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ABSTRACT

This paper concerns the random source problems for the time-har-
monic acoustic and elastic wave equations in two and three dimen-
sions. The goal is to determine the compactly supported external
force from the radiated wave field measured in a domain away from
the source region. The source is assumed to be a microlocally iso-
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tropic generalized Gaussian random function such that its covariance
operator is a classical pseudo-differential operator. Given such a dis-
tributional source, the direct problem is shown to have a unique
solution by using an integral equation approach and the Sobolev
embedding theorem. For the inverse problem, we demonstrate that
the amplitude of the scattering field averaged over the frequency
band, obtained from a single realization of the random source, deter-
mines uniquely the principle symbol of the covariance operator. The
analysis employs asymptotic expansions of the Green functions and
microlocal analysis of the Fourier integral operators associated with
the Helmholtz and Navier equations.
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1. Introduction

The inverse source scattering in waves, as an important and active research subject in
inverse scattering theory, are to determine the unknown sources that generate pre-
scribed radiated wave patterns [1]. It has been considered as a basic mathematical tool
for the solution of many medical imaging modalities [2], such as magnetoencephalogra-
phy (MEG), electroencephalography (EEG), and electroneurography (ENG). These
imaging modalities are noninvasive neurophysiological techniques that measure the elec-
tric or magnetic fields generated by neuronal activity of the brain. The spatial distribu-
tions of the measured fields are analyzed to localize the sources of the activity within
the brain to provide information about both the structure and function of the brain
[3-5]. The inverse source scattering problem has also attracted much research in the
community of antenna design and synthesis [6]. A variety of antenna-embedding mate-
rials or substrates, including non-magnetic dielectrics, magneto-dielectrics, and double
negative meta-materials are of great interest.
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Driven by these significant applications, the inverse source scattering problems have
continuously received much attention and have been extensively studied by many
researchers. There are a lot of available mathematical and numerical results, especially
for the acoustic waves or the Helmholtz equation [7-12]. In general, the inverse source
problem does not have a unique solution due to the existence of non-radiating sources
[13-15]. Some additional constraint or information is needed in order to obtain a
unique solution, such as to seek the minimum energy solution which represents the
pseudo-inverse solution for the inverse problem. For electromagnetic waves, Ammari
et al. showed uniqueness and presented an inversion scheme in [3] to reconstruct dipole
sources based on a low-frequency asymptotic analysis of the time-harmonic Maxwell
equations. In [16], Albanese and Monk discussed uniqueness and non-uniqueness of the
inverse source problems for Maxwell’s equations. Computationally, a more serious issue
is the lack of stability, i.e., a small variation in the measured data may lead to a huge
error in the reconstruction. Recently, it has been realized that the use of multi-fre-
quency data can overcome the difficulties of non-uniqueness and instability which are
encountered at a single frequency. In [17], Bao et al. initialized the mathematical study
on the stability of the inverse source problem for the Helmholtz equation by using
multi-frequency data. Since then, the increasing stability has become an interesting
research topic in the study of inverse source problems [18-20]. We refer to [21] for a
topic review on solving general inverse scattering problems with multi-frequencies.

Recently, the elastic wave scattering problems have received ever increasing attention
for their important applications in many scientific areas such as geophysics and seismol-
ogy [22-26]. However, the inverse source problem is much less studied for the elastic
waves. The elastic wave equation is challenging due to the coexistence of compressional
and shear waves that have different wavenumbers. Consequently, the Green tensor of
the Navier equation has a more complicated expression than the Green function of the
Helmbholtz equation does. A more sophisticated analysis is required.

In many applications the source and hence the radiating field may inherently be con-
sidered random [27]. Therefore, their governing equations are stochastic differential
equations. Although the deterministic counterparts have been well studied, little is
known for the stochastic inverse problems due to randomness and uncertainties. A
uniqueness result may be found in [28] for an inverse random source problem. It was
shown that the auto-correlation function of the random source was uniquely deter-
mined by the auto-correlation function of the radiated field. Recently, effective mathem-
atical models and efficient computational methods have been developed in [29-34] for
inverse random source scattering problems, where the stochastic wave equations are
considered and the random sources are assumed to be driven by additive white noise.
In stochastic setting the inverse problems are often formulated to determine the statis-
tical properties such as the mean and variance. The methods mentioned are based on
observations of the correlations in the scattering data. By the strong law of large num-
bers, the correlations have to be approximated by taking fairly large number of realiza-
tions of the measurement. We refer to [35] for statistical inversion theory on general
random inverse problems.

This paper takes another perspective to randomness following earlier work in
[36-38]. We assume that all the data is produced by a single realization of a random
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source. If the data is exceptional noisy or corrupted, the recovery of this single source
realization may be infeasible. However, it may be possible to recover some statistical
parameters of the source if observations of the radiating field are available at multiple
wavelengths.

Here, we develop a unified theory on both of the direct and inverse scattering prob-
lems for the time-harmonic acoustic and elastic wave equations. The source is assumed
to be a generalized Gaussian random function which is supported in a bounded domain

D C R% d=2 or 3. In addition, we assume that the covariance of the random source is
described by a pseudo-differential operator with the principle symbol given by

P&, me {d,d+%),

where ¢ is a smooth non-negative function supported on D and is called the micro-cor-
relation strength of the source. The parameter m indicates how irregular realizations
such a random process has. What is more, the micro-correlation strength identifies
where this most irregular behavior is strongest and where it is more dampened. This
large class of random fields includes stochastic processes like the fractional Brownian
motion and Markov field [38].

When m € [d,d +1), we can only ensure that the source belongs to a Sobolev space
with negative smoothness index almost surely. Hence, the direct scattering problem
requires a careful analysis since the source is non-smooth. In this work, we establish the
well-posedness of the direct scattering problems for both wave equations with such
rough sources in Theorems 3.3 and 4.3, respectively.

The inverse scattering problem aims at reconstructing the micro-correlation strength
of the source ¢ from the scattered field measured in a bounded domain U where U N
D = (. For a single realization of the random source, we measure the amplitude of the
scattering field averaged over the frequency band in a bounded and simply connected
domain U, i.e., for some large Q > 0, our data is given by

Q Q
J *|u(x, x)[*dx  or J oflu(x, 0)*do, x€ U, (1.1)
1 1
where s € R depends on m, x > 0 and w > 0 are the wavenumber and the angular
frequency, u and u represents the pressure of the acoustic wave equation and the dis-
placement of the elastic wave equation, respectively.

Combining harmonic and microlocal analysis, we show that: for acoustic waves, the
micro-correlation strength function ¢ can be recovered given data in (1.1); For elastic
waves, note that the source is a vector, if the components of the random source are
independent and the principle symbol of the pseudo-differential operator of each com-
ponent coincides, thus, the micro-correlation strength function ¢ can be determined
uniquely by these measurements.

This work is motivated by [36, 38], where an inverse problem was considered for the
two-dimensional random Schrodinger equation. The potential function in the
Schrodinger equation was assumed to be a Gaussian random function with a pseudo-
differential operator describing its covariance. It was shown that the principle symbol of
the covariance operator can be determined uniquely by the backscattered field,
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generated by a single realization of the random potential and a point source as the inci-
dent field. A closely related problem can be found in [37]. The authors considered the
uniqueness for an inverse acoustic scattering problem in a half-space with an impedance
boundary condition, where the impedance coefficient was assumed to be a Gaussian
random function whose covariance operator is a pseudo-differential operator.

The paper is organized as follows. In Section 2, we introduce some commonly used
Sobolev spaces, give a precise mathematical description of the generalized Gaussian ran-
dom function, and present several lemmas on rough fields and random variables.
Section 3 is devoted to the study of the acoustic wave equation in the two- and three-
dimensional cases. The well-posedness of the direct problems are examined. The
uniqueness of the inverse problem is achieved. Section 4 addresses the two- and three-
dimensional elastic wave equations. Analogous results are obtained. The direct problem
is shown to have a unique solution and the inverse problem is proved to have the
uniqueness to recover the principle symbol of the covariance operator for the random
source. This paper is concluded with some general remarks in Section 5.

2. Preliminaries

In this section, we introduce some necessary notation such as Sobolev spaces and gener-
alized Gaussian random functions which are used throughout the paper.

2.1. Sobolev spaces

Let R? be the d-dimensional space, where d =2 or 3. Denote by C*(RY) the set of
smooth functions with compact support and by D'(RY) the set of generalized (distribu-
tional) functions. For 1 < p < oo,s € R, the Sobolev space H*?(RY) is defined by

H(RY) = {h=(I-A)ig: g € I/(RY)},
which has the norm

d

Hop(RY) = [T — A)%h

With the definition of Sobolev spaces in the whole space, we can define the Sobolev

|U’(Rd)‘

spaces H*?(V) for any Lipschitz domain V C R? as the restrictions to V of the ele-
ments in H%?(R?). The norm is defined by

||h||H5’P(V) = inf{HgHHW(]Rd) : gly = h}.

According to [39], for s € R and 1 < p < 0o, we can define Hy?(V) as the space of all
distributions h € H>?(RY) such that supph C V and the the norm is defined by

ld

1 (v) = Il on (re)-

It is known that C3°(V) is dense in Hy”(V) for any 1 < p < 0o,s € R; C*(V) is dense
in H*?(V) for any 1 < p < 00,5 < 0; C*(V) is dense in H*?(V) for any 1 < p < oo,
s € R. Additionally, by [39, Propositions 2.4 and 2.9], for any s € R,p,q € (1,00)

satisfying ; + 7 = 1, we have
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Hy* (V) = (H(V)) and  H™4(V) = (H;"(V)),

where the prime denotes the dual space.

2.2. Generalized gaussian random functions

In this subsection, we provide a precise mathematical description of the generalized
Gaussian random function. Let (Q, F,P) be a complete probability space. The function
q is said to be a generalized Gaussian random function if g : Q — D/(R?) is a measur-
able map such that for every & € Q, the mapping @ € Q— (q(®), ) is a Gaussian
random variable for all i € C3°(R?). The expectation and the covariance of the general-
ized Gaussian random function g can be defined by

Eq: ¥ € GF(R) > E{g.p) € R,
Covg : (1,¥,) € G (RY)* = Cov({g, Y1), (9. ¥2)) € R,
where E(g, /) denotes the expectation of (g, ) and
Cov((g:Y1)s (@ ¥2)) = E(({g, 1) — E(q, ¥1)) (g, ¥5) — B, )

denotes the covariance of (g,V,) and (q,V,). The covariance operator C, : Ci° (R —
D'(RY) is defined by

(Cathis¥2) = Cov((g, Y1), (g 1,)) = E((q — Eq,¥1)(q — Eq, 15)). (2.1)

Let k4(x,y) be the Schwartz kernel of the covariance operator C,. We also call k4(x, y)
the covariance function of q. Thus, (2.1) means that

ky(xy) = E((q(x) — Eq(x))(q() — Eq(»))) (2.2)

in the sense of generalized functions.

In this paper, we assume that each component of the external source is a generalized,
microlocally isotropic Gaussian random function. For this end, let D C RY be a
bounded and simply connected domain. We introduce the following definition.

Definition 2.1. A generalized Gaussian random function q on R? is called microlocally
isotropic of order m in D, if the realizations of q are almost surely supported in the
domain D and its covariance operator Cq is a classical pseudo-differential operator
having the principal symbol ¢(x)|&|™, where ¢ € C*(R?),suppp C D and $(x) > 0
for all x € R%.

We refer to [36, 38] for examples, such as fractional Brownian motion and Markov
field, and numerical illustrations of random fields and covariance structures, which
satisfy the above definition. Recall that the parameter m indirectly indicates the
Sobolev smoothness of the realizations of the field as we will see in the next lemma
and the microlocal strength identifies the amplitude of these oscillations. In particular,
we are interested in the case m € [d,d +1), which corresponds to rough fields. Now
we introduce three lemmas and give an assumption which will be used in subse-
quent analysis.
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Lemma 2.2. Let f be a generalized and microlocally isotropic Gaussian random function
of order m in D. If m=d, then f € H ®P(D) almost surely for all ¢ > 0,1 < p < oco. If

m € (d,d+1), then f € C*(D) almost surely for all o € (O, #)

Lemma 2.3. Let X and Y be two zero-mean random variables such that the pair (X, Y) is
a Gaussian random vector. Then we have

E((X? — EX?)(Y? — EY?)) = 2(EXY)>.

