STABILITY FOR THE ACOUSTIC INVERSE SOURCE PROBLEM IN INHOMOGENEOUS MEDIA

PEIJUN LI†, JIAN ZHAI‡, AND YUE ZHAO§

Abstract. In this paper, we show for the first time the stability of the inverse source problem for the three-dimensional Helmholtz equation in an inhomogeneous background medium. The stability estimate consists of the Lipschitz type data discrepancy and the high frequency tail of the source function, where the latter decreases as the upper bound of the frequency increases. The analysis employs scattering theory to obtain the holomorphic domain and an upper bound for the resolvent of the elliptic operator.

Key words. inverse source problem, the Helmholtz equation, stability

AMS subject classifications. 35R30, 78A46

DOI. 10.1137/20M1334267

1. Introduction. The inverse source scattering problems arise in diverse scientific and industrial areas such as antenna design and synthesis, medical imaging [26]. Due to the significant applications, these problems have continuously attracted much attention by many researchers. Consequently, a great number of numerical and mathematical results are available [1, 3, 5, 8–12, 16, 20, 25, 29, 30, 37]. In general, it is known that there is no uniqueness for the inverse source problems at a fixed frequency due to the existence of nonradiating sources [7, 21, 28]. Computationally, a more serious issue is the lack of stability, i.e., a small variation of the data might lead to a huge error in the reconstruction. Hence it is crucial to study the stability of the inverse source problems. The first stability result was obtained in [14] for the inverse source problem of the Helmholtz equation by using multifrequency data. Later on, the increasing stability was studied for the inverse source problems of the acoustic, elastic, and electromagnetic wave equations [15, 18, 23, 24, 31]. A topic review can be found in [13] on the general inverse scattering problems with multifrequencies.

In many practical situations, the source, which needs to be identified, is usually embedded in an inhomogeneous background medium. For instance, in the photo-acoustic imaging of the brain, it is important to incorporate the sudden change of sound speed across the skull [33, 35]. Moreover, it is possible to achieve some specified radiation pattern that would otherwise not be realistically possible for a source embedded in free space. This possibility has attracted research from time to time in the antenna community in designing antenna embedding materials or substrates, including plasmas, nonmagnetic dielectrics, magneto-dielectrics, and double negative meta-materials, to achieve specified electromagnetic radiation patterns. However, there are few works on the inverse source problems in inhomogeneous media and the
available results are mainly focused on uniqueness and numerics [1, 20, 29]. The stability issue is wide open to be investigated for the inverse source problems in inhomogeneous media.

In this paper, we consider the mathematical study on the stability of the acoustic inverse source problem in an inhomogeneous medium. Consider the three-dimensional Helmholtz equation

\[\Delta u(x, \kappa) + \frac{\kappa^2}{c^2(x)} u(x, \kappa) = f(x), \quad x \in \mathbb{R}^3, \]

where \(\kappa > 0 \) is the wavenumber, \(c(x) > 0 \) is known as the wave speed, and the source \(f \) stands for the electric current density and is assumed to have a compact support contained in \(B_R = \{ x \in \mathbb{R}^3 : |x| \leq R \} \), where \(R > 0 \) is a constant. Let \(\partial B_R \) be the boundary of \(B_R \). The Sommerfeld radiation condition is imposed to ensure the well-posedness of the problem

\[\lim_{r \to \infty} r(\partial_r u - i\kappa u) = 0, \quad r = |x| \]

uniformly in all directions \(\hat{x} = x/|x| \). The inverse source problem is to determine \(f \) from the boundary measurements \(u(x, \kappa)|_{\partial B_R} \) corresponding to the wavenumber \(\kappa \) given in a finite interval.

The above inverse source problem is closely related to the problem of identifying the initial value of the hyperbolic wave equation, which arises from the photoacoustic tomography (PAT) and thermoacoustic tomography (TAT). The uniqueness and stability for the hyperbolic problem have been well studied by using the boundary control methods (cf. [2] and reference therein). The inverse source problems for the hyperbolic equations are also motivated partially by studying the recovery of the velocity \(c(x) \) from boundary measurements. Such problems have been examined by using the Carleman estimates from the ideas of Bukhgeim and Klibanov (cf. [6, Chapter 5]).

