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Abstract. This paper addresses the direct and inverse source problems for the stochastic acous-
tic, biharmonic, electromagnetic, and elastic wave equations in a unified framework. The driven
source is assumed to be a centered generalized microlocally isotropic Gaussian random field, whose
covariance and relation operators are classical pseudodifferential operators. Given the random source,
the direct problems are shown to be well-posed in the sense of distributions and the regularity of
the solutions are given. For the inverse problems, we demonstrate by ergodicity that the principal
symbols of the covariance and relation operators can be uniquely determined by a single realization
of the far-field pattern averaged over the frequency band with probability one.
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1. Introduction. Inverse scattering problems are used to determine the nature
of scatterers from a knowledge of the wave field. They have played an essential role
in many scientific areas such as radar and sonar, geophysical exploration, medical
imaging, and nondestructive testing. These problems are challenging due to the ill-
posedness and nonlinearity [10]. In many situations, it is desirable to describe the
scatterer as a random field in order to handle uncertainties of the surrounding envi-
ronment. Compared with deterministic counterparts, stochastic scattering problems
have substantially more difficulties because of two additional obstacles: the scatterer
is sometimes too rough to exist pointwisely and should be understood in the sense of
distributions instead; the randomness makes it meaningless and impossible to charac-
terize the scatterer by a particular realization. As a result, the statistics, such as mean
and variance, of the random scatterer are used to quantify the uncertainties of the
scatterer and are of more interest in stochastic inverse scattering problems. Recently,
stochastic inverse scattering problems have attracted great attention, and many new
results are available for various problems, such as random medium problems [1, 7, 26],
random potential problems [8, 18, 22], random impedance problems [15], and random
surface problems [5, 12, 16]. We refer to [11, 13] on related direct and inverse scatter-
ing problems for wave propagation in random environments. A good introduction to
the statistical methods, especially Bayesian statistics, can be found in [17] on solving
inverse problems involving uncertainties and randomness.
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As an important research subject in inverse scattering theory, the inverse ran-
dom source problem has been extensively studied. When the source is modeled by
an additive white noise, the mean and standard deviation of the source can be recon-
structed from the statistics of the wave field [2, 3, 6, 14, 21]. In these approaches,
the near-field scattering data need to be measured for a fairly large number of re-
alizations of the random source. Motivated by [18], a new model is developed for
the random source, which is assumed to be a real-valued generalized microlocally iso-
tropic Gaussian (GMIG) random field with its covariance operator being a classical
pseudodifferential operator. It is shown that the principal symbol of the covariance
operator can be uniquely determined by the amplitude of the near-field scattering
data averaged over the frequency band, generated by a single realization of the ran-
dom source; see [19, 24] for acoustic waves, [19, 20] for elastic waves, and [27] for
biharmonic waves. The inverse random source problem for electromagnetic waves is
considered in [25], where the source is modeled by a complex-valued centered GMIG
random field whose real and imaginary parts are assumed to be independent and iden-
tically distributed, leading to the relation operator being zero. The uniqueness result
states that the high frequency limit of the variation of the electric field can uniquely
determine the principal symbol matrix of the covariance operator for the random
source. Moreover, by means of ergodicity in the frequency domain, the amplitude of
the electric field averaged over the frequency band, obtained from a single path of the
random source, can uniquely determine the diagonal entries of the principal symbol
matrix.

In this work, we intend to examine the direct and inverse source problems for
the stochastic acoustic, biharmonic, electromagnetic, and elastic wave equations in a
unified framework by using the far-field patterns. There are two main contributions:

1. the well-posedness of the direct problems are established for more general
random sources;

2. the uniqueness of the inverse problems are obtained for both the covariance
and relation operators.