Lemma 2.4. Let X,, t > 0 be a real valued stochastic process with a continuous path of
zero mean, i.e, EX; = 0. Assume that for some constants ¢>0 and > 0 such that the
condition

E(X X)) < c(1+7)7F (2.3)
holds for all t,r > 0. Then

1 (Q
Q

Q—o0 1
almost surely.

Lemma 2.2 is a direct consequence of Theorem 2 in [38]. Lemma 2.3 is shown in
[36] as Lemma 4.2. The ergodic result of Lemma 2.4 is an immediate corollary of [40,
p. 94]. To establish the main results, we need the following assumption.

Assumption A. The external source f is assumed to have a compact support D C R?.
Let U C R\ D be the measurement domain of the wave field. We assume that D and
U are two bounded and simply connected domains and there is a positive distance
between D and U.

3. Acoustic waves

This section addresses the direct and inverse source scattering problems for the
Helmholtz equation in two- and three-dimensional space. The external source is
assumed to be a generalized Gaussian random function whose covariance operator is a
classical pseudo-differential operator. The direct problem is shown to have a unique
solution. For the inverse problem, we show that the principle symbol of the covariance
operator can be determined uniquely by the scattered field obtained from a single real-
ization of the random source.

3.1. The direct scattering problem
Consider the Helmholtz equation in a homogeneous medium
Au+*u=f in RY, (3.1)

where x > 0 is the wavenumber, u is the wave field, and f is a generalized Gaussian ran-
dom function. Note that u is a random field since f is a random function. To ensure
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the uniqueness of the solution for (3.1), the usual Sommerfeld radiation condition is
imposed
lim r%(a,u —iku) =0, r=|x], (3.2)
r—00
uniformly for all directions x = x/|x|. In addition, the external source function f satis-
fies the following assumption.

Assumption B. The generalized Gaussian random field f is microlocally isotropic of
order m in D, where m € [d,d +1). The principle symbol of its covariance operator Cf
is ¢(x)|E]™" with ¢ € C°(D) and ¢ > 0. Moreover, the mean value of f is zero,
ie, E(f) =0.

Recall that by Lemma 2.2, the random source f(®) belongs with probability one to
the Sobolev space H *?(D) for all ¢ > 0,1 < p < co. Hence it suffices to show that the
direct scattering problem is well-posed when f is a deterministic non-smooth function
in H-%#(D).

First, we show some regularity results of the fundamental solution. These results play
an important role in the proof of the well-posedness. Let ®4(x, y, k) be the fundamental
solution for the two- and three-dimensional Helmholtz equation. Explicitly, we have

1 el

i
D,y (x,y,x) = ZHél)(K|x =), D3(xy,x) (3.3)

T

where Hél) is the Hankel function of the first kind with order zero. We shall study the
asymptotic properties of the fundamental solutions and their derivatives when x is close
to y. For the two-dimensional case, we recall that

H (1) = Ju(t) +1Y,(8), (34)

where J, and Y, are the Bessel functions of the first and second kind with order n,
respectively. They admit the following expansions

B 0 (_1);7 ¢ n+2p
0= igs)

p=01"
2 t 15 (n—1-p) [2\" %
CIge (P (T i
Dpnigls) e v

where 7y :=lim,_ {Zlej’l - lnp} denotes the Euler constant, (0) =0, ¥(p) =
lej‘l, and the finite sum in (3.5) is set to be zero for n=0. Using (3.4)-(3.5), we
may verify that

2i ¢ 2i t
HM (1) = ;lln S+ (1 + ;ly) - O(t2 In 5), (3.6)
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21 | 2 i\t :
Hf”(t):—;l—#—itl <1+;17—%>5+O(t31n5>. (3.7)

Using the recurrence relations for the Hankel function of the first kind (see [41, Eq.
(5.6.3)])

d
dt

we may show from (3.6) to (3.7) that

[ HD ()] = —H ), (3.8)

D, (x,y, ¢ )—4H (klx — y))

Ll Y lx =yl (39)
= — 1 ,
w2 +<4 2)+O(|x yin = )
& H; (k]x — y))
0 Qo (x,y,6) = ——(yi — X)) —————
4 =7l (3.10)
1 yi—x lx — |
= - i —x;)1 .
2n\x—y|2+o(<y x;) In 3 )
For the three-dimensional case, a simple calculation yields that
© ei;c\xfy\
s Vs _ > 311
0y, ®3(x, y, k) = (yi;xilei"'"_y| (iklx —y| — 1). (3.12)

4rlx — y|

Lemma 3.1. Given any x € RY, we have ®,(x, -,x) € L} _(R*) N Hllof(Rz) for any p €
(1,2) and @ (x, -, x) € L} (R®) N H.P(R?) for any p € (1, 3).

Proof. For any fixed x € RY, let V C R be a bounded domain containing x. Denote p:=
sup,cy [x — y|, then we have V C B,(x).

For d=2, by (3.9) and (3.10), it suffices to show that

W ey, QX V), VY pe(1,2).
2 e =y
A direct calculation yields
=" E W
In——=—|dy< In——=—|dys | rlln-| dr<oo
14 2 B,(x) 2 0 2
and
yi—x [ 1 g
J 5 gJ ﬁdysj r'Pdr < oo, VY pe(1,2).
vilx =yl 5,x) =] 0
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Hereafter, the notation a <b means a < Cb, where C>0 is a generic constant which
may change step by step in the proofs. Thus, we conclude that @, (x, -, ) € L2 _(R*) N
H:?(R?) for any p € (1,2).

loc

For d=3, from (3.11) and (3.12), it suffices to prove that

irc|x—y| e
e eyl Vi — Xi 3
e}(V), FNI_ZLep(v) Vpe (1, —).
|x =yl x — y’ 2
Similarly, we may have from a simple calculation that
uc\x —y| |2 1 0
J ly < J ——dy= J 1dr < oo
[x =l B,(x) [x — | 0
and
Vi — X; p 1 P 3
J eyl i _’ SJ ———dy= J P ?dr<oco Vpe <1,—>,
v e =y’ e = yl? 0 2
which show that ®;(x, -,x) € L _(R’) N Hllof (R?) for any p € (1, 3). O

Let V and G be any two bounded domains in R?. By Lemma 3.1 and the Sobolev
embedding theorem, we obtain that ®,4(x, -, k) € H*(V) where s € (0,1) for d=2 and
s€ (0,3) for d=3. Hence, given g € Hy*(V), we can define the operator H, in the
dual sense by

Hew) = | @utxyngh)y xec

Following the similar arguments in [42, Theorem 8.2], we may show the following
regularity of the operator H,. The proof is omitted here for brevity.

Lemma 3.2. The operator H,. : Hy*(V) — H*(G) is bounded for s € (0,1) in two dimen-

sions or for s € (O, %) in three dimensions.

Theorem 3.3. For some fixed s € (O 1—4) and p € ( ), assume 0 < e <s,1<

> d-1

p < min( ) and 1 >ty L' =1, then the scattering problem (3.1)-(3.2) with

pd
d+p(e—1)° d+2
the source f € Horp (D) attains a unique solution u € H'?(R?), which can be repre-

loc

sented by
u(x, k) = —JD(I)d(x,y, K)f (y)dy. (3.13)

Proof. It is clear that the scattering problem (3.1)-(3.2) with f=0 only has the zero

solution. Hence the uniqueness follows. Now we focus on the existence. Noting s €

<0,1 —g), we have from a simple calculation that 1 < W <3. Since 1<p<

1—s)

#‘11)’ a direct computation shows that 1p —3<——§‘l By Lemma 3.1 and the

Sobolev embedding theorem, we obtain that ®,(x, -, k) € H bP (RY) ¢ H?(R?). Since

loc loc
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Au+r*u=feH,"" / (D), we have in the sense of distribution that
J (Au(y) + *u(y))@a(x, y, k)dy = J Oy(x, 5, k)f (y)dy. (3.14)
B, B,

Here B, = {y € R?: |y| < r}, where r> 0 is sufficiently large such that D C B,. Denote

by Ss the operator which acts on u on the left-hand side of (3.14). For ¢ € C*(R?),
we have

(Sag)(x) : = ) (Ap(y) + K20 (7))@a(x, y, k) dy

=, 00+ R0 [ (B0 + 000t

Bs(x

= (Ap(y)@a(x, y, k) — @(y)ADa(x, y, k))dy + J (Ap(y) + (1)) @a(x, y, x)dy

B,\Bs(x) Bs(x
— 12 VK ?(») i) — 0D,4(x, y, x)
= [, @o0)+ ooty | (GEE B0 — o) e )asp)
000) g o o Balen )
], (G st = o) 28R asy),

where 0 > 0 is a sufficiently small number, and v(y) denotes the unit normal which
directs to the exterior of B, for y € 9B, and directs to the interior of Bs(x) for y €
0Bs(x). Using the mean value theorem, we get

lim LB) (‘;"’g)) ulx,1.1) — ()

0—0

0D4(x,y, 1)
ov(y)

)ast) =~
and

im | | (800) + 1200 0ut )y =0

0—0

Combining the above equations gives that

(S10)0) = 000 + [ (G20 0utan) = o) a2 sy,
which implies
Su) = -uto) + [ (G utin) - ) a2 s

Since both u and @, satisfy the Sommerfeld radiation condition, we have

) ou(y) B 0Dy(x,y, 1) () =
tim [ (G0t —u) Za 2 asy) o

Therefore

u(x, k) = —jD%(x,y, K ()dy = —Hof (x).
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Next is to show that u € H? (R%). From Lemma 3.2, we have that the operator H, :
Hy*(D) — H

loc

(R?) for se (0,1 —g) is bounded. The assumption 1< p < #‘LS)

implies that +%3* <1 <1 which yields ;—§<}—4. Thus, since 0 <z <s, the

Sobolev embedding theorem implies that H(D) is embedded into H*P(D) and
Hy®? (D) is embedded into Hy*(D). Thus, the operator H, : Ho_s’p/(D) — HP(RY) is

loc

bounded, which completes the proof. O

3.2. Asymptotics of the correlation data

The three technical results proven in this section lay out the foundations for the proofs
of our main results. Notice carefully that the main results for the cases d=2 and d=3
will require separate proofs. However, here we formulate general auxiliary lemmas that
make the deviations of the main proofs moderate. First, in Lemmas 3.4 and 3.5 we
study the general behavior of the asymptotics of the correlation data. At the end of the
section, we prove Lemma 3.6, which will be used in the recovery of the local
strength ¢.

Recall that our strategy is to utilize the ergodicity of the weighted solution process
u(x, k) averaged in (1.1) with respect to k and to apply Lemma 2.4. To do this, we need
to show that condition (2.3) is satisfied and, therefore, we study the asymptotic correla-
tions in u(x, k).

To build the general theory, we study the asymptotics of integral

1 .
I(x, K1, 2) = — ZZJ bl (x, y, 2)E(q(y)q(z) )dydz (3.15)

where

1

(1 —y)™ - (xa —ya)™ (1 —21)"
lx — yP'x — 2|

K(x,y,2) == (%4~ Z) )

Here g stands for a generalized Gaussian random function satisfying Assumption B, and
I, L, ¢1, €3, My, ..., By, P1, po are nonnegative constants. Similarly, we define the integral

- 1 e .
I(x,K1,K) := e \1METATRRIETEK (X, 9, 2 z Z. 3.16
i(cyicr|x—y|+eaicr|x—2|) y E q(y)q dyd ( )

Below, in the two next sections we show that the integrals I(x, x),x,) and I(x,;, ;)

approximate the correlation data E(u(x, r))u(x, 1c2)) and E(u(x, k1)u(x, k3)), respect-
ively. In fact, in the three-dimensional case, these quantities coincide.