Following [29], we consider an eigenvalue problem for the Helmholtz equation in an inhomogeneous medium and deduce integral equations, which connect the scattering data \(u|_{\partial B_R} \) and the unknown source function \(f \). To overcome the absence of the explicit Green function for the inhomogeneous Helmholtz equation, we adopt methods and techniques from the scattering theory (e.g., [22]) and study the corresponding resolvent of the elliptic operator to obtain a holomorphic domain of the data with respect to the complex wavenumber \(\kappa \) and the bound of the analytic continuation of the data from the given data to the higher frequency data. The stability estimate consists of the Lipschitz type of data discrepancy and the high frequency tail of the source function. The latter decreases as the frequency of the data increases, which implies that the inverse problem is more stable when the higher frequency data is used. We also mention that only the Dirichlet data is required for the analysis. This paper focuses on the three-dimensional problem due to the practical significance. We believe that the arguments should work in all odd dimensions.

The paper is organized as follows. In section 2, we briefly discuss the direct problem. Resolvent is introduced for the elliptic operator with a variable wave speed, and its holomorphic domain and upper bound are obtained. Section 3 is devoted to the stability analysis of the inverse source problem by using discrete multifrequency data.

2. Direct scattering problem. Given \(f \in L^2(B_R) \) and \(c^{-2}(x) \in L^\infty(B_R) \), the scattering problem (1.1)–(1.2) is equivalent to the Lippmann–Schwinger integral equation

\[\text{Downloaded 03/09/21 to 128.210.107.131. Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms} \]
Introduce the Hilbert space \mathcal{D} where \mathcal{H} the Hilbert space $\text{supp}(\cdot)$, which may change step by step in the proofs.

The Hamiltonian flow associated with H found in many references (e.g., [13, Theorem 2.2]).

The assumption implies that for any $a > 0$ and $|x| < a$, $p(x, \xi) = 1$, there exists T_a such that

$$|\pi(\exp tH_p(x, \xi))| > a \quad \forall |t| > T_a.$$

We note that $P = -c^2\Delta$ can be viewed as a black box operator in the sense of [32]. We refer to [22, Chapter 4] for a detailed study of the resolvent of black box operators. For
convenience, some important properties of P are summarized below. For $\text{Im} \kappa > 0$, denote by $R(\kappa)$ the resolvent of P given by

$$R(\kappa) := (P - \kappa^2)^{-1}.$$

By [22, Theorem 4.4], $R(\kappa) : \mathcal{H} \to \mathcal{D}$ is meromorphic for $\text{Im} \kappa > 0$ and can be extended to a meromorphic family

$$R(\kappa) : \mathcal{H}_{\text{comp}} \to \mathcal{D}_{\text{loc}}, \quad \kappa \in \mathbb{C},$$

where

$$\mathcal{H}_{\text{comp}} := \{ u \in \mathcal{H} : u|_{\mathbb{R}^3 \setminus B_R} \in L^2_{\text{comp}}(\mathbb{R}^3 \setminus B_R) \},$$

$$\mathcal{D}_{\text{loc}} := \{ u \in L^2_{\text{loc}}(\mathbb{R}^3) : \chi \in C^\infty_c(\mathbb{R}^3), \chi|_{B_R} = 1 \Rightarrow \chi u \in \mathcal{D} \}.$$

The following lemma is a direct consequence of [22, Theorem 4.43].

Lemma 2.2. For any $M > 0$, there exists C_0 such that $R(\kappa)$ is holomorphic in the domain

$$\Omega_M = \{ \kappa \in \mathbb{C} : \text{Im} \kappa \geq -M \log |\kappa|, \quad |\kappa| \geq C_0 \}.$$

Moreover, the following estimate holds:

$$\| R(\kappa) h \|_{H^1(B_R)} \leq C e^{T(\text{Im} \kappa)-} \| h \|_{L^2(B_R)}$$

for $\kappa \in \Omega_M$, and C and T are positive constants.

Proof. Take $\chi \in C^\infty_c(\mathbb{R}^3)$ such that $\chi = 1$ near B_R. By [22, Theorem 4.43] and the related remarks, the following estimates hold:

$$\| \chi R(\kappa) \chi \|_{\mathcal{H} \to \mathcal{D}} \leq C |\kappa|^{2\alpha - 1} e^{T(\text{Im} \kappa)-}, \quad \alpha = \frac{1}{2}, 1,$$

for $\kappa \in \Omega_M$, where C, T are positive constants and $(\text{Im} \kappa)- := \max(0, -\text{Im} \kappa)$. Consequently, by a direct application of (2.2) and letting $\alpha = \frac{1}{2}$ we obtain that

$$\| R(\kappa) h \|_{H^1(B_R)} \leq C e^{T(\text{Im} \kappa)-} \| h \|_{L^2(B_R)},$$

which completes the proof.