Specifically, we consider the four commonly encountered wave equations, i.e.,
the Helmholtz equation, the biharmonic wave equation, Maxwell’s equations, and the
Navier equation. The driven source is assumed to be a complex-valued centered GMIG
random field whose covariance operator and relation operator are classical pseudodif-
ferential operators, which removes the limitation that the real and imaginary parts
are independent and identically distributed. As is shown in the context, this type of
source is too rough to exist pointwisely and should be understood as distributions.
Given such rough sources, the direct problems are shown to be well-posed, and the
regularity of the solutions is also obtained. For the inverse problems, we demonstrate
that the principal symbol matrices of the covariance and relation operators can be
uniquely determined by the high frequency limit of the correlation of the far-field
pattern. Moreover, with the aid of ergodicity of the far-field pattern in the frequency
domain, the uniqueness is established for the principal symbol matrices of the co-
variance and relation operators with respect to the far-field pattern obtained from a
single realization of the random source almost surely.

The paper is organized as follows. In section 2, some preliminaries are given for the
high dimensional complex-valued GMIG random fields and the fundamental solutions
to the Helmholtz equation, the biharmonic wave equation, and the Navier equation.
Sections 3-6 are devoted to the direct and inverse random source problems for acoustic
waves, biharmonic waves, electromagnetic waves, and elastic waves, respectively. The
direct problems are examined, and the uniqueness of the inverse problems is addressed.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 08/18/22 to 128.210.107.130 . Redistribution subject to CCBY license

INVERSE RANDOM SOURCE PROBLEMS 1115

The paper concludes with some general remarks and discussions on the future work
in section 7.

2. Preliminaries. In this section, we introduce the C"-valued (n € N) GMIG
random fields and the fundamental solutions to the Helmholtz, biharmonic wave, and
Navier equations.

2.1. C"-valued GMIG random fields. Let O C R? be an open domain.
Denote by C§°(O;F) the set of F-valued smooth functions with compact supports
contained in O, where F stands for the real-valued space R, the complex-valued space
C, or the n-dimensional complex-valued space C™. Define the space of test functions
by D(O;F), which is C5°(O;F) equipped with a locally convex topology. The dual
space D'(O; F) of D(O;F) is the space of distributions on O with a weak-star topology.

Denote by W749(O;F) the F-valued classical Sobolev spaces with v € R and
q € (1,00), and by W*(O;F) the closure of C§°(O;F) in W4(O;F) with v > 0. For
simplicity, the domain F will be omitted if F = C or C", i.e., W"4(0O) = W 4(O;C)
if F =C and WY9(0Q) = W74(O;C") if F = C™.

Let (Q, F,P) be a complete probability space, where 2 is a sample space, F is a
o-algebra on 2, and P is a probability measure on (2, F).

First we consider scalar fields when n = 1. A scalar field f is said to be a C-valued
generalized Gaussian random field if f : Q@ — D’(O) is a distribution satisfying that,
for each w € €, the path f[|(w) € D'(O) is a linear functional on D(O) and, for
any test function v € D(0), f[¢] = (f,¢¥) : @ = C is a C-valued Gaussian random
variable.

Let O = R?. The C-valued generalized Gaussian random field f defined on R?
is uniquely determined by its expectation Ef € D’(R?), covariance operator Cy :
D(RY) — D'(R?), and relation (pseudocovariance) operator R; : D(R?) — D'(RY),
which are defined by

(Ef, ) - = E(f,9),
(Rro. ) i =E[(f —Ef,o)(f —Ef, )] = (E[(f —Ef) @ (f —~Ef)], ¥ @)

for any ¢, € D(RY). It is easy to note that C; = Ry if f is R-valued.
Introduce the space of symbols of order —m:

S™(RY x RY) := {a cC®(R? x RY) :

00022 0(2,€)| < Cy (1 + I},

where C,, ,, is a positive constant depending on v; and 7s.