Lemma 3.4. For k1, Kk, > 1, the estimates
(%, i1, 162)| < en(iey + 1) P2 RD (1 4 i) — e, ]) 7", (3.17)
|E (it (x, k1) (2, 12) )| < cn(ir + 12) " (1 + k1 — 12]) " (3.18)
holds uniformly for x € U, where n € N is arbitrary.
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Proof. To estimate the integral I(x, k1, k,), we introduce the multiple coordinate trans-
formation that allows to use the microlocal methods in our analysis. Noting Eq = 0 and
(2.2), we conclude that the correlation function E(q(y)q(z)) is the Schwartz kernel of a

pseudo-differential operator C, with a classical symbol o (y, &) € Sig”(Rd x R?) which is
defined by

SI(RY x RY) = {a(x, &) € C(R? x RY) : [9700a(x, &) < Cup(1 + (&)™ 1.

Here o, f§ are multiple indices, |«| denotes the sum of its component. The principle
symbol of C, is o?(y,&) = ¢(y)|E] ™. The support of E(q(y)q(z)) is contained in
D x D. We can write E(q(y)q(z)) in terms of its symbol by

Blgly)a(z) = (2m) ¢[00t 0)dc (.19)

R
To establish a uniform estimate with respect to the variable x, we extend the covariance
function into the space R*! x RY, and define B(y,z x)=E(q(y)q(z))0(x) where

0(x) € C°(R?) equals to one in the domain U and has its support outside of the
domain D. Thus, we have

Bi(y,z,x) = (Zn)_dJ e (y, x, £)dE,
Rd

where ¢;(y,x, &) = a(y, £)0(x) € SEB"(RM x R?) with a principle symbol
A0x.8) = d(y)[E]"0(x).

To proceed the analysis, let us briefly revisit the conormal distributions of Hormander
type [43]. If X C R? is an open set and S C X is a smooth submanifold of X, we denote

by I(X;S) the distributions in D'(X) that are smooth in X \ S and have a conormal sin-
gularity at S. In consequence, by (3.19), the correlation function E(q(y)q(z)) is a conor-

mal distribution in R* of Hormander type having conormal singularity on the surface
S1 = {(y.z) € R* .y — z=0}. Moreover, let Iomp(X;S) be the set of distributions sup-
ported in a compact subset of X. Let X; C R* be an open set containing D x D x
supp(0) so that By € Leomp(X1;S1 N X7).
Define the first coordinate transformation 5 : R3 — R by
(vw,x) =nnz,x) = (y — 2,y + 2, x). (3.20)

Substituting the coordinate transformation (3.20) into B;(y,z,x) gives
o v+w
ew‘gcl< 5 é) dé,

which means that B, € I(R*,S,) where S,:={(v,w,x):v=0}. Actually, B, ¢
Leomp(X2,X; N'S;) where X, :=5(D). To find out how the symbol transforms in the
change of coordinates, we need to represent ¢ (“5¥,x, &) with a symbol that does not

Ba(v ) = B (rowa)) = 2m) |

depend on v. Using the representation theorem of conormal distribution [43, Lemma
18.2.1]), we obtain



COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS e 1347

By(v,w,x) = (Zn)dj ey (w, x, £)d¢,
Rd

where ¢;(w, x, £) has the asymptotic expansion

>~ (—iD,, D¢) v4+w
2(wyx, & Z < 3 2%, €

I=

€S TR x RY),
v=0

where D is defined by D;j := —i0;. In particular, the principle symbol of c;(w, x, ) is

JERE

v+w

&, x, ¢) =¢(

v=0
We consider the phase of I(x, k1, k). A simple calculation shows that
)Ix—yI —lx—7
2
=yl +|x— 2]
5 .

akilx —y| — aralx — z| = (k1 + 2k
(3.21)

+ (c1K1 — €2K2)

In the second set of coordinates, let W play the role of two coordinates. We will
do this change in two steps. First, for the two-dimensional case where d=2, we define
7, : RS — R® by

71 ()/> Zax) - (E1>E2ax)’

where E; = (t;,51) and E; = (£, ;) with
J1i— X
—|x— |arcsm( )
¢ x =]

. (21— X1
|x — z|arcsin .
|x — 2|

For the three-dimensional case where d =3, we define 7; : R — R’ by
T1 ()/, Z, X) = (E], Ez, X),

where E; = (t1,s1,71) and E; = (5,52, 12) with

=yl s =

N\»— NM—‘
N\»— N —

h==|x—z, s=

1 1 — X 1 — X
=—|x—y|, s =—arccos L AN r = =|x — y|arctan 22 2\,
2 2 |x — y| 2 )’1 — X1
1 1 Z3 — X3 1 2 — X
t |x —z|, s =—arccos , 1, =—|x— zlarctan .
2 |x — 2| 2 Z1 — X1

Second, we define 7, : R* — R* by
(g, h,x) = 12(Ey, E2,x) = (E; — E3, Ey + Ep, x).
Thus, combining the definitions of 73, 7, and (3.21), we have
aki|x —y| — aralx — z| = (k1 + ¢2K2)g - e1 + (a1k1 — cak2) b - ey,

where e; = (1,0) for d=2,and e; = (1,0,0) for d =3. Now we denote T = 1, 0 1y : R
¢ with 7(y,2,x) = (g, h,x). We consider the transformation p =o' : R — R*
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with p(g, h,x) = (v, w, x). Let us decompose the coordinate transform p into two parts p =
(p1>p,)> the R-valued function p, (g, h,x) = v and the R*-valued function p, (g, h,x) =
(w,x). The Jacobian J, corresponding to the decomposing of the variables is given by

- [p}1 p:u] _ |JsPdmnpr |
P P JeP2J (1) P2

By the definition of p, it is easy to see that v=0 if g=0. Hence we have p,(0,h,x) =0
which implies p’, (0, h,x) = 0.

Next we consider the pull-back distribution B3 = B, o p. It follow from [43, Theorem
18.2.9] that we get a representation for Bj:

Bs(g, h,x) = (Zn)_dJ e cs(h, x, &)dE, (3.22)
Rd

where ¢;(h,x, &) € SIZ)”(RZ”I x R?) is a symbol satisfying
&s(hx,€) = capy(g: 1 x), (P (g1 x))1)TE) x |detpl, (g, )| g + r(hox, €),
where r(h,x, &) € S{#~1(R* x R?). The principle symbol of c;(h, x, ) is given by

& (hx, ) = $(y(g: 1)) ((p1 (g 1)) ™) €l ™"0(x) x |detpl (g hux)| oo

Let X3 :=1(X;) and S3:= {(g,h,x) : g =0}, we have B; € Iomp(X3,X3MS3). So we
can write I(x, k1, k) in the following form

1

](x, K1, Kz) = ﬂj ei[(cuquczk‘z)g-m+(C1K1—Czl<2)h-e1]B3 (g’ h,x)H(g, h,x)dgdh,
KKy JR™

where
H(g, h,x) = K(x, y,z)det((z") (g, h, x)). (3.23)
Here y = y(g,h,x) and z = z(g,h,x). Since H is smooth in X3 in all variables and

I(R*,S;) is closed under multiplication with a smooth function, we conclude that
Bs(g, h, x)H(g, h, x) € I(R*,S;). Multiplying (3.22) by H, we arrive at

B (g, hy x)H(g, b, x) = <2n>‘”’deei“c4<h, % &)de, (3.24)

where ¢4(h, x, £) has the asymptotic expansion

oo/ : A
il &) ~ S PP 0 (g )
1=0 '

g=0
In particular, the principle symbol of c4(h, x, &) is given by

¢ (h,x,€) = $(y(g: 1)) ((p1 (g 1)) )T €17 0(x)|detp (g 1 x)| ™ H g b )],
(3.25)
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Combining (3.24) and the Fourier inversion rule, we obtain
B;s(g,h,x)H(g, h,x) = (j’-"_lc4)(h,x,g). (3.26)

Substituting (3.26) into I(x, k1, k) gives

1 : i
I(X, K1, sz) = WJRZdel[<ClK1+Czl€2)g-el+(c1h1Csz)h'el] (]:'—164)(]1, x,g)dgdh
155
1 .
= ﬂJ de‘<cl"1_‘2"2)h'e‘c4(h, x, — (1K1 + cakc2)er )dh
SIL%)
1 1 i(c1i1—carca)
= ca(h,x, — (c11 + c2Kk2)eyp )de --dhy
K{ K5 i(cir1 — carcz) Jpe
1 1 i(c1k1—car2)h
=——7 elaimeng, cy(h,x, — (c1K1 + cakz)ey)dh
Kk (et — eanz) Jpe
1 1 )
=(-1)" - J glemi—arlhign o (px — (c1k; + ks e )dh,
=1 i (ierkr — e22))" Jge hnest (e + ciz)er)

(3.27)

where we use the integrations by parts # times and the fact that c4(h, x, £) is C> smooth
and compactly supported in the (g, h, x) variables. Since c4(h,x, &) € Sf,g’(Rz‘i x RY),
we have [0} c4(h,x, &)| < c,(1+[])™™ for all positive integer n, where ¢, is independ-
ent of (h,x) € R*. Therefore
1 1 1
K (L4 ek — ko))" (1 + Jerry + ek ])”
1 1 1

(rey i)™ R) (1 + ferer — carea])” (erier + €2162)"

[I(x, k1, 12)| =

(3.28)

>

where we use the fact that k; > 1,1, > 1. We need to consider the cases where |c;x; —
6Kyl > (k1 + k2) /2 and ok — aky| < (k1 +aKy)/2. I ok — ak,| <
(c1x1 + €2162) /2, a simple calculation shows that 1, > 3(cix; + 62K2)2/(1661C2) which
implies

1 1

(L +Jerrer — c2ka])” (¢iy 4 cprey) ™ F2min(o )

[I(x, K1, 1) <

If [c;K) — aaka| > (c1ky + 62K2) /2, we have

1 1
|I(X, K],K2)| =

)n72min(ll,lz) ( )m+2min(ll,lz) '

(1 + [e1x1 — 211 1k + Gk

Noting that the positive integer n is arbitrary, we conclude
1 1

(14 |eaik1 — ekal])” (erx1 + czkz)”’“mm(ll’b)

< (14 |1y — rea]) "1y + 16y) U FEmin( ),

[I(x, 11, K2 )| =

where we use the facts ¢;x; + 6,k < min(cy, ¢;) (K1 + K2) and |c1x; — k| < |k — K,
for some constant c. So the estimate (3.17) holds.
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Observe that I given in (3.16) is analogous to I where we replace x, with —#,. Since
the proof of (3.28) allows &, to be negative, we may show that

- 1 1 1
|I(x’ Kl’K2)| = I 1 n m
K2 [erkr + cara]” (1 + |ery — eakal)

< (k) +K2) "(1+ |ky — Kka]) ™,

which shows the estimate (3.18) and completes the proof. O

To derive the linear relationship between the scattering data and the function in the

principle symbol, it is required to compute the order of E(|i(x,x)|*) in terms of k. To
this end, we study the asymptotic of I(x, x, k) for large .

Lemma 3.5. For k1 = K, = K, the following asymptotic holds
I(X, K, K) — Rd(x, K)K7<ll+12+m> + O(K7(11+12+m+1>)’

where Ry(x, k) is given by

m;+ny mg+ngy

i(c1—co)|x—ylie \ X1 — o\ Xd — )d

Rd(x,,c):cdj gler—el—yle (K1 = 31) : me " oy
R lx — y|

with

c 1 c 1 2 \"
= —Cm> = —Cm> Cm = .
2 4 m 3 8 m m 61+C2

Proof. Setting x; = k; = K in (3.27) gives

1
B Kll +h

I(x, K, K) J ila—ajrhe ca(h,x, — (1 + ¢2)key )dh.
Rd

The symbol ¢s(h, x, &) € S7(R* x R?) can be decomposed into
ca(h,x,&) = di(h,x, &) + r(h,x, &),
where d{(h,x, &) € S{(R* x R?) is the principal symbol which is given by (3.25) and

r(h,x, &) € ;Y (R* x RY) is the lower order remainder terms which is smooth and
compactly supported in (g, h, x)-variables. Thus, we have

1 .
I(x, 1, 1) = WJ del(“_czw"el (d(hx, — (a1 + c2)rer) + r(hx, — (c1 + ©2)rer))dh
R
— 11+1 J ei(cl—cz)lch-elci(h’x) _ (Cl —|—C2)Kel>dh—|— O(K—(ll-&-lz—&-m-i-l)).