Lemma 2.3. The meromorphically continued resolvent $R(\kappa)$ has no poles on $\mathbb{R} \setminus \{0\}$

Proof. We follow the lines in the proof of [19, Lemma 4.1]. Suppose by contradiction that $\kappa_0 \in \mathbb{R} \setminus \{0\}$ is a pole of $R(\kappa)$; then by [34, Theorem 5.3], κ_0^2 is an eigenvalue of P, and there exists a compactly supported eigenfunction u_0 associated to the eigenvalue κ_0^2. Then $c^2 \Delta u_0 + \kappa_0^2 u_0 = 0$, where u_0 is not identically zero. However, since u_0 is compactly supported, it must vanish by unique continuation principle. This leads to a contradiction and proves the lemma.

Therefore, for $\kappa \in \mathbb{R} \setminus \{0\}$, it follows from [22, Theorem 3.37] which may be modified for the operator P (see the remark above [22, Definition 4.16]), the solution to the problem (1.1)–(1.2) can be expressed as

$$u(\cdot, \kappa) = R(\kappa)(-c^2 f).$$

Then we can let $u(\cdot, \kappa)$ be defined by (2.3) for κ in all of \mathbb{C} except at the poles of $R(\kappa)$. By Lemma 2.2, we have

$$\| u(\cdot, \kappa) \|_{H^1(B_R)} \leq C e^{T(\text{Im} \kappa)-} \| f \|_{L^2(B_R)}$$

for $\kappa \in \Omega_M$.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
3. Inverse scattering problem. In this section, we discuss the uniqueness and stability of the inverse problem. Firstly, we study the spectrum of the operator P with the Dirichlet boundary condition. Let $\{\mu_j, \phi_j\}_{j=1}^{\infty}$ be the increasing Dirichlet eigenvalues and eigenfunctions of P in B_R, where ϕ_j and μ_j satisfy

$$
\begin{cases}
-\varphi^2(x)\Delta \phi_j(x) = \mu_j \phi_j(x) & \text{in } B_R, \\
\phi_j(x) = 0 & \text{on } \partial B_R.
\end{cases}
$$

Let $\mu_j = \kappa_j^2$ such that $\kappa_j > 0$, and assume that ϕ_j is normalized such that

$$
\int_{B_R} \varphi^{-2}(x)|\phi_j(x)|^2dx = 1.
$$

We obtain the spectral decomposition of $\varphi^2 f$:

$$
\varphi^2 f(x) = \sum_{j=1}^{\infty} f_j \phi_j(x),
$$

where

$$
f_j = \langle \varphi^2 f, \phi_j \rangle_{H} = \int_{B_R} f(x)\bar{\phi}_j(x)dx.
$$

It is clear that

$$
c_1 \sum_j |f_j|^2 \leq \|f\|_{L^2(B_R)}^2 \leq c_2 \sum_j |f_j|^2,
$$

where c_1, c_2 are two positive constants. Denote $\kappa_j^2 = \mu_j$. Let $u(x, \kappa_j)$ be the solution to (1.1)–(1.2) with $\kappa = \kappa_j$.

Lemma 3.1. The following estimate holds:

$$
|f_j|^2 \lesssim \kappa_j^2 \|u(x, \kappa_j)\|_{L^2(\partial B_R)}^2
$$

for $j = 1, 2, 3, \ldots$.

Proof. Multiplying both sides of (1.1) by $\bar{\phi}_j$ and using the integration by parts yield

$$
\int_{B_R} f(x)\bar{\phi}_j(x)dx = -\int_{\partial B_R} u(x, \kappa_j)\partial_{\nu}\bar{\phi}_j(x)ds.
$$

The proof is completed by using Lemma A.2 and the Schwartz inequality. \(\square\)

Lemma 3.2. Let f be a real-valued function and $\|f\|_{L^2(B_R)} \leq Q$. Then there exist positive constants d and A, A_1 satisfying $C_0 < A < A_1$, which do not depend on f and Q, such that

$$
\kappa^2 \|u(x, \kappa)\|_{L^2(\partial B_R)}^2 \leq Q^2 e^{cd} \epsilon_1^{2\mu(\kappa)} \quad \forall \kappa \in (A_1, +\infty),
$$

where C_0 is specified in Lemma 2.2, c is any positive constant, and

$$
c_1^2 := \sup_{\kappa \in (A_1]} \kappa^2 \|u\|_{L^2(\partial B_R)}^2, \quad \mu(\kappa) \geq \frac{64ad}{3\pi^2(a^2 + 4d^2)} c^2 \epsilon_1^{2\kappa}.
$$