DEFINITION 2.1. A C-valued generalized Gaussian random field f on R? is said to
be microlocally isotropic of order —m in D if its covariance and relation operators Cs
and Ry are classical pseudodifferential operators of order —m, whose symbols o¢, 0" €
S™™(R? x RY) satisfy

oz, €) = a" () €] + V(2,€),

where b7 € ST YR x RY) and a",b"(-, &) € C§°(D) forn € {c,r}.
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Using the definition of pseudodifferential operators, we get

1 i R
(2.) Crolw) = a0 (@ RO
- o (2, 8)p
(22) Rypla) = gz [ o @ 26
where

PO = (FR©O = [ T pla)da

denotes the Fourier transform of ¢. By the Schwartz kernel theorem, there exist
unique kernels K¢, K} € D' (R4 x R?) such that

Cro,h) = (K0 @), (Rip,¥) = (K}, 9 @ ¢),

which imply that

Kf(z,y) =E[(f(2) — Ef(2))(f(y) - Ef ()],
Kj(z,y) = E[(f(z) —Ef(2))(f(y) —Ef ()]

are distributions in D'(R? x R%). Using (2.1)-(2.2), we obtain the following bijection
between the kernel K with 7 € {¢,r} and the symbol o

1

23)  Kjew) =G / LG (g, £)ds = F (0" () (@ — y).

Taking the Fourier transform on the both sides of (2.3) with respect to x —y gives
L (L spweecay) pwis = [ oot
R? \JRd R4
ey = [ @@l et [ e
R R

The regularity of random fields given in Definition 2.1 depends on the order —m.
It has been studied in [24] and is stated in the following lemma.

LEMMA 2.2. Let f be a C-valued GMIG random field of order —m in D.
(i) If m € (d,d +2), then f € C®*(D) almost surely for all o € (0, 254).

m—d

(ii) If m < d, then f € W™z ~%P(D) almost surely for any e > 0 and p € (1,00).

Now let us consider vector fields for n > 1. A vector field f = (f1,..., fn)"
is said to be a C™-valued GMIG random field of order —m in D if each component
fi,7 = 1,...,n, is a C-valued GMIG random field of the same order —m in D.
Similarly, the C"-valued generalized Gaussian random field f is uniquely determined
by its expectation Ef € D'(R?), covariance operator Cy : D(RY) — D'(R?), and
relation operator Ry : D(R?) — D'(R?). The kernels K§. K} € D'(R? x R Cn<7)
can be formally expressed as the following distributions:

K§(z,y) =E[(f(z) — Ef(2))(f(y) —Ef(y) ],
Kj(x,y) = E[(f(z) — Ef(2))(f(y) —Ef () ].

If f is microlocally isotropic of order —m, then there exist symbols X7, 3¢ €
S™™(R? x RY; C™*") of the form

X(x,8) = A"(x)[E]™™ + B (x, §)
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with B7 € S~ 1(R? x R4 C"*") and A", B"(-,¢) € C$°(D; C™") such that
1 : 1 .
- iz-&Exce -~ - iz-Er ~
Crole) = oga [ @ @OBEE Roolo) = g [ 8 . 0Bl6)e

for any ¢ € D(RY), and
Lt
(2m)?

where i € {c,r}. It can also be verified that the kernel K}] satisfies

K}(o,y) = /R SIS (@, §)ds = FHE (@, ) (@ — y),

/Rd ( » K;(.’E,y)ei(xy)-fdy> p(x)dr = /Rd Yz, §)p(z)dx
e = [ Al e+ [ B

2.2. The fundamental solutions. In this subsection, we introduce the fun-
damental solutions and their asymptotic behaviors of large arguments for the wave
equations considered in this work. They play an important role in the analysis.