KR Rd

(3.29)
By (3.25),

di(hx, — (1 + c)rer) = dly(g, b x)) ((e1 + &) (P4 (g hx)) ") "ealic) " 0(x) (3.30)

x |detp!, (g, h,x)|""H(g, h,x) g
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Letting a = (¢ —I—cz)2|((p’11(g,h,x))_l)Tel|2 #0, we substitute (3.30) into formula
(3.29) and obtain

I(x, K, K) — Rd(x, K)Kf(ll+lz+m) + O(Kf(ll+lz+m+l)),

where
; 0,h,x))H(0, h,
Rd(x, K) — g(x)J el(clfcz)xh-el ¢(ym( x)) ( x) (3.31)
Ré az|detp’, (0, h, x)|
Next we need to compute a. Noting that a = (¢; + ;)| ((p},(g.hx)) ") Tei|*, we com-

pute (p),(g.hx))”" first.
In two dimensions, we have from the definition of p; that

agl 141 8g2 1 :|

! _ _
P (g, x) = Ogv = [agl"z D2 |

A straightforward manipulation using the definition of p; shows that

C (hy+ s
vy = (h; + g1) sin <hzig2) — (hy — &) sin <h2 gz))

1+ & 1= &
hy + & hy — &

=(h —(h; — .
v = (h + 1) cos (h1+g1> (hy — g1) cos <h1 o

Hence, a direct derivation leads to that

sina —acosa  cosa
cosa +asinae —sina |’

Poa( o) o = z{

which implies that
—1 1 sin & cosa
/ : h’x _ ) — _ >
<P11(g )|g—0 2| cosa+asina —sind + & cosa

—1 T 1 N 5
<(p'11(g,h,x)|g0) > er = E(sin &, cosd) .

where & = h,/h;. Thus we obtain a = (¢, + ¢;)>/4 and |detp),(0,h,x)| " = 1/4. Next
we focus on the computation of H(0,h,x). From (3.23) we have H(g h,x) =
K(x,y,z)det((t7!) (g, h,x)), thus we compute dett’(0,,x) first. Recalling that 7 : R® —
RS is given by t(y,2,x) = (g, h,x), we have

Oy Ony  Ouy dg 0.8 Og
(t N ghx) = |0z Gz dz|, thhzx) = |0k dh Oh)|.

Ogx  Opx  Oxx Ox  0.x Ocx

Now we calculate 0,g. Noting ¢ = (t; — f,51 — ;) and denoting o = arcsin (ﬁ), we

obtain
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8g1 81’1 1)/1 — X 1 . 8g1 8t1 1y2 — X2 1
=== = —sina, === = ~cos 0,
oy Oy 2x—y 2 Oy, Oyx 2x—y 2

1|y — — —xn )’ 1
02 _ 0 _1in xlarcsin<yl x1>—|— 1_()/1 xl) = —(asino + cosa),
I Oy 2| |x—y |x =yl |x =yl 2
Ogp _ 01 _1 yz—xzarcsin<yl—x1>_ 1_(y1—x1>2 7<yl—x1><yzz—x2>
Oy, Oy 2 |[x—y lx =yl x — y| Ix — |

1

zi(occosoc— sin o).
Thus

i |

When ¢g=0, we have y=z A similar calculation vyields that 0,¢ =
0,8, 0:h = 0,g. Obviously, d,x = 0,0,x = 0,,x = I. Hence

det(z(y, 2, x)")

sin o

sin o cos o
osinot + cosa  ocoso — sino

ayg =
—0,8, 0)h =

COS o —sina — CoS o

1 |asina+ cosa ocoso— sinoe  —osinot — cosot  —oLCcos o+ Sin o

24 sin o COS o sin o cos o

asino+ coso ocoso — sine  asino 4+ coso o coso — sino

A direct calculation shows that det(z(y,z x)") = 1/4 which implies det(t!(0,h,x)") =
4. Substituting these results into (3.31) gives

_ my+ny _ my+n;
Ry(x, k) = ¢ | ellmlx (%1 —y1) (fzﬂ) 72) ¢(y)dh,
R? e =y
where (y,2,x) = 1(g, h, x). Noting |det(d,h)| = 1, we have
_ my+ny o my+ny
Ry(x, k) = C, glla—a)lx—ylx (x1 — ) (’Cz+ y2) d(y)dy.
B e — PP
In three dimensions, by the definition of p;, we have
8gl V1 8g2 1 8g3 V1
(g hx) =0y = | Opva Ogva Ogva |.
agl V3 8&’2 V3 8g3 V3

It follows from the definition of p; that

vi = (hy + g1) sin (hy + &) cos (

v, = (h + &) sin (hy + &) sin (

hs + g3
hi +&
hs + g3
h+a

) — (h — g1) sin (hy — g2) cos (
> — (b — &) sin (hy — ) sin (

hs — &

hy —g1>’

hs — &
hy — 41

vi=( +g)cos(hy+g)— (h —g)cos(h, — g&).
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According to the above formulations, a direct derivation shows that

sin o cosNB + B sin o sinE hy cosa cosNB —sina sinﬁ
P11(&hx)e_g=2| sindsinf — fsinscosp hycosasinf  sindcosf |
cos —h;sina 0
which gives
-1
(#hs(g- 1 0)l;)
. h; sin 24 cos 8 hy sin % sin 8 hy sin & cos &
= W sin & cos & cosB sin & cos o sinii — sin & ,

—hysin 4 hyfsin26cosf hycosf + hyfsin2asinf  hyfsinacosi
where & = h, and E = h3/h;. So we conclude that
SN\ T 1 ~ ~
((p’n(O, h.x)) 1) e = 5(sin& cos f, sindsin f§, cos )"

Thus, we obtain a=(c,+c) /4 and |detp, (0, h,x)| = 8h; sina =

8/0n =)’ + 0 — )"

Next we focus on the computation of H(0,h,x), which requires to compute
det(t71(0, h,x)") first. Recalling that t=': R® — R’ is given by t7'(g,h,x) = (.2, %),
we have

Oy Oy Ovy g 0.8 O
(Y (ghx)= |0z Oz Oz|, (=V)(ghx) ' '=|h Oh 0Oh
Ogx  Opx  Oxx Oyx  Ox Ox

Now we calculate g—i. Noting g = (t; — t2,51 — 82,71 — r2) and denoting

0L = arccos AR , p =arctan rn=% >
x — y| J1— X

we obtain that

sin o cos f8 sina sin f§ cos o
dg cos o cos ff cososin f8 sin o
a2 =y [ =yl [ =yl

sin cos
fsinacos f ——— fsinoasinf+—— fcosa
sin o sin o

98 oh _ 98 oh_ 08

When g=0, we have y=z. A simple calculation yields that % =G0y "y 0=y

ox __ ox __
’E_O’ BX—I. Hence

It is clear to note that g—; =0
1

1
8(y1 —x1)" + (12 —x2)*

det(((x)(0.h.x) ") =

which implies
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det((t) (0, h,%)) = 8((1 — x1)* + (12 — %2)*).

Substituting these results into (3.31) gives

my+ny my+n; ms+ns
&m@_%JWWMMW—N m—@w (xs —y3)

R? e =y
<y (o1 =30+ (2 — 32 $(y(0, ) d,

where (y,z,x) = t(g, h,x). Noting det(%) = %m, we arrive at

_ my+mny o my+ny _ mz+ns
R; (x’ K) = C3J ella—e)lx—ylx (xl yl) <x2 y2})7]+p2 (X3 )’3) ¢(}/)dy>
R’ x =yl
which completes the proof. O

To finish this section, we prove the following result that is utilized in the recovery of
the micro-correlation strength ¢.

Lemma 3.6. Let V1, V, C R? be two open, bounded, and simply connected domains with
positive distance. For some positive integer | and ¢ € C;°(Vy), define the integral

1

T(x) = J o)y, x €V,
R [x -y

Then T(x),x € V, uniquely determines the function ¢.

Proof. A simple calculation yields
Adx—y| ™ =nPlx —y| "% neN,
which implies
T =6 b0
vi |x =y
where ¢, is a constant depending on n. Since T(x) is known in an open set V, which

has a positive distance to the support of ¢ € C°(R?), so as A”T(x),n € N is known in
the set V,. A linear combination of AT (x) shows that the integral

| p( s )eo (3.32)
vi e —y[0 \lx =yl

is known in the set V,, where P(t) = ][:0 a]-tj is a polynomial of order J € N. In

(3.32), by changing the integral variables, we deduce

[t (e o= [ 3R], oot
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where S(x,r) = flyix‘:r(l)(y)ds(y) denotes the integral of ¢(y) along the circle |y — x| =

1,7 = minycy, |x — y| and r, = maxycy,|x — y| denote the minimum and the maximum
distance between the fixed point x € V, and the domain V;, respectively. Due to ¢ €
C(R?), the function S(x, r) is continuous with respect to r and is compact supported

in the interval [r;,r;]. We obtain S(x, %) t7 is continuous in [r;%r72]. Note that the
polynomial function P(f) is dense in C([r,?,r;?]), thus the function § (x, ﬁ) t7 is
uniquely determined which implies S(x, r) is uniquely determined for all > 0.

Let g(x) = e for x € R?, then we have

Jx=y? Jx=y!

O R T

no _— (3.33)
= J e%J ¢(y)dydr = J e zS(x, r)dr.

rn ly—x|=r r

Since S(x, ) is uniquely determined for all >0, we can compute the convolution g * ¢
by (3.33) for x € V,. Because V, is open and g * ¢ is real analytic, hence g * ¢ is known
everywhere, and the Fourier transform F(g * ¢) is known everywhere. Since

750 - |

RZ

e g (x)dx = J e (459 g

RZ

_ J N2 E) K420 8) 4
RZ

_ 11z 1 e 2 1 e N2
ey J e 2tati&) dxlj e 2R t%) gy,
R R

1] 2|2
— —31¢
= 2me 3¢,

we conclude Fg is smooth and non-zero all over R?. Therefore, F¢p = F(g * ¢)/Fg is
uniquely determined which shows that ¢ is uniquely determined. O

Remark 3.7. We point out that the proof of Lemma 3.6 requires values integral T to be
available in an open set. This is the fundamental reason why observational data on a
lower dimensional manifold or boundary are not sufficient in our main results, i.e.,
Theorems 3.10 and 3.12, with the current technique. Similar reasoning applies to the
elastic wave equation.

3.3. The two-dimensional case

First we discuss the two-dimensional case and show that the function ¢ in the principle
symbol can be uniquely determined by the scattered field obtained from a single realiza-
tion of the random source f. Let us begin with the asymptotic of the Hankel function

H,<11> with a large argument. By [44, Egs. (9.2.7)-(9.2.10)] and [44, Egs.(5.11.4)], we
have:
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1. ) N .
HWY(z) = \/:el(z_@ﬁ)”) Z a](")Z_J +0(lz2 Y |, forlargz] <-4, (3.34)
z =

for large |z|, where 0 is an arbitrarily small positive number and the coefficients a](")
(—2i) \/%(n, 7) with

(4n> — 1)(4n> —3%) - (4n> — (2j — 1)%)
2%j

(n.j) = and (n,0) =1.

Using the first N terms in the asymptotic of H,Sl)(ic|z ), we define

HnT;\](K|Z|) = Kidei(“_(%ﬁ)”) ]zN;aj(”) <é>1 (3.35)

It is easy to show from (3.34) that
HLY we]) = H (ol < el )™ (336)

Using (3.35), we define #(x, k) as
i) = | HEM I =0 (337)

Lemma 3.8. The random variable u(x, k) — ui(x, k) satisfies almost surely the condition
u(x, k) — (%K) < ck3, xeU,
where the constant ¢ depends only on L?(D)-norm of f.