Here $a = A_1 - A$.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
Proof. Let
\[I(\kappa) := \kappa^2 \int_{\partial B_R} u(x, \kappa) u(x, -\kappa) \, ds, \quad \kappa \in \mathbb{C}. \]
Since \(f(x) \) is a real-valued function, we have \(u(x, \kappa) = u(x, -\kappa) \) for \(\kappa \in \mathbb{R} \), which gives
\[I(\kappa) = \kappa^2 \|u(x, \kappa)\|_{L^2(\partial B_R)}^2, \quad \kappa \in \mathbb{R}. \]
It follows from Lemma 2.2 that \(I(\kappa) \) is analytic in the domain
\[\Omega_M = \{ \kappa \in \mathbb{C} : -M \log |\kappa| \leq \Im \kappa \leq M \log |\kappa|, |\kappa| \geq C_0 \}, \]
which is symmetric with respect to the origin. Hence, there exists \(d > 0 \) such that \(\mathcal{R} = (A, +\infty) \times (-d, d) \subset \Omega_M \). The geometry of domain \(\mathcal{R} \) is shown in Figure 1. By (2.4) we have for \(\kappa \in \mathcal{R} \) that
\[
|\kappa| \|u(x, \pm \kappa)\|_{L^2(\partial B_R)} \lesssim |\kappa| \|u(x, \pm \kappa)\|_{H^1/2(B_R)} \lesssim |\kappa| \|u(x, \pm \kappa)\|_{H^1(B_R)} \\
\lesssim |\kappa| e^{T(\Im(\pm \kappa))} \|f\|_{L^2(B_R)} \lesssim |\kappa| e^{Td} \|f\|_{L^2(B_R)},
\]
which shows that
\[|\kappa| \|u(x, \pm \kappa)\|_{L^2(\partial B_R)} \lesssim |\kappa| \|f\|_{L^2(B_R)}, \quad \kappa \in \mathcal{R}. \]
Since
\[|I(\kappa)| \leq |\kappa| \|u(x, \kappa)\|_{L^2(\partial B_R)} |\kappa| \|u(x, -\kappa)\|_{L^2(\partial B_R)} \lesssim |\kappa|^2 \|f\|_{L^2(B_R)}^2, \quad \kappa \in \mathcal{R}, \]
we have
\[|e^{-c\kappa} I(\kappa)| \lesssim Q^2, \quad \kappa \in \mathcal{R}, \]
for any positive constant \(c \). An application of Lemma A.1 leads to
\[|e^{-c\kappa} I(\kappa)| \lesssim Q^2 e^{2\mu(\kappa)} \quad \forall \kappa \in (A_1, +\infty), \]
where
\[\mu(\kappa) \geq \frac{64ad}{3\pi^2(a^2 + 4d^2)} \kappa \Re \kappa \]
which completes the proof. \(\square \)

Fig. 1. The region \(\mathcal{R} \).
Here we state a simple uniqueness result for the inverse problem.

Theorem 3.3. Let \(f \in L^2(B_R) \) and \(I := (C_0, C_0 + \delta) \subset \mathbb{R}^+ \) be an open interval, where \(C_0 \) is the constant given in the definition of \(\Omega_M \) in Lemma 3.2 and \(\delta \) is any positive constant. Then the source term \(f \) can be uniquely determined by the multiple-frequency data \(\{ u(x, \kappa) : x \in \partial B_R, \kappa \in I \} \cup \{ u(x, \kappa_j) : x \in \partial B_R, \kappa_j \in (0, C_0) \} \).

Proof. Let \(u(x, \kappa) = 0 \) for \(x \in \partial B_R \) and \(\kappa \in I \cup \{ \kappa_j : \kappa_j \in (0, C_0) \} \). It suffices to show that \(f(x) = 0 \). Since \(u(x, \kappa) \) is analytic in \(\Omega_M \) for \(x \in \partial B_R \), it holds that \(u(x, \kappa) = 0 \) for all eigenvalues \(\kappa > C_0 \). Then we have that \(u(x, \kappa_j) = 0 \) for all \(\kappa_j, j = 1, 2, 3, \ldots \). Hence, it follows from (3.1) that

\[
\int_{B_R} f(x) \tilde{\delta}_j(x) dx = 0, \quad j = 1, 2, 3, \ldots,
\]

which implies \(f = 0 \).