The fundamental solution of the Helmholtz equation in R? is given by

i
TH (Rl —y)), d=2,

(I)d(‘rayvﬁ) = eim|w7y\

0, d=3,
dmlz —y|’

where £ > 0 is the wave number and Hél) is the Hankel function of the first kind with
order zero. Let 4 := z/|z| € S¢~!. Noting (cf. [10, Theorem 2.6])

o =yl = V]al? =20zl -y + yI? = 2| =& -y + O (je| ), |z = o0,
and (cf. [10, equation (3.105)])

- 2 .
Hy'(2) = e/ =% (140(12[ ), 2] = oo,

we have
L 0 Y). s
— = —— (e"™Y + z|7)), x| = oo,
lz—yl |
and
. 2 o
1 (el = yl) = ()T [ e 75 1.0 (o] 7)) el = o0,

which imply

ik|z| B o
(2.6) Q4(x,y,K) = |e|7d;1 (Cdﬁ%e_lm'y +0 (|m|_1)) , x| = oo,
x| 2
where
o
) d = 2’
(2.7) Cog=4V 817r
—, d=3
47’
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The fundamental solution of the biharmonic wave equation is (cf. [27, 31, 32])

1 .
Fd(x7y7 H) = ﬁ [q)d(x7y7 ,{) - (I)d(x7y71"<‘-’)} .

It follows from (2.6) that we have
ein|9c| <Cd a-r

—CkT e Y L O (|x|1)) , |z = oo.

(2.8) Fy(z,y, k) 5

= a1
|z| =
For the elastic wave equation, it is strongly elliptic if the Lamé parameters A and

w satisfy p > 0 and A+ 2u > 0 (cf. [29, section 10.4]). Its Green tensor is given by

1 1
Gd(xa Y, (.d) = ;‘bd(l‘, Y, H‘S)I + vavj |:(I)d(1"7 Y, H‘S) - (bd(l', Y, KP):| )
where w > 0 is the angular frequency, x, := cpw and ks 1= c,w with ¢, = (A+2p) 72
1 . .
and c¢s = p~ 2 denote the compressional and shear wave numbers, respectively, and I
is the d x d identity matrix. It is shown in [30, equations (27)—(28)] for d = 2 and
in [9, equation (2.2)] for d = 3 that G4 has the following asymptotic behavior:

implel a1 o
Gd(.ﬂ?,y’w) = %CdCPQ w%[i‘i‘—re_lﬁpx'y
Tz
bl an .
(29) +e|@0dcs2 W (I 82 T)e Y 4 O(la] = F), o] o,
€T 2

where the constant Cj is given in (2.7).

3. Acoustic waves. In this section, we investigate the direct and inverse random
source problems for the Helmholtz equation.

3.1. The direct problem. Consider the stochastic Helmholtz equation

(3.1) Au+ r*u=f inR%
The wave field u is required to satisfy the Sommerfeld radiation condition
(3.2) lim \x|% (O)z)u — iku) = 0.

The random source f satisfies the following assumption.

Assumption 3.1. The source f is assumed to be a C-valued centered GMIG ran-
dom field of order —m in a bounded domain D C R?. The principal symbols of its
covariance and relation operators have the forms a®(z)|£|~™™ and a” (x)||~™, respec-
tively, where a®, a” € C§°(D).

The assumption that f is centered, i.e., Ef = 0, is mainly to simplify the notations
of the covariance and relation operators. If f is not centered, i.e., Ef # 0, it becomes
a deterministic inverse source problem to recover Ef after taking the expectation on
both sides of (3.1), and then it suffices to study the centered source f := f —Ef.

The problem (3.1)-(3.2) was studied in [19, 26], where f was assumed to be a
R-valued centered GMIG random field of order —m with m € (d — 1,d]. When f is
C-valued with its covariance and relation operators being of the same order —m, its
regularity is the same as the R-valued case. The well-posedness of (3.1)—(3.2); may be
obtained directly based on the results in [19, 26], but the parameters are not optimal.
The following result presents the well-posedness of (3.1)—(3.2); the parameters are
different from the existing results and allow more general and rougher sources.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 08/18/22 to 128.210.107.130 . Redistribution subject to CCBY license

INVERSE RANDOM SOURCE PROBLEMS 1119

THEOREM 3.2. Let f satisfy Assumption 3.1 with m € (d — 4,d]. The problem
(3.1)—(3.2) is well-posed in the sense of distributions with a unique solution given by

(33 o) = = [ @) f)d, o€ R,

where u € W4 (RY) almost surely for any ¢ > 1 and

4 — 4— 1 1
0<’y<min{ dt+m d—i—m_’_(q_)d}.