Proof. Noting Assumption A, we know that there exists a positive constant M such that
|x — y| > M holds for all x € U and y € D. By (3.36), and (3.37), we have for x € U
that

i

4JD 15" (ol = 1) — Hyl3 (e~ yl)]f(y)dy‘

= [1Hy" (el — 1) = Hol3 0l = Dl v

7

< K3

u(x, 1) — ulx 1) =

where the constant ¢ depends only on H,, Lp (D)-norm of f. O

Now we are in the position to compute the covariance of i(x, k). Using (3.35) and
(3.37), we have from a direct calculation that

) _ 1 2 a](?)@ ei("‘ [x—y|—Ka|x—2])
Bl c)im ) = | )/ (2))dyd

16 0w 2w 2 Jrt [ — P 2 — 2
(3.38)
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Since E(i(x, x;)#(x, k;)) is a linear combination of I which satisfies the estimate (3.17),
thus the following result is a direct consequence of Lemma 3.4.

Lemma 3.9. For k1, Kk, > 1, the estimates
[ (it (x, 161 )ia (%, 12))| < en(ir +162) "V (1 ey — 1ea) 7
[E(o(x, k1)1 (x, k2))| < cu(icr +12) " (1 + |16 — Ka]) "

holds uniformly for x € U, where n € N is arbitrary and c, > 0 is a constant depending
only on n.

Now we are ready to estimate the order of E(|i(x,x)|?). Setting x; = Ky = K in
(3.38) and applying Lemma 3.5, we obtain

E(|it(x, x)[*) = Tl(f) (%)~ Ok~ (mF2)), (3.39)
where
T (x) = LJ L 40)ay. (3.40)
32m Jge |x —

We are in the position to present the main result for the time-harmonic acoustic waves.

Theorem 3.10. Let the external source f be a microlocally isotropic Gaussian random field
which satisfies Assumption B. Then for all x € U, it holds almost surely that

1 Q
Q“i’zomjl K u(x, 1) P = T (x). (3.41)

Moreover, the scattering data TI@ (x),x € U uniquely determines the micro-correlation
strength ¢ through the linear relation (3.40).

Proof. A simple calculation shows that

;JQ K™ u(x, 1) Pdic
Q-1J; ’
1 (© )
= —J K™ i (x, k) 4 ulx, k) — @(x, 1) [*dic
Q-1
Lt a4 o [ ) — ate o
=—— | " alx,w)Pde + ——| " Hulx, k) — u(x x)[*dx
Q —1 1 Q -1 1
+LJQ KR 72, (1) — ()| i
Q-1),
It is clear that (3.41) follows as long as we show that
lim LJQ K7 (x, 1) Pdic = T (), (3.42)
Q- Q—1}J
lim ;JQ K™ u(x, 1) — ii(x, k) [*di = 0 (3.43)
Q—>OCQ 1 ) > 5 > .

lim 2JQ R [ 19) (u(x, ) — 1, 0) | die = 0 (3.44)
Q% Q—1), S ’ ' '
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To prove (3.42), we define Y (x,x) = x"+!(|it(x, x)|* — Elit(x, x)|*). Since
Q 5 Q 5 Q
J K™ 2 (o, 1) [P dic :J K™ R (x, x)| dK-I—J Y (x, k)dx,
1 1 1

(3.42) holds as long as we prove

NURR S TP e) .
lim —— | «""Elu(x,«)|["dc = T (x), glm o—1 Y(x, x)dx = 0.
X ‘

Q*)OOQ—l A’DCQ_ 1
By (3.39), it is easy to see that
1 ? +l| - 2 1 JQ (2) -1
— | "Ela(x, x)|dk = —— T,”(x) + O(k dk.
a1 |l Par = o [ (180 + o6 )

Clearly, we have

and

Hence,

1 Q
lim o | Bl 0Pk = 1)

To prove (3.42), it suffices to show

By the definition of Y(x,x), we obtain

Y (1) = 1" (|, ) — Elar(x, ) [*)

= K" (Ria(xx))* — E(Ria(x 1)) + (Si(x k) — E(Si(x x))?)
Therefore
E(Y(x,x1)Y(x,%2)) = Ia1 + La2 + Ia3 + La s,
where
Loy = &R [(Ri () = ERi(x))?) (Riv(x12))* = B(Rii(x.02)))],
Lz = KR [(Ri (e 1))” = E(Rin (1)) (S (x.k2))” = E(Sit(x.12))°)],
Ly = kR [(Si(xa))? = B(SE(x 1)) (Ri(x 1)) — E(Rik(x 1)),
T = KPR [(Si(x, k1)) — B(Sa(x 1)) (S(x k2))” — E(Sii(x K2)))]

Combing the expression of #(x,x) and the assumption E(f) =0 gives that both
Rit(x, ) and Jii(x, k) are zero-mean Gaussian random variables. Applying Lemmas 2.3
and 3.9 leads to
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Ly, = 26 T E(Ri(x, 1) Rit(x, 162) )]

= k" STHER (k1)1 (x, k2)) + R(@(x 561 )i (x, ;cz)))]z

m+1l  m+l m+1l m+l
2 2
K" K

2
1
_|_
(1 4+ 12)" (1 [rer = a)™ (g + 162)™ (1 + Jiey — Kzl)”]

1 1 2
= -+ 7| -
(L4 [k —12)™ (1 + [re1 — K2)
We can obtain the same estimates for I4,,I4 3, and I44 by the similar arguments.

Thus, an application of Lemma 2.4 gives that

1 Q
ngrolcﬁJ\l Y(x, K)dK =0.

To prove (3.43), we obtain from Lemma 3.8 that

1 Q
K™ u(x, k) — i(x, 1) [P di| =< —J k™7 dic

Q-1

'Q—l 1
Q m—5 __
:1J Kmiﬁdxz;u
Q-1),; m—5 Q-1

To prove (3.44), by the Holder inequality, we have

‘Qz JQ MHER[ (%, ) (u(x, )—ﬁ(x,x))]dx
<

— 0 asQ — oo.

N»—

Q
IJ K™ 2 (o, 1) ||u(x, 1) — B (x, 1) |die
-1

o)

1

2 ;JQ K™ i (x, 1) [Pdic ;JQ K™ u(x, 1) — i (x, 1) *die
Q—-1}) ) Q—-1}) ’ ’

— ZTf)(x)% 0=0 asQ— oc.

IN

Hence, (3.42)-(3.44) hold which means that (3.41) holds. The unique determination of
¢ by the scattering data T&z) (x) for x € U is a direct consequence of Lemma 3.6. O

3.4. The three-dimensional case

In this subsection, we show that the scattering data obtained from a single realization of
the random source can determine uniquely the function ¢ in the principle symbol in
the three dimensions. By (3.3) and (3.13), we have

1h|x |
o) =~ | =00,

which yields
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E(u(x, k1)u(x, x3)) E(f(y)f(z))dydz. (3.45)

L[ ellalyl—rslx—z)
16w JRs lx — y||x — |

We apply directly Lemma 3.4 and obtain the estimates of E(u(x,x;)u(x, kz))
and E(u(x, x1)u(x, k2)).

Lemma 3.11. For x; > 1,1, > 1, the following estimates

E(u(x c1)u(x 102))] < culier +12) " (1 + |1 — K2]) ™"

B (u(x k1) u(x162))| < cnlrer +102) 7" (1 + [0 — #e2]) ™"
holds uniformly for x € U, where n € N is arbitrary and c, > 0 is a constant depending
only on n.

To derive the relationship between the scattering data and the function ¢ in the prin-
ciple symbol, by setting x; = k; = K in (3.45) and using Lemma 3.5, we get

E(|u(x, )]) = T (x)™ + O~ (™+D), (3.46)
where
(3) - 1 1
T, (x) = a2 JR3 e y|2 o(y)dy. (3.47)

Now we are ready to present the main result for the three-dimensional case.

Theorem 3.12. Let the external source f be a microlocally isotropic Gaussian random field
which satisfies Assumption B. Then for all x € U, it holds almost surely that

1 Q
c}i&mj K u(x, 1) dic = T (x). (3.48)

Moreover, the scattering data Tl,(,f) (x),x € U uniquely determines the micro-correlation
strength ¢ through the linear integral equation (3.47).

Proof. We decompose k™|u(x, k)|* into two parts:
K™ [u(x, k)|* = K Elu(x, ©)|* + Y(x, k),
where
Y(x, k) = K" (Ju(x 1)|* — Elu(x, ©)).
Clearly,
1 JQ " |ux, 1) Pdic = —— JQ 1 (x, 1) Pk + —— JQ Y (x, ) dc.
Q-1J Q—-1), Q—-1),
Hence, (3.48) holds as long as we show that
I 1 (9, 29 m(3) ; L[ =
legojjl K"Elu(x, k)|"dx = T (x), ngn —1J1 Y(x, k)dk = 0. (3.49)

The second equation in (3.49) can be obtained by a similar argument to the two-dimensional
case. Using (3.46) gives
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, 1 (9, e L e -1 _ 703
lim —— | «"Elu(x, k)["dk = th o1 (Ty (x) + O(k™))dk = T, (x).
— 1 —00 - 1

Hence, the first equation in (3.49) holds which implies that (3.48) holds. A direct appli-
cation of Lemma 3.6 implies that ¢ is uniquely determined by the scattering data

TS)(x) for x € U. O

4, Elastic waves

This section concerns the direct and inverse source problems for the elastic wave equa-
tion in the two- and three-dimensional cases. Following the general theme for the
acoustic case presented in Section 3, we discuss the well-posedness of the direct prob-
lem and show the uniqueness of the inverse problem. We prove that the direct scatter-
ing problem with a distributional source indeed has a unique solution. For the inverse
problem, we assume that each component of the external source is a microlocally iso-
tropic Gaussian random field whose covariance operator is a classical pseudo-differential
operator. Moreover, the principle symbol of the covariance operator of each component
is assumed to be coincided. Our main results are as follows: in either the two- or three-
dimensional case, given the scattering data which is obtained from a single realization
of the random source, the principle symbol of the covariance operator can be uniquely
determined. The technical details differ from acoustic waves due to the different model
equation and Green tensors.

4.1. The direct scattering problem

In this subsection, we introduce the model problem of the random source scattering for
elastic waves, and show that the direct problem with a distributional source is
well-posed.

Consider the time-harmonic Navier equation in a homogeneous medium

pAu+ (A + VYV -u+o*u=f in RY, (4.1)

where @ > 0 is the angular frequency, /4 and yu are the Lame” constants satisfying y > 0
and A4 u > 0, the external source f € C? is a generalized random function supported
in a bounded and simply connected domain D in R? and u € C? is the displacement
of the random wave field.

Since the problem is imposed in the open domain RY, an appropriate radiation con-
dition is needed to complete the formulation of the scattering problem. We adopt the
Kupradze-Sommerfeld radiation condition to describe the asymptotic behavior of the
displacement field away from the source. According to the Helmholtz decomposition,
the displacement u can be decomposed into the compressional part u, and the shear
part ug:

u=u,+u in R?\D.

The Kupradze-Sommerfeld radiation condition requires that u, and u, satisfy the
Sommerfeld radiation condition:
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lim r%(a,up —irpuy) =0, lim r%(&uS —iKkus) =0, r=|x], (4.2)
r—o0o r—00
where
® ®
==, Ks = —= = (O
G+2w)? " ot 7
are known as the compressional and shear wavenumbers with
=0+ o=p

Note that ¢, and ¢, are independent of w and ¢, < ¢;.

In (4.1), the external source f is a vector with components f;,i =1, ...,d. To achieve
the main results, throughout this section, we assume that each component f; satisfies
the following condition.