The following lemma is important in the stability analysis.

Lemma 3.4. Let \(f \in H^{n+1}(B_R) \) and \(\| f \|_{H^{n+1}(B_R)} \leq Q \). It holds that

\[
\sum_{j \geq s} |f_j|^2 \lesssim \frac{Q^2}{s^{\frac{n}{2}(n+1)}}.
\]

Proof. A simple calculation yields

\[
\sum_{j \geq s} |f_j|^2 \leq \sum_{j \geq s} \frac{\kappa_j^{2n+2}}{\kappa_j^{2n+2}} |f_j|^2 \leq \frac{1}{\kappa_j^{2n+2}} \sum_{j \geq s} \kappa_j^{2n+2} |f_j|^2 \lesssim \frac{M^2}{\kappa_j^{2n+2}}.
\]

Noting

\[
\| f \|_{H^{n} (B_R)}^2 \equiv \sum_{j=1}^{\infty} (\kappa_j^2 + 1)^s |f_j|^2,
\]

and using the Weyl-type inequality in Lemma A.2, we have \(\kappa_j^2 \geq E_2 s^\frac{n}{2} \) and complete the proof.

Define a real-valued functional space

\[C_Q = \{ f \in H^{n+1}(B_R) : \| f \|_{H^{n+1}(B_R)} \leq Q, \supp f \subset B_R, f : B_R \to \mathbb{R} \}. \]

Now we are in the position to discuss the inverse source problem. Let \(f \in C_Q \). The inverse source problem is to determine \(f \) from the boundary data \(u(x, \kappa), x \in \partial B_R, \kappa \in (A, A_1) \cup \cup_{j=1}^{N} \kappa_j \), where \(1 \leq N \in \mathbb{N} \) and \(\kappa_N > A_1 \). Here \(A \) and \(A_1 \) are the constants specified in Lemma 3.2.

The following stability estimate is the main result of this paper.

Theorem 3.5. Let \(u(x, \kappa) \) be the solution of the scattering problem (1.1)–(1.2) corresponding to the source \(f \in C_Q \). Then for \(\epsilon_1 \) sufficiently small,

\[
(3.2) \quad \| f \|_{L^2(B_R)}^2 \lesssim \epsilon^2 + \frac{Q^2}{N \frac{4}{2}(n+1) (\ln |\ln \epsilon_1|)^{\frac{n}{2}(n+1)}},
\]

where

\[
\epsilon^2 = \sum_{j=1}^{N} \kappa_j^2 \| u(x, \kappa_j) \|_{L^2(\partial B_R)}^2, \quad \epsilon_1^2 = \sup_{\kappa \in (A, A_1)} \| u(x, \kappa) \|_{L^2(\partial B_R)}^2.
\]
Proof. We can assume that \(\epsilon_1 \leq e^{-1} \), otherwise the estimate is obvious.

First, we link the data \(\kappa^2 \| u(x, \kappa) \|_{L^2(\partial B_R)}^2 \) for large wavenumber \(\kappa \) satisfying \(\kappa \leq L \) with the given data \(\epsilon_1 \) of small wavenumber by using the analytic continuation in Lemma 3.2, where \(L \) is some large positive integer to be determined later. By Lemma 3.2, we obtain

\[
\kappa^2 \| u(x, \kappa) \|_{L^2(\partial B_R)}^2 \\
\lesssim Q^2 e^{c \| \epsilon_1 \|_{\epsilon_1}^\kappa} \\
\lesssim Q^2 \exp \left(\frac{c_2 a}{a^2 + c_3} e^{c_1(\frac{1}{2} \kappa - \kappa)} \| \ln \epsilon_1 \| \right) \\
\lesssim Q^2 \exp \left(-\frac{c_2 a}{a^2 + c_3} e^{c_1(\frac{1}{2} \kappa - \kappa)} \| \ln \epsilon_1 \| \left(1 - \frac{c_4 \kappa(a^2 + c_3)}{a} e^{c_1(\kappa - \frac{1}{2} \kappa)} \| \ln \epsilon_1 \|^{-1} \right) \right) \\
\lesssim Q^2 \exp \left(-\frac{c_2 a}{a^2 + c_3} e^{c_1(\frac{1}{2} \kappa - L)} \| \ln \epsilon_1 \| \left(1 - \frac{c_4 L(a^2 + c_3)}{a} e^{c_1(L - \frac{1}{2} \kappa)} \| \ln \epsilon_1 \|^{-1} \right) \right) \\
\lesssim Q^2 \exp \left\{ -b_0 e^{-c_1 L} \| \ln \epsilon_1 \| \left(1 - b_1 L e^{c_1 L} \| \ln \epsilon_1 \|^{-1} \right) \right\},
\]

where \(c, c_i, i = 1, 2 \) and \(b_0, b_1 \) are constants. Let

\[
L = \begin{cases} \left(\frac{1}{2c_1} \ln | \ln \epsilon_1 |, & N \leq \frac{1}{2c_1} \ln | \ln \epsilon_1 |, \\ N, & N > \frac{1}{2c_1} \ln | \ln \epsilon_1 |. \end{cases}
\]

If \(N \leq \frac{1}{2c_1} \ln | \ln \epsilon_1 | \), we obtain for \(\epsilon_1 \) sufficiently small that

\[
\kappa^2 \| u(x, \kappa) \|_{L^2(\partial B_R)}^2 \lesssim Q^2 \exp \left\{ -b_0 e^{-c_1 L} \| \ln \epsilon_1 \| \left(1 - b_1 L e^{c_1 L} \| \ln \epsilon_1 \|^{-1} \right) \right\} \\
\lesssim Q^2 \exp \left\{ -\frac{1}{2} b_0 e^{-c_1 L} \| \ln \epsilon_1 \| \right\}.
\]

Noting \(e^{-x} \leq \frac{(2n+3)!}{x^{2n+3}} \) for \(x > 0 \), we obtain

\[
\sum_{j=N+1}^L \kappa_j^2 \| u(x, \kappa_j) \|_{L^2(\partial B_R)}^2 \lesssim Q^2 L e^{(2n+3)c_1 L} \| \ln \epsilon_1 \|^{-(2n+3)}.
\]

Taking \(L = \frac{1}{2c_1} \ln | \ln \epsilon_1 | \), combining the above estimates and Lemma 3.4, we get

\[
\| f \|_{L^2(\partial B_R)}^2 \lesssim \sum_{j=1}^N | f_j |^2 + \sum_{j=N+1}^L | f_j |^2 + \sum_{j=L+1}^{+\infty} | f_j |^2 \\
\lesssim \sum_{j=1}^N \kappa_j^2 \| u(x, \kappa_j) \|_{L^2(\partial B_R)}^2 + \sum_{j=N+1}^L \kappa_j^2 \| u(x, \kappa_j) \|_{L^2(\partial B_R)}^2 + \frac{1}{L^\frac{3}{2(n+1)}} \| f \|_{H^{n+1}(B_R)}^2 \\
\lesssim \epsilon^2 + L Q^2 e^{(2n+3)c_1 L} | \ln \epsilon_1 |^{-(2n+3)} + \frac{Q^2}{L^\frac{3}{2(n+1)}} \\
\lesssim \epsilon^2 + Q^2 \left(| \ln | \ln \epsilon_1 | | \ln \epsilon_1 |^{2n+3} | \ln \epsilon_1 |^{-(2n+3)} + | \ln | \ln \epsilon_1 | | \ln \epsilon_1 |^{-\frac{2n+3}{(n+1)}} \right) \\
\lesssim \epsilon^2 + Q^2 \left(| \ln | \ln \epsilon_1 | | \ln \epsilon_1 |^{2n+3} + | \ln | \ln \epsilon_1 | | \ln \epsilon_1 |^{-\frac{2n+3}{(n+1)}} \right) \\
\lesssim \epsilon^2 + \frac{Q^2}{N^\frac{1}{2(n+1)} | \ln | \ln \epsilon_1 | | \ln \epsilon_1 |^{-\frac{1}{2(n+1)}}},
\]

where we have used \(| \ln \epsilon_1 |^{1/2} \geq | \ln | \ln \epsilon_1 | \) for sufficiently small \(\epsilon_1 \).
If \(N > \frac{1}{2\epsilon_1} \ln \ln \epsilon_1 \), we have from Lemma 3.4 that

\[
\|f\|_{L^2(B_R)}^2 \lesssim \sum_{j=1}^{N} |f_j|^2 + \sum_{j=N+1}^{+\infty} |f_j|^2
\]

\[
\lesssim \epsilon^2 + \frac{Q^2}{N^{\frac{n}{2(n+1)}}}
\]

\[
\lesssim \epsilon^2 + \frac{Q^2}{N^{\frac{n}{2(n+1)}}(\ln \ln \epsilon_1)^{\frac{1}{2}(n+1)}},
\]

which completes the proof.

The stability (3.2) consists of two parts: the data discrepancy and the high frequency tail. The former is of the Lipschitz type. The latter decreases as \(N \) increases which makes the problem have an almost Lipschitz stability. The result reveals that the problem becomes more stable when higher frequency data is used.

4. Conclusion. We have presented a stability result for the inverse source problem of time-harmonic acoustic waves in inhomogeneous background media. The analysis requires the Dirichlet data only at multiple discrete frequencies without resorting to the Dirichlet-to-Neumann map which was considered in [15, 31]. The increasing stability is achieved to reconstruct the source term, and it consists of the data discrepancy and the high frequency tail of the source function. The result shows that the ill-posedness of the inverse source problem decreases as the frequency increases for the data. A possible continuation of this work is to extend the stability to the two-dimensional case. Due to the absence of the Huygens principle, the scattering theory is not so obvious as that for the three-dimensional Helmholtz equation. Another interesting direction is to study the stability of the inverse source problems for elastic and electromagnetic waves in inhomogeneous media, where the properties of the corresponding resolvent need to be analyzed for the associated second order operators. For the Maxwell system, additional difficulties arise from their spectral analysis, and the present method may not be directly applicable. A related but more challenging problem is to study the stability of the inverse medium problem which is to determine the scatterer \(q \). A recent progress can be found in [17] on a stability result of the inverse medium problem for the one-dimensional Helmholtz equation.

Appendix A. Two useful lemmas. The following lemma gives a link between the values of an analytical function for small and large arguments.

LEMMA A.1. Let \(p(z) \) be analytic in the infinite rectangular slab

\[
R = \{ z \in \mathbb{C} : (A, +\infty) \times (-d, d) \},
\]

where \(A \) is a positive constant, and continuous in \(\overline{R} \) satisfying

\[
\begin{cases}
|p(z)| \leq \epsilon, & z \in (A, A_1], \\
|p(z)| \leq M, & z \in R,
\end{cases}
\]

where \(A, A_1, \epsilon \) and \(M \) are positive constants. Then there exists a function \(\mu(z) \) with \(z \in (A_1, +\infty) \) satisfying

\[
\mu(z) \geq \frac{64ad}{3\pi^2(a^2 + 4d^2)} e^{\frac{a^2}{4}(d - z)},
\]

(A.1)
where $a = A_1 - A$, such that

$$|p(z)| \leq Me^{\mu(z)} \quad \forall z \in (A_1, +\infty).$$

(A.2)

Proof. By applying [4, Lemma 3.1] to the domain

$$\mathcal{R} \setminus \gamma := \{(A, b + A) \times (-d, d) \setminus \{(A, A_1) \times \{0\}\}$$

for any $b > A_1 - A$, we obtain that there exists a harmonic measure $\mu(z)$ of γ with respect to $\mathcal{R} \setminus \gamma$ such that

$$\mu(x, 0) \geq C \sinh \left[\frac{\pi a}{2d} \left(\frac{x - \tilde{b}}{a} \right) \right], \quad A_1 < x < \tilde{b} := b + A,$$

(A.3)

where

$$C = \frac{64ad \coth \left[\frac{\pi d}{a} \right]}{3\pi^2(a^2 + 4d^2) \sinh \left[\frac{\pi a}{2d} \left(\frac{a - 2\tilde{b}}{2a} \right) \right]}.$$

Noting the following asymptotics as $b \to +\infty$, which means $\tilde{b} \to +\infty$,

$$\sinh \left[\frac{\pi a}{2d} \left(\frac{x - \tilde{b}}{a} \right) \right] \sim -e^{\frac{\pi b}{2d} (b - \frac{x}{a})}, \quad \sinh \left[\frac{\pi a}{2d} \left(\frac{a - 2\tilde{b}}{2a} \right) \right] \sim -e^{\frac{\pi b}{2d} (\frac{a - \tilde{b}}{a})},$$

and the inequality $\coth \left[\frac{\pi d}{a} \right] \geq 1$, we obtain (A.1) by letting $\tilde{b} \to +\infty$ in (A.3).

Finally, by fundamental application of the harmonic measure for stability estimates of holomorphic continuation [4, Theorem 2.4] we obtain (A.2)

Lemma A.2. The following estimate holds:

$$\|\partial_\nu \phi_j\|_{L^2(\partial B_R)} \leq C \kappa_j,$$

(A.4)

where the positive constant C is independent of j. Moreover, we have the following Weyl-type inequality for the Dirichlet eigenvalues $\{\mu_n\}_{n=1}^\infty$:

$$E_1 n^{2/3} \leq \mu_n \leq E_2 n^{2/3},$$

(A.5)

where E_1 and E_2 are two positive constants independent of n.

Proof. We begin with the estimate (A.4) for the eigenfunctions on the boundary. Let u be a Dirichlet eigenfunction of $P = -c^2 \Delta$ in B_R. For any differential operator A, by [27, Lemma 2.1], we have the Rellich-type identity

$$\int_{B_R} e^{-2} u \{P, A\} u dx = \int_{\partial B_R} \partial_\nu u A ud\nu,$$

(A.6)

where $[P, A] = PA - AP$. In fact, let λ be the eigenvalue corresponding to the eigenfunction u. We have $[P, A] = [P - \lambda, A]$ and $(P - \lambda) u = 0$. A simple calculation yields
\[\int_{B_R} c^{-2}u(P,A)|u|dx \]

\[
= \int_{B_R} [u(-\Delta u) - \lambda c^{-2}Au] \, dx \\
= \int_{B_R} [-\Delta uAu - \lambda c^{-2}uAu] \, dx + \int_{\partial B_R} \partial_u uAu ds \\
= \int_{B_R} c^{-2}(P - \lambda)uAu dx + \int_{\partial B_R} \partial_u uAu ds \\
= \int_{\partial B_R} \partial_u uAu ds.
\]

Now let \(u \) be a normalized Dirichlet eigenfunction with eigenvalue \(\lambda \). Choose local coordinates \((r, y)\) near the boundary \(\partial B_R \) such that \(r \) is the distance to the boundary. Assume that there is a small number \(\delta \) such that \(c^2 = 1 \) for \(r \leq \delta \). Take \(\chi \in C_c^\infty(\mathbb{R}) \) such that \(\chi \equiv 1 \) near 0 and vanishes for \(r \geq \delta \). Choose \(A = \chi(r)\partial_r \). It is clear that the right-hand side of (A.6) is exactly \(\|\partial_u u\|_{L^2(\partial B_R)} \). It follows from the integration by parts that the left-hand side of (A.6) can be written as

\[\int_{B_R} c^{-2}(B_1u)(B_2u)dx, \]

where \(B_1 \) and \(B_2 \) are two first order differential operators. Using the Poincaré-inequality, we obtain

\[\int_{B_R} c^{-2}(B_1u)(B_2u)dx \leq C\|u\|^2_{H^1(B_R)} \leq C \int_{B_R} \nabla u \cdot \nabla u \, dx = C\lambda, \]

where the positive constant \(C \) does not depend on \(\lambda \).

Next, we prove the Weyl-type inequality (A.5). Assume \(\mu_1 < \mu_2 < \cdots \) are the Dirichlet eigenvalues of the operator \(-c^2(x)\Delta\). Then we have following min-max principle:

\[\mu_n = \inf_{\varphi_1, \ldots, \varphi_{n-1}} \sup_{\psi \in [\varphi_1, \ldots, \varphi_{n-1}]^2} \frac{\int_{B_R} |\nabla \psi|^2 dx}{\int_{B_R} c^{-2}\psi^2 dx}. \]

Assume \(C_1 < c^2(x) < C_2 \) on \(B_R \), where \(C_1, C_2 \) are two constants. Assume \(\mu_1^{(j)} < \mu_2^{(j)} < \cdots \) are the eigenvalues for the operator \(-C_j\Delta\) for \(j = 1, 2 \). By the min-max principle, we have

\[\mu_1^{(2)} < \mu_n < \mu_1^{(1)}, \quad n = 1, 2, \ldots. \]

We have from Weyl’s law [36] for \(-C_j\Delta\) that

\[\lim_{n \to +\infty} \frac{\mu_n^{(j)}}{n^{2/3}} = D_j, \]

where \(D_j \) is a constant. Therefore there exist two constants \(E_1 \) and \(E_2 \) such that

\[E_1n^{2/3} \leq \mu_n \leq E_2n^{2/3}, \]

which completes the proof.
REFERENCES