2 ’ 2

m—d

Proof. By Assumption 3.1, we have f € W~z ~<P(D) for any € > 0 and p > 1
according to Lemma 2.2. It follows from the Kondrachov embedding theorem that

da

Wz ~%P(D) — H—*(D)

is continuous for any p > 2 and s; € (d_Tm, 2).

Let G C R? be a bounded domain with a locally Lipschitz boundary. Define the
volume potential operator H, by

(W)@ == [ Balao) )

Following the same procedure used in [26, Lemma 3.1] yields that H, : H=* (D) —
H#2(@G) is bounded for any s1, so > 0 satisfying s := 51452 € (0,2]. More precisely, we
consider spaces C%(D) and C?%(G) with a € (0,1) equipped with scalar products

(F1. P)coe) = (Fu o) mroa-2ray ¥ f1, fo € C¥(D)

and
(91, 92)c2a(c) = (G1,92) Fraray V¥ 91,92 € C**(G),

respectively. Here, fz and g;, ¢ = 1,2, denote the zero extensions of f; and g; outside
D and G, respectively. We then obtain
Hefllzs2c) = Hufllcze@) S I fllcoaoy = 1 fllms2—20y < N fll -1 (D)-

Since s; € (d*Tm,2), it holds 0 < 89 < 2 — 351 < H%. Choose s9 = H% — €.
Then for v and ¢ satisfying the assumptions in the theorem, there must exist some
€ > 0 such that v < s and % > 1 — 2229 and hence the embedding

H*?(G) = WY(QG)
is continuous, which completes the proof. 0

3.2. The inverse problem. The inverse source problem aims to recover the
principal symbols a® and a” of the covariance and relation operators, respectively,
from the far-field pattern of the wave field. Combining (2.6) and (3.3) gives

em|m\

u(z, k) = (uoo(i,n) + O(|:c\71)) , x| = oo,

- d—1
x| =

where ©*° is known as the far-field pattern and is given by

(3.4) u™ (&, k) = Ok / eI Y £ (y)dy.

Rd
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First, we show that the Fourier modes of a® and a” can be determined by the
expectation of the high frequency limit of the far-field pattern, which is stated in the
following lemma.

LEMMA 3.3. Let f satisfy Assumption 3.1 with m € (d —4,d]. For any 7 >0, it
holds

(3.5) lim £+ IR [UOO(:@ K+ ) (, n)} = |Cul?ae(rd),
(3.6) lim KPR (2, 5 4 T)u (—#, k)] = C2a (1).

Proof. It follows from (3.4) that
E [uoo(i:, K+ T)u>(Z, /@')}

d-3 d=3 —i(k+T)Ey ikd-2 T8
=P TR E [ e g 1)) dyas

d—3

= |CaPP(k+7) T KT K?(y,Z)ei“‘%’(”Z)dZ] e~y

Rd [ Rd
= |Cal*(k + 7')¥/<:¥ {/d a’(y)e TEYdy|ka| 7™ + /d b°(y, ni)eiﬁ'ydy]
R R
3-d

=l (F) T e + o,

K+T

where we used the relationship between the kernel K¢ and the symbol a¢ given in (2.4)
and the fact that the residual b¢ € ST 1(R? x RY) satisfies |b°(y, xd)| < k™™ ! as
k — oo and b°(-,€) € C°(D) for any ¢ € R4 Multiplying both sides of (3.7) by
k™34 and taking the limit as kK — 0o, we obtain

3—d

N =
lim ™3 IR |:Uoo(li',li+7')uoo(§7,li)} = |Cyl?at(rz) lim ( :i )
K+ T

K— 00 KR—r 00O

= |Cyl?at (i),

which completes the proof of (3.5).
Similarly, we may show (3.6) by taking the high frequency limit of the data