Assumption C. Recall that D C R? denotes a bounded and simply connected domain, f;
is assumed to be a microlocally isotropic Gaussian random field of the same order m €
[d,d +3) in D. Each covariance operator C, is assumed to have the same principle sym-
bol ¢(x)|&]™™ with ¢ € C3°(D) and ¢ > 0. Moreover, we assume that E(f;) =0 and
E(fifj) =0if i #jfori,j=1,...,d.

According to Lemma 2.2, if m=d, we have f(®) € H*?(D)’. Thus it suffices to
show that the scattering problem for such a deterministic, distributional source f €
H~*P(D)’ has a unique solution.

Introduce the Green tensor G(x, y,w) € C*¢ for the Navier equation (4.1) which is
given by

1 1
G(x,y,0) = ;CI)d(x,y, Ks) Iz + e V.V (@4(x, y, 165) — Dy(x, y, Kp))s (4.3)

where I; is the d x d identity matrix and ®4(x, y, ) is the fundamental solution for the
d-dimensional Helmholtz equation given in (3.3). Here the notation V, V] is given by

2 2
Vovip=|%0? %m?l i a—,
axle @ X2X)

and

az ) azlxz(p 82 )

X1X1 X X1X3

vaz(p = 82 QD aizngD 6§2x3(p lf d =3

X2X1
2

aixl(P aﬁsxz(p 8X3X3(p

for some scalar function ¢ defined in RY. It is easily verified that the Green tensor
G(x,y, ®) is symmetric with respect to the variables x and y.
We study the asymptotic expansion of the Green’s tensor G(x,y,®) when |x — y| is
close to zero. For the two-dimensional case, using (3.4)-(3.5) gives
) i i, ot [y 3 1), 4ot
HY () =-—=-= —PIn—+ (————+4- O(t*ln = t—0. (4.4
2O =—Tz 2t m n2+<4n on 8)t T ny) ast—0 (44
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Recall the recurrence relations (3.8), a direct calculation shows that

QA%%)*—M)WM s

Ki g (k|x —y|)
0 Dy (x, 9, K) = —— (x; — y;) ———— 22
Daayr) = = (i =y =
kiH, "’ (k|x ) i HY (relx —
aiqu)Z(x’y’K)_ 4H5,}+—( =) (% =) 2 1 2y|)’
x =yl [x =yl

where J;; is the Kronecker delta function. Hence, by (3.7) and (4.4), we have

s 1)~ o ey = L (2 m Sy )
(el ) st oy B,

2B (e 1) — 2 (e ) = o (st St S

L (B D)o+ oy EA),

which gives

02, [ @2,y 165) — @a(x, 3,1y

i 1
= ey P Gk =) — s H (e =51 o
4 100008 ) g o ) - 20 (b — )
[ —yI*
L Kx—y 5 Holx yg (6 — 1) (x5 = )
= (Ksln 5 Kpln 5 5,]+ (K KP) = y‘

RN I I A PN 4 K=ol M)
8(1+ny 7'5)(KS 15,)0ij 1671( —yi)(x y])<;csln 5 K, In 5
iy 31 < lx — yg

S A _ . 1
(-2 )t~ s~ + 0 —yPmn

(4.5)

For the three-dimensional case, it follows from direct calculations that

0y B3 (3, k) = 1Y) il g 1),

4nlx — y|’
- 51" -3 i i irclx—
8)%%_(1)3(96,)/, K) _ |X y‘ i (‘x — )i )( y]) uc\x y‘(ile _y| _ 1)
v anfx — yf°
_ ( yl)( y]) 1K‘x—y|
4r|x — y|? ’

which lead to
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0z, (D3(x,y, 15) — D3 (3, K))

_x — 85— 3(xi — yi) (% — ¥) (el
4nlx — yf’

ireg|x — y| = 1) = e"F (i [x — y| — 1))

_ ( 4n)|/;>(_y| )’]) (K261K5|x -y _ Kéeiicp|x7y\).
(4.6)

Lemma 4.1. For some fixed x € RY,G(x, -, ) € (L3 (RY) ﬂHllof(]Rd))dXd, where p €
(1,2) ford=2and p € (1, 3) for d=3.

Proof. For any fixed x € RY, we choose a bounded domain V C R which contains x.
Define p :=sup .y [x —y|, then we have V C By(x). For the two-dimensional case,

from (3.6) and (4.5), it is sufficient to show that
n = e 2w, KT e p(v), Vope(1,2),
2 e =y’
which are proved in Lemma 3.1. For the three-dimensional case, it follows from the
expansion of the exponential function e’ that
KZeucb\x y p lelx y| (K ?)) + O(|X _)/‘)’

1

&P e x =y — 1) = R iy x — y| = 1) = 2 (1 — 1) |x =y + O(x = yP).

N |

Thus, by (3.11) and (4.6), it is sufficient to prove

1 3
cIX(V), LT ey, vpe (1, —),
[ =yl |x — y\ 2
which can been similarly proved to the three-dimensional case in Lemma 3.1. O

Let V and G be any two bounded domains in R?. By Lemma 4.1 and the Sobolev
embedding theorem, we have G(x, -, w) € (HS(V))dXd, where s € (0,1) for d=2 and
s € (0,4) for d=3. Hence, for any given g € Hy (V) , in the dual sense, we define the
operator H,, by

(Hog)(x) = jvc:(x,y, ) g0)dy x€G,

where the dot is the matrix-vector multiplication. By the similar arguments to [42,
Theorem 8.2], we have the following property.

Lemma 4.2. The operator H,, : H(;S(V)d — H(G) is bounded for se (0,1),d=2
orse (0,1),d=3.

Theorem 4.3. For some fixed s € (0 1—4) and p € ( N 1) assume 0 < & <s,1<

6
p < min( T2ey) and ;+5 =1, then the scattering problem (4.1)-(4.2) with

pd
d+p(e—1)° d+2 (e—s)
the source f € H, o (D) attains a unique solution u € HFP(]Rd) given by

loc
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u(x,w) = —J G(x,y,0) - f(y)dy. (4.7)
D

Proof. The uniqueness of the scattering problem (4.1)-(4.2) is obvious. We focus on the
existence. For convenience, we denote the differential operator in the Navier equation by

Au = pAu+ (A+p)VV - u.
Let B, := {y € R?: |y| < r} be a ball which is large enough such that it contains the

support of f. Denote by v the unit normal vector on the boundary dB,. The generalized
stress vector on OB, is defined by

Pu:= pou+ (A+ p)(V-u).
Since p € (1, %) and 1 <p < %, we have%—% <%—§, by Lemma 4.1 and the
Sobolev embedding theorem, we have G(x, -, o) € (H:P(R)™ c (HP(R)) >,

loc loc
Since A*u+ w?u = f € H,*” (D)%, in the sense of distributions, we have

|, 6o @)+ ou))dy = | Gleyo)-f0)d.

Define the operator acting on u in the left-hand side of the above equation by Sg. For

¢ € C°(RY), from the divergence theorem, we obtain

(Se)(x) = J Gy 0) - (A'0(y) + wPp(y))dy

r

-], ) (AR0) o)+ | Gl (800) + )y

Bs %)
- JBr\Bé(x)(G(xJ/’ ) - No(y) = A'G(xy,0) - 9(y))dy

" Lé(x)c@c, »0) - (A'e(y) + 0’0(y)dy
- JBMG(x, y0) - (N o(y) + o’(y)dy

+ Jag,uam(x) (G(x, 3, ) - Po(y) — PG(x,y, ) - 9(y))ds(y),

where 6 > 0 is a sufficiently small constant. By the mean value theorem, it is easy to
verify that

lm | (60) - Pply) ~ PG5 3:) - 9(1))dsy) = ~p(x)
—V JOB;(x)

and

lim L‘( Glxyo) - (Woly) + o))y =0

0—0
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Hence, we obtain

(S:0)(x) =~ () + | (Gl 2,0) - Poy) ~ PG(x,02) - 9(7) (),
which implies

(Sgu)(x) = —u(x) + (G(x,y, o) - Pu(y) — PG(x,y, ®) - u(y))ds(y).

0B,

Since u(y) and G(x, y, ®) satisfy the Sommerfeld radiation condition, we have

lim L)B (G(x,y, w) - Pu(y) — PG(x,y, ») - u(y))ds(y) = 0.

r—o0

Therefore

u<x,w>——JD (5,0) - f()dy = —Hof (x).

Next is to show that u € HS’P(Rd)d. By Lemma 4.2, we have that for s € (0, 1— g), the

operator H,, : HO_S(D) — H

loc

(R)? is bounded. The assumption 1<p<#‘i_s)

2
Sobolev embedding theorem implies that H(D) is embedded into H*P(D) and

HO_E"DI (D) is embedded into H,*(D). Thus, the operator H,, : HO_E"DI (D) — HP(RH? |

loc

bounded, which completes the proof. O

implies that 4% <1 <1 which yields ;—5 </ —%. Thus, due to 0 < <s, the

4.2. The two-dimensional case

This subsection is devoted to study the two-dimensional case. It is required to derive a
relationship between the scattering data and the principle symbol of the covariance
operator of the component of f. To this end, we need to express the displacement

u(x, ) explicitly. Substituting (4.5) into (4.3) gives that u(x,®) = (4 (x, @), us(x, @)) "
where

ui(x, ) = ui (%, ®) + up(x, @) + us(x, ©) + u(x, ),
with
i
() = - | 1= A
KIp

i

up(x, w) = 402 |, | —sH, (Ks|x )+ rxpH (Kp|x )’|)} x— y|f0’)d}”
i i — )i
) = 105 | [ sl ) = 8 )] B2 )0
i X; — Xy —
s 0) = 1. | [ ) = g e = ] 22D

here i=1, 2 and {i,k} = {1,2}.
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To prove the main result, we need to establish the asymptotic of u(x, w) for ® — oo.
Recalling the definition of Hf,lg\, given in (3.35), we define #(x,®) = (;(x w),

iy (x, @), where

i(x, @) = i1 (%, 0) + dp(x, 0) + di3(x, ©) + @iy (x, ),

Here
- i
s 0) = 1 | B b= 300,
- i I 1
(X 0) = 307 ), _—KsHSg(KsPC )+ KPHS;(KPPC —)’M Hﬁ()’)d}’a
_ i T2 210 (xi = 3)°
iz (%, 0) = 20? b _KsH2,4(Ks|x =) - KpH2,4(KP|x _)’D} Wﬁ@)dy’
- i r x1—y1)(x —
a(0) = 1o | [RHE e — 1) — G HE syl =) = |i 2 e ) ()ay,

where i=1, 2 and {i, k} = {1,2}.

Lemma 4.4. The random variable u(x, ) — u(x, ) satisfies almost surely the condition
lu(x,0) — a(x0)| <cw?, xeU, >0,

where the constant ¢ depends only on H(;l’p, (D)*-norm of f.

Proof. By Assumption A, it is known that there exists a positive constant M such that
|x — y| > M holds for any x € U and y € D. By (3.36), for x € U, we have

o (5.0) = )| = |- [ [ s =51 = 0l ) 1))

1 1
= |1H5" (e = 1) = Hy 3 (ke = Dl il oo
7
< w3,
where the constant ¢ depends only on H,, L (D)-norm of f;.
Similarly, it is easy to verify that
|uij(x, ) — t15(x, )| < co? fori= 1,2, j=1,2,3,4,
where the constant ¢ depends only on Hj Lp /(D)z—norm of f. Therefore
lu(x, w) —a(x, )| < ZZ |uij (2, @) — 1145(x, )] < o,
i=1 j=1
which completes the proof. O

To derive the relationship between the scattering data and the function in the
principle symbol, we need to estimate E(u(x,w;)-u(x,»,)) for w; > 1,w, > 1. By



1368 J.LIET AL

Lemma 4.4, it reduces to find the estimate of E(#u(x, w;) - é1(x, @;)) for w; > 1,w, > 1.
Recalling i (x, ) = (i1 (x, ), il (x, ®)) " and (3.35), we have

E(u(x, ) - tt(x, ;) = (%, 1)1 (%, 7)) + E(ia(x, o)l (x, 07))

E(iiy
3 )+ B0 1) “8

where

i (5,0) = 3= | B3O = 5Dy
2 0 j
J 2|x " Lot (ole—yl—n ]Zoa <K5|x y|>f(y)dy,
a 1
a(o,0) = 1o | [ (il = 1)+ o { e = 31) | i)y

3 j
i 15| x—y|—3n (1)
Kilx — y| e (h a ( )fy dy
JD Jz:(): 7o\ Kslx =yl V)

. 3 ]
1 1
+—J 1ch|x — y| Fel(obl=in) E alV < > dy,
40 )p e = =0 7 \splx =yl S0y

iz (x, ) = J KH1 (rslx —y]) — Kf,H1 (Kplx — y|] - | () dy

4
2 _ Ks\x y|—3n 2) d
J Kslx - J_Zoa <K5|x y|> )dy

4w2J Kp|x y (xi — i) 2,i(Rple—y=5 ")Za ( )jf(y)dy,

Kplx =yl

- X1 —)1)(X2 — )2
Uig(x, 0) 4w2J [K Hl (sl = y]) = KIZ)HSE;(KHX )’|)] ( P z( e )fk(y)dy

i 3 _5 1Kgx— 1
ZEJDKSPC_)/' (1 = y1)(%2 — == )Za <

)fk(y) y

. 4
1 3 -3 x—y|—3n (2)
_ EJDKPLX — y| (x1 — }’1)(362 Kp‘ = ;aj (Kplx y|> ﬁC( )
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Using the assumption E(fif,) = 0, we obtain

]E(Zjlﬂ(X, wl)ﬁi4(x, (,02)) = 0, ]E(I:{iz(x, (,01)17!,'4(X, (1)2)) = 0,
E( (X, 0)1) (x, C()z)) 0, E(lii,‘;;(x, wl)ﬁil(x, 602)) =0,
E(thig(x, 1)t (x, 02)) = 0, E(hig(x, 1) 3 (x, ) = 0,

and

E (i3 (%, @1 )ity (x, 7))

1 2 a(O)a<0> J ei(CS(/)l ‘X—,’V‘_Csw2|x_zl)

T E(fi()fi(2))dydz,

R4 |x _y|jl+%|x _ Z|J'2+z

_ 1)
1642 420 Cil+]2+ldl+zd1+%

Jis 2=

3 O)W

T 1 .3
J1—0]2 oa/1+za)]2+

E (i1 (x, 1) t1ia (%, 02) )

J" ei(csw1|x7y\fcswz\xfz\ el i(cs1|x—y|—cpwa|x—2|)
X s | — — +
R i i+l 1
s &
a0 (2)

l

0= 0d1+20)jz+1
i(csmy |x—y|—cswa |x—2]) 1(csw1|x—y|—c wy|x—z|) . 2E . .
y J;R4 |f e P ] (xl Zl) (fl(y)f’(z)) dyd

E(i()fi(2))

e — 2 — 2

dydz,

|j2+%

E( Ui (X, 601) U (x, wz

Cls.l+j271 CIS'1+%CiZ_% |x — y|]l+%|x _ Z|]2+% >
el EONO)
E (2 (x, 1)1 (%, 02) ) ZZ %, 4, :
11—0]2 OCUIIJFZ(,()]Z+
ei(csrm|xﬂ"*cswz\xfz\ el (cpo1 [x—y|—cya|x—2]) E(f(y)f(z)) ;
X Jpr | = R + Y P¥E o ddz,
S RS
3 1 1)

a; 'a;

AN 1
]E(u (x’wl) 12(X,CL)2)) — N
fl%:O(l)jll+zu)122+i

i(csmy [x—y|—csmr|x—2]) i(cpr|x—y|—cpm|x—2z])

« [ [e +e
R 121 i1
CISI 2 C]PI 2

ei(csw1|x—y|—cpw2\x—z\) ei(cpwl |x—y|—csr|x—2|) E(ﬁ(y)fz(z))

CI;_%CS_% CII;_%CQZ_% |X _ y|jl+%|x _ Z|jz+%

>
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(1) ,2)

]E(il,-z(x,a)l) zs(x,a)z ZZ Jl 4,

117012 OUlerz(,Ule

J“ ei(csu)l\x7y|7cswz|x z]) el i(cp1 |x—y|—cpz|x—2[)
X s | — —— — ——
R C]Sr‘rjz 2 Cg+]2 2
N el(6olx—yl—¢an|x—z]) N elleoiyl=amb=2) | (v, — 2’ E(fi(y)fi(z ))
Ci1*%cjz*% Cil*%Ciz*% |x y|J1+2|x Z|]z+2 ?
o 2 (0)
E(ﬂﬁ(x,wl) 11(36,602 % I T
]ZJZ pEwe:
ei(cswl\x7y|fcsw2|xfz|) el(cpw1|x —y|—csmr|x—2]) ( yz) E(f(y)f(z)>
S T ¥ T R A
-5 4 3 a(z)a( )

:el XD

6 J1=0j= 0<U]11+2wjzz+E

E(u33(x, wl)m)

ei(csu)l\x7y|7cswz|x z]) i(cpm1|x—y|—cpw2|x—2[)

[4

X j 4| — — — —
R +j2—2 +j2—2
l Clsl J2 Clﬁ J2

ei(csw1|x—y\—cpwz\x—z|) N ei(cpwl x—y—csw2|x—z|)1 (xi _yz)zE(fz()/)fz(z)) q
3 1t RE
a3 o .
@ (2
- 1 & a’a
E(ii(x, 1)t (x, 7)) = — }11 = 1
161'1;0 (U]llJrZWIZ2+2

ei(cswl [x—y|—csws |x—2]) ei(cpwl [x—y|—cpw2|x—2|)
X — —
u|’.]R4 C]1+]2—3 + C]1+]2—3
s P

_|._

e — P —

_ glleon ooz B ei(CP‘”1|x)’cswzxz)] (xi — )’ (xi — 2)"E(fi(»)fi(2)) dydz
i 13 23 3 )
& e Ji3d .
@ ()
= 1 & a.”’a;
E( 14(x,a)1) ,4(x, 602)) _ 1 % .
6].1)21,2:0 w111+2w;22+2

e — e —

i(cswy |x—y|—cswr|x—2|) i(cp1 |x—y|—cpw2|x—2|) i(csrlx—y|—cpma|x—2])

% I e T e e
R i3 = g Cg—%
ei(cpwlx_y_cswzx_zl)‘| (xl _yl)(xz — )/2)<x1 — Zl)(xZ — ZZ)

(,JI;_%CI:_% |x _y|j1+§|x o Z|jz+§

E(fe(y)fi(2))dydz,

for i=1, 2 and {i,k} = {1,2}.
A direct application of Lemma 3.4 to each item on the right hand side of (4.8) gives
the following lemma.

Lemma 4.5. For w; > 1,w, > 1, the following estimates

B (i (x, 1) - i (x, 2))] < a1 + 02) " 1+ |0y — w2]) "
(B (x, 1) - #(x, 02))] < enl@r + @) (14 |or — wa]) ™"
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holds uniformly for x € U, where n € N is arbitrary and c, > 0 is a constant depending
only on n.

To obtain the relation between the scattering data and the function in the principle
symbol, it is required to estimate the order of E(i(x, ®) - t(x, ®)). According to (4.8)
where we set ®; = w, = o, it reduces to estimate the order of E (it (x, cu)m)
for i =1,2,j1,j» = 1,2,3,4. Applying Lemma 3.5 gives that

E (i1 (x, )it (x, ) = O~ "), E(iin(x, o)itn (x, )
E (it (%, 0)iin(x, ) = O(w™ ")), E(in(x, )i (x, o)

E (i3 (x, )i (%, @)) = O(w™ "),

— O(wf(erZ))’

)
) = 0w "),

and
E(iis1 (x, )itz (x, ) = N2 (x)oo~ ") 4 O~ (m+2)
E (it (%, )it (x, 0)) = N2 (x, )~ ") 4 O~ (m+2))
E (i3 (x, )it (x, ) = N2 (x, 0)eo~ ™) 4 0o~ (m+2)
E (it (%, )t (%, @) = N (x, )~ ") 4 0w (")
E(itia (x, )it (x, )) = N2 (x, 0) oo~ ") + O(e~ ("+2),

where

NI = | a0y

2
: Xi — )i
Ny (o) = | (apel @@l g %‘b()’)dy’
JRr2 |x - y|

2
. Xi — )i
NP (x,0) = | (@l _q)) %‘ﬁ()’)dy’
R? |x - y|
(x; —)’i)

(o) =1 (a3 —2aycos ((cs — ¢)|x — y|lw)) ——d(y)dy,
R? lx =yl

N 0) = [0 20nco8 (6 e ) 2B gy

Here, a;, a,, and a5 are positive constants given by
3
2

1 CsC 2 " 1
a) = —C3im, a; = ( s P) ( ) s a3 = — (C:im + Cgim).

327 ® 321 \¢+¢p 327

By (4.8) and a simple calculation, we obtain
E(it(x, 0) - (% w)) = T (x)o ") 4 O(w™(m2)), (4.9)

where
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5 2

T (x) = Z S NP (o) = G3J ! d(y)dy. (4.10)

=1 =1 R |[x — ¥l

Now we are ready to present the main result for elastic waves in the two dimensions.

Theorem 4.6. Let the external source f be a microlocally isotropic Gaussian random vec-
tor field which satisfies Assumption C. Then for all x € U, it holds almost surely that

1 Q
lim —J o™ |u(x, )P dw = T (x), (4.11)
1

where Téz) (x) is given in (4.10). Moreover, the scattering data T}(gz) (x), for x € U uniquely

determine the micro-correlation strength ¢ through the linear integral equation (4.10).

Proof. Since

;JQ o™ u(x, w)[*dw
Q—1J; ’
1 2
= —J o™ a(x, ) + u(x, 0) — a(x, »)|"do
Q-1);
= ;JQ o™it (x, w))*dow + ;JQ o™ u(x, ) — @t(x, 0)[*do
Q-1 ’ Q-1), ’ ’
+LJQ "R i, ) (u(x, ) — (3, 0)) | doo
Q-1),
thus, (4.11) holds as long as we show that
lim LJQ o™i (x, ) Pdo = T (x), (4.12)
Q-xQ—-1)
lim ;JQ o™ u(x, ) — @(x, 0)[*do = 0 (4.13)
Q—>OOQ 1 | > > > .
Q
: 2 m+1 ~ ~
th — | o ‘R[u(x, ) (u(x, w) — u(x, w))}dco =0. (4.14)
— 00 — 1

To prove (4.12), we denote Y (x,®) = o™+ (|it(x, w)|* — E(|it(x, ®)|*)), which yields

Q Q Q
J o™i (x, )| *do = J o™ ME(|i(x, 0)[*)do + J Y (x, w)do.
1 1

1

Hence, (4.12) holds as long as we prove
I 1 (@
lim J o™ E(|i (% 0)))do = TP (x),  lim J Y(x, 0)dw = 0. (4.15)
Q—o0 Q -1 1 Q 1
Multiplying (4.9) by »™*! and integrating with respect to the frequency w in the
internal (1, Q), we arrive at

%LQ "R ([ (x, ) P)dew = éf (TI(;) (x) + O(co’"ﬂ))dco.
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It is clear to note that

1 (@ 1 (@
—J O(a)m_3)dw'5—J o™ 3do — 0 as Q — oo,
Q-1); Q-1)

where we use the fact that m € [d,d +1). Thus, the first equation in (4.15) holds. Now
we focus on the second equation in (4.15) and want to show that

1 Q
lim —IJ Y(x, w)dw = 0.

By the definition of Y(x, w),
Y(x0) = 0" (| 0) ~ E(a(xn o
= o™ ((Rit(x, 0))* — ERit(x, ) + (Jit(x. 0))* — E(Jia(x, w))?).

Therefore,
E(Y(x,01)Y (%, @2)) = Ig1 +Ig2 + Ig3 + Ipa,
where
Iy = O oS ME[(Ra(x o)) — E(Rir(x 1)) (Rit(x.02))* = E(Rir(x.0))")],
Igo = of'"! m“]E[((‘Rﬁ(x,wl))z — E(Ri(x 01))") (S (x.,))* = E(Iia(x.2))*)],
Igs = O M OS E[((Si(x o))’ = E(Su(x. 1)) (Ra(x.0,))* — E(Ri(x.0,))*)],
Ig.s = O M Of ME[((Sa(x o)) — E(Su(x. 1)) (S (x.0,))* — E(Ji(x.a,))?)]

Combing the expression of #(x,®) and the assumption E(f;) = 0,E(f,) = 0 gives that
Rit(x, w) and I (x,w) are zero-mean Gaussian random variables. Applying Lemmas
2.3 and 4.5 leads to

Ig, = 20" ol P E(Ri(x, o)) Rit(x, 0,))]

L o (B (x, on)i(x, ) + R(a(x. 00 02))|

mil il mil mtl 2
a)12 wZZ + wll w22
(601 + Q)Z)n(l + |0)1 - 0)2|)m ((,01 =+ (,Oz)erl(l + |601 — Ct)zl)

1 1 2
= =+ | -
(I+ o1 — )" (1+ |or — )
We can obtain the same estimates for Iy »,Ig 3, and Ig 4 by the similar arguments. Thus,
an application of Lemma 2.4 gives
1 Q
lim —— | Y(x,w)dw = 0.
Q-0 Q—1 J 1 ( )
To prove (4.13), from lemma 4.4, we obtain

m-+1

1 Q
o™ u(x, 0) — i(x, 0)) do| = QIJ "o dw

- 1

ol

1 Q Qm75_
Sﬁj m6dw<j Q-1 — 0 asQ — oo.
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To prove (4.14), by the Holder inequality, we have
2 Q —

Q—J ™R [ft(x, o) (u(x, ) — u(x, w))} dw‘
—1h

1

2 ? m+1|~ ~

=< o1 " u(x, )| |u(x, w) — u(x, w)|dw
—Lh

2

i\

2 ;JQ o™ a(x, o) do 5 ;JQ o™ u(x, ) — @t(x w)|*do
Q-1), ) Q-1), ’ ’

—2TP(x)-0=0 asQ — oo.

The unique determination of by T](Ez) (x) for x € U is a direct consequence of Lemma 3.6. [

4.3. The three-dimensional case

To derive the linear relation between the scattering data and the function in the prin-
ciple symbol, it is required to express the wave field more explicitly than (4.7).
Substituting (4.6) into (4.3) gives the wave field u(x,®) = (u;(x, @), ts (x, @), u3(x, @)) "
where each component u;(x, ) is given by

ui(x, ) = ui (x, @) + up(x, 0) + us(x, ©).

Here
1 eiK;|x—y\ d
(s0) =gz | TS0
1 1 ircs|x—y| (s irc, lx—y| /-
up(x, w) = e JR3 |x—y|3 [e d 7‘(1K3|x—y| —1)—e d yl(ucp|x—y| - l)lﬁ(y)dy,

1 3(i -yl -1 .
Ujs (x, (U) = — M + Kz elks\x7y|
4mw? s Ix —)/|2 s

] (w+ ) ] S ) o

As mentioned above, we need to derive the relationship between the scattering data and
the function ¢ in the principle symbol. For this end, it is required to calculate the

x —yI?

exception E(u(x, ;) - u(x, w,)). Noting that u(x,) € C’ and each component has
been decomposed into three parts, we obtain

E(u(x, ®) - u(x, ®))

= E(u1(x, 0)u (5, 0) + 12(x, @)1z (x, ) + u3(x, 0)us (x, ) (4.16)

— ZE(ul,-(x, )u1j(x, ®) + uzi(x, 0)uzj(x, @) + uzi(x, 0)uz;(x, a)))
ij=1

To calculate the expectation E(u(x, ;) - u(x, @;)), it is required to calculate the items
on the right hand side of (4.16). Using the expression of u;j(x,®)(i,j = 1,2,3), we have
from direct calculations that
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E(fi(y)fi(2))dydz,

1 ei(Cswl [x—y|—co,|x—2])
Bl (500 () = 1o |
R

16272 Jys Jx—yllx — 2]

1 J leon syl (ic 1 7] 1)
RG

1672 ua3
| EEOSED

x—yllx— 2

3 .
J [(|x . (icsa|x — 2| + 1) — aw3) x

E(uir (x, 1) uin (%, 02) ) = —
_ llemn \x*y\*prz\xsz(icpwﬂx —z|+1

1
1672 pw3

E(uil (X; wl)m)

el(cswl |x—y|—cswa|x—2z]) < (icpa)2|x Z| + ) — ¢ w%) el(csw1|x—y|—cpa)2\x—z|)

3
e — 2’

« ) g)f () dydz,
x — yllx — 2

MEZ;MJ [(icsw1|x —y| = 1)élleenyl-amlx-z)

Mdydz,

3
x—yPlx—2]

E(up(x, o1)ui (x, 0;)) =

— (icynlx — | - 1)ei<cpw1xy|c«»zxz>}

1
— X
1612 w? w3

J Pm@x—ﬂ—4x4mww—4—UJWMy@%“m
R6
+ (icpn |[x — y| — 1)(—icpmn|x — 2| — 1)el@kyImepmale=z])

— (icsmr|x — y| = 1)(—icpn|x — 2| — 1)k mernbz)

E(up(x, wl)M) =

EGOUE) g g,

— (icp1|x — y| — 1)(—icoa|x — 2| — l)ei(“’“”'xy%wzxz')] 3 3
[ =y lx — 2]

- 1
E(ui (x, 1) ui(x, 7)) = 4167!%0%0)% X
3
J [(icsm|x — y] — 1) > (icsma|x — 2| + 1 glleebylamhes)
RS |x — Z|
3
+ (iCp(UllX _)/l - 1) 2 iCp(UZlX — Z| +1 el x—y|—gaa|x—z])
-2
3

(
— (s |x — y| — 1 P (icpn|x — 2| +1
(

el (cpen|x—y|—coma |x— z|)]

) ) i(cs01 [x—y|—cpw2|x—2z])
. 3
— (icpr1|x —y| — 1) <72 icsmalx —z| +1 )

[x — 2]

O =20 pry)f(e))dyde,

3
e =y 'lx — 2|
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1
—— X
1672 uw?

J |:< 3 (iCSCO1|x _)/l - 1) + Czw%> ei(csw1|x—y\—cswz\x—z\)
NS )

3 )
(i tmie et

) Iy

(w3 (%, 01wy (x, 03) ) = —

e =y’ Ix Z|
E ) o X
(uis (2, 01 )uin (x, 02) 167‘62601602
J [(icsma]x —z| + 1) <| 5 (icsmr|x — y| = 1) +Czwf> ei(cso [x—y|—cima|x—z])
R6

2 2\ Ji(cpor|x—y|—cpma|x—2|)

+ (lepma|x — z[ + 1) | ——5 (ipwi[x — y[ — 1) + ooy | e

— (ipan|x — 2| +1 ( 5 (icsor|x —y[ = 1) +¢ wl>e

(cs1|x—y|—cpm2|x—2])

i(cpo1 |x—y|—cswa|x— z|)]

— (icsa|x — 2| + 1) [ ——5 (i |x —y| = 1) + wl e

O ) dyds,
oy |x I

_— 1 3
E(u,?,(x, a)1>ui3(x, (1)2)) = ﬁJRs [(m(icswﬂx —)/l — 1) + C?(D%) X

2
l6m=mwiw;

cson|x—y|—coma |x—2|)

3 .
<42 (—icsma|x — 2| — 1) + cfco%) ell
z
7(icpwl|x -y —-1)+ cf)co%) X
(l 3 |2 (7ipr2|x B Z| . 1) + C;a)%) ei(cpu)l\x7y|7cpwz\xfz\)
X—z

3 ,

_ W (icson|x —y| — 1) + cfwf) X
ﬁ (—icpwa|x — 2| — 1) + cﬁw%) gl(esr=yl=gpaalx—z])
x—z

3 .
- (m (icpon|x — y| = 1) + i) x

<|3|2 (—icsmalx —z| — 1) + wa%> gl —yl=enlx=z])
xX—z

x )Z ~ )E()f(2))dydz.

[ — yl Ix—ZI

Observe the above expressions, it is easy to see that E(u(x, ;) - u(x,®,)) is a linear
combination of I(x,w;,w,) which is defined by (3.15). A direct application of
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Lemma 3.4 leads to the following lemma which plays an important role in the proof of
the main results.

Lemma 4.7. For w; > 1,w, > 1, the estimates
E(u(x, 1) - u(x,02))| < ca(@r + @2) " (14 |01 — @)™
[E(u(x, 1) - u(x,@2))] < ca(@r + @2) " (1+ [y — wn]) ™"

holds uniformly for x € U, where n € N is arbitrary and c, > 0 is a constant depending
only on n.

Now we are ready to compute the order of E(|u(x,)|’). Let @, = w, = @ in
E(ui(x, 01 )uix(x, w1)) for i,j,k = 1,2,3, a direct application of Lemma 3.5 gives that
E(ui1 (x, 0)up(x, ) = O(0™ "), E(up(x 0)ua (x, 0)) = O(w™ "),
E(upn (%, 0)un(x, @) = O(0~ "), E(up (x, )us(x, 0)) = O(w~ "),
E(u (x, 0)up(x, @) = O(w™ "),

and
I[’E(uil (x> (D)W) = N(?) (x)w*m + O(a)f(erl))’
B (ua (3, 0)ua (x, ) = @ (x)(x. o) " + O "),
E (w53 (x, 0)u (x, ) = N3i (x, )™ + O(wf(m+l)),
3
Bl 0 ) = SN 0)0 5 Ofer ),
=1
where

R R

2
i Xi — )i
Nz(f)(x, w) = (bzel(cs—cp)lx—y\w —by) %(ﬁ(}/)dy,
R? x — y|
NG (o) = | (belaoll —p) (, @ P0)dy,
R? -
2 2
Xi —)i) \(Xj — )
(x,0) = (b3 —2bycos((cs — cp)|x — y|w)) ( 7| ]6 %)
R? lx =yl

Here by, b,, b; are positive constants given by

3
N,

| - (Cscp)z 2 " 1 4 4—
™ by, = , by =—— (" M.
12872 ¢ R ACET ’ 128n2( ;e )

b, =

Therefore
E(|u(x, 0)*) = Ty (x)o ™" + O(w~("+1), (4.17)

where
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T (x) = (b3+b1)J ——— ¢ ()dy. (4.18)
R [x -y

Now we are ready to present the main result of elastic waves for the three-dimen-
sional case.

Theorem 4.8. Let the external source f be a microlocally isotropic Gaussian random vec-
tor field which satisfies Assumption C. Then for all x € U, it holds almost surely that

Moreover, the scattering data T]<E3)(x), for x € U, uniquely determine the micro-correlation

strength ¢ through the linear relation (4.18).

Proof. Using Lemma 3.6 and (4.17), we may follow the same proof as that for the two-
dimensional case. The details are omitted here for brevity. O

5. Conclusion

We have studied an inverse source scattering problem for the two- and three-
dimensional Helmholtz equation and Navier equation. The source is assumed to be a
generalized Gaussian random function whose covariance operator is a classical pseudo-
differential operator. By an exact expression of the random wave field and microlocal
analysis, we derive a linear integral equation which connects the principle symbol of the
covariance operator and the amplitude of the scattering data generated from a single
realization of the random source. Based on this relationship, we obtain the uniqueness
for the recovery of the principle symbol of the random source for the Helmholtz and
Navier equations. A possible continuation of this work is to investigate the uniqueness
for Maxwell’s equations with a distributional source. Since the Green tensor has a
higher singularity for the Maxwell equations, a new technique must be developed.
Another interesting direction is to study the uniqueness for the inverse random source
problems in inhomogeneous media, where the analytical Green function or tensor is
not available any more and the present method may not be directly applicable. We
hope to be able to report the progress on these problems in the future.
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