I:)e—l(ﬁ)n‘wdw‘ <e+ — 1
7L=0B (1n€6|9N2>
R (6m—12)3
M2 M2(2%,n.%)2m—4
1 3\2m—4 2m—4"
(|1n€6|9N4) <|1n66|9N%)

which completes the proof. O
4. Conclusion

We have presented a unified stability theory of the inverse source problems for both elastic and elec-
tromagnetic waves. For elastic waves, the increasing stability is achieved to reconstruct the external force.
For electromagnetic waves, the increasing stability is obtained to reconstruct the radiating electric current
density. The analysis requires the Dirichlet data only at multiple frequencies. The stability estimates consist
of the data discrepancy and the high frequency tail. The result shows that the ill-posedness of the inverse
source problems decreases as the frequency increases for the data. A possible continuation of this work is
to investigate the stability with a limited aperture data, i.e., the data is only available on a part of the
boundary. Since the Neumann data cannot be represented via the limited Dirichlet data by using the DtN
map, a new technique must be developed, and both the Dirichlet and Neumann data are required in order
to obtain the increasing stability. Another interesting direction is to study the stability in the inverse source
problems for inhomogeneous media, where the analytical Green tensors are not available any more and the
present method may not be directly applicable. We also point out even more challenging inverse medium
and obstacle scattering problems. These nonlinear problems are largely open.

Appendix A. Differential operators

We list the notations for differential operators used in this paper.
First we introduce the notation in two-dimensions. Let = (z1,72) . Let u and u = (u1,us)' and be a
scalar and vector function, respectively. We introduce the gradient and the Jacobi matrix:

Vu = (8w1U78$2U)T7 Vu = |:aw1’LL1 8I2u1:|

$1u2 8132 U2
and the scalar curl and the vector curl:
)T

curlu = 9, us — Opouy, curlu = (Op,u, —0z,u

It is easy to verify that

vau — |:a$1$1u aﬂlezu:l

.’EQ.Ilu .’EQ.TQU

and

_ 8$1I1u1 + 6I1I2u2
Vv w= |:8I21?1u1 + aﬂ:zxzuz ’
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Next we introduce the notation in three-dimensions. Let & = (1,72, 23)". Let u and u = (uy,uz,u3) "
and be a scalar and vector function, respectively. We introduce the gradient, the curl, and the Jacobi matrix:

T 831'2 us — 8903“2 a:cl U1 axgul 3x3u1
Vu = (Opy Uy Opytty Opsu) , V Xu= |0pur —Opus|, Vu=|0pus Otz Opus
8931’LL2 — 89521&1 (91111,3 c’)mu?, 0z3U3

It can be also verified that

. Oz, U Opygpt Opyz
VV ' u=|0z5,u Opyz,tt Ogyzt

z3x; U z3xo U zgws U
and

83;11-1 u1 + 81-11-2 ug + 87;1353 us
VV.-u= ax23:1 up + 8x23c2u2 + 6962963u3
am:;ml Uy + ax3m2u2 + az3r3u3

Appendix B. The Helmholtz decomposition

We present the Helmholtz decomposition for the displacement which is used to introduce the Kupradze—
Sommerfeld radiation condition in Section 2. Since the source f has a compact support €2, the elastic wave
equation (2.1) reduces to

pAu+ A+ p)VV -u+w?u =0 in R*\ Q. (B.1)

First we introduce the Helmholtz decomposition in the two-dimensions. For any solution w of (B.1), we
let

u = V¢ + curly, (B.2)
where ¢ and v are scalar potential functions. Substituting (B.2) into (B.1) gives
V(A +2u)Ad + w?¢) + curl(uAy + w?y) =0,
which is fulfilled if ¢ and v satisfy the Helmholtz equations:
Ap+r2p=0, A+ rip=0. (B.3)
It follows from (B.2) and (B.3) that we get
V-u=A¢p= fngqb, curlu = —Ay = HZ’[/J.
Using (B.2) again yields
U = Up + Us,

where u,, and us are the compressional part the shear part, respectively, given by

1 1
u, = ——VV-u, wus= —curlcurlu.

Ky K2
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Next we introduce the Helmholtz decomposition in the three-dimensions. For any solution u of (B.1),
the Helmholtz decomposition reads

u=Vp+Vx, V.hp=0, (B.4)

where ¢ is a scalar potential function and ¥ is a vector potential function. Substituting (B.4) into (B.1)

gives
V(A +20)Ap + w?0) + V X (1A% + w?ehp) =0,
which implies that ¢ and 9 satisfy the Helmholtz equations:
Ap + /112)@ =0, A +rip=0. (B.5)
Similarly, we have from (B.4) and (B.5) that
U = uUp + Us,
where

1 1
u,=—-——VV-u, us=—5Vx(Vxu).
K2 K2

Appendix C. Sobolev spaces

Denote by L?(Bg) the Hilbert space of square integrable functions. Denote by H™(Bg),m € N the
Sobolev space which consists of square integrable weak derivatives up to mth order and has the norm
characterized by

o = 3 [ IDu(@)lde.

‘Oé|§mBR
Introduce the Sobolev space
H(curl, Bg) = {u € L*(Bgr)®, V x u € L*(B)*},

which is equipped with the norm

/2
lullireu,mn = (Ielz s + 1V X wlfegges) -

Let H*(Tr),s € R be the standard trace functional space. Given u(z) € L*(Tg),z € R?, it has the
Fourier expansion

27
. 1 .
u(R,0) = e, = o / u(R,0)e~"?d0.
nez 0

The H*(I'r)-norm is characterized by

[l e gy = D (1 +n°)*[in|*,
nez
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Given u(z) € L3(T'g), € R3, it has the Fourier expansion

U(R79,(p) = Z Z ﬁnmyﬁn(e»sﬁ)» ﬂ;n = /U(R’97¢)ern(97(p)d%

n=0m=—n g

where Y, is the spherical harmonics of order n. The H*(I'g)-norm is characterized by

lalfreony = D Do (L +nn+1) ey

n=0m=—n

Define a tangential trace functional space
H Y% (curl,Tg) = {uc HY2(Tg)®? :u-v=0o0n g, curlp,u e HY3(Tg)},

where v is the unit outward normal vector on I'p and curlr,, is the surface scalar curl on I'g.
Below is a classical result from the theory of Fourier analysis.

Lemma Appendix C.1. Let Ur = (—R, R)? C R? be a box. For f € L?>(Ug)?, define the Fourier coefficients
r _ 1 7i(%)m<nd Zd
fn = (QT)d f(:L')e g T, mnc .
Ur

Then f has the Fourier series expansion

in the L?-sense, i.e.,

Moreover,

Iy = @R)? D 1 Fnl.

neza

The following lemma (cf. [20, Lemma 3.2]) gives a link between the values of an analytical function for
small and large arguments.

Lemma Appendix C.2. Let p(z) be analytic in the sector
™ ™
V= eC:—-< < —
{z  <argz < }
and continuous in V satisfying

p(z)l <€, z€(0, K],
()| <M, z€V,
p(0)] =0, 2z=0,
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where €, K, M are positive constants. Then there exists a function B(z) satisfying

B(z) > 3, 2 € (K, 2:K),
B=) 2 2((F)' —1)7%, z€ (24K, o),
such that
Ip(z)| < Me?®), vz e (K, ).
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