E [u™(z, I<E+7') Z, k)]
=C3(k+71) ENE / e IRFT)EY KT [ £(y) f(2)] dydz

=C%(k+71) / { Ki(y, z)e ”@'(yz)dz] e Yy

d—3

=C3(k+T) 2 K = {/ a"(y)e I Ydy|lke| ™™ 4+ / b (y, kE)e TV dy
]Rd
3—d

=C3 ( " ) KIT3TM (17) + O(K4™),

K+T

where the residual b" (-, &) € C§°(D) is uniformly bounded by [£]7™71 as [¢| — co. O

The results in Lemma 3.3 imply that a® and a” can be uniquely determined by
the expectation of high frequency limit of the far-field pattern. This kind of data
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Downloaded 08/18/22 to 128.210.107.130 . Redistribution subject to CCBY license

INVERSE RANDOM SOURCE PROBLEMS 1121

requires the measurements at all sample paths of the random source. Next we show
that a® and a” can also be uniquely determined by the far-field pattern averaged over
the frequency band at a single sample path almost surely.

The following results present some a priori estimates of the far-field pattern, which
are used to show the analogue of ergodicity in the frequency domain.

LEMMA 3.4. Let f satisfy Assumption 3.1 with m € (d—4,d]. For any & € S41,
K1,ke > 1 and any fited N € N, the following estimates hold:

_— d—3 d—3

(3.8) ’E [ (Z, k1)u>(Z, ng)} < /11752777”(1 + k1 — ra|)™N
d—3 d*S

(3.9) B [0 (&, k1)u™ (=2, m2)]| S K12 Rp® (L4 |ky — ko)™

- d=3 d=3_

(3.10) ‘IE [ (&, k1)u>(— .’IJ,K,2):| S K2 Ky? (1—1—/{14—%2)_]\[,

0 ( 4, 00 (A, < % dg;:s—m —N

(3.11) |E [ (%, k1)u™ (2, k2)]| S K12 Ky (14 K1+ Ka)™ V.

Proof. Tt follows from (2.4) and (3.4) that
E [Uoo(fi”a m)m]
=GP ) 5 [ [ oo 1)) dya:
R

= |Cd|2(fﬁf€2)%3/ [/ e_i“ﬂ'(y_z)KJCc(y,z)dz} el(m2=r)ey gy,

Rd |JRd
B12) = 1CaPlare) T [ ol ) vy,

D

where the symbol 0¢ € S~ (R? x R?) satisfies
(3.13) lazj‘oc(y, I{Qi‘)’ S(A+ky)™™
for any multiple index «, and we used the fact that o¢(-, ko) is compactly supported

in D.
If |k1 — k2| < 1, we have from (3.12)—(3.13) that

‘E[ (&, k1)u>® (&, Ko ” < (K1k2) / |o(y, ko) |dy
< (kik2) T (L rg) ™™

d—3 2 N
R G e

d-3 d-3_
<2V 7 ky? (1A Ry — Re|) TN

~

If |k1 — ko| > 1, applying the integration by parts to (3.12) with respect to y;
gives

E [u™ (&, k1 )u™(F, ng)]

= ‘Cd|2(h;1/{2)% / ayla.c(y, 1{23})61(;{27,@1)‘@.ydy

i(lig — Kjl §?1

d— —1
= ‘Cd|2(f'€1/€2)73 (1() / 5y16f Y, Kal)e i(w2—r1 fydy

52—51
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Hence

d—3 1

‘IE [um(@,m)mﬂ < (kire) T (1+ 12)™™

k1 — kN
N
d=3 d=3_ 1
S kL2 Ry? m<1+|’f1”2|) (1+ |k1 — ro|)™N

d—3 d—3 __
S2VK1T Ry (4 |k — k)TN

which concludes (3.8).
The estimate (3.9) can be obtained similarly by noting

E [u® (&, k1)u (=2, ka)]

2 (k1ka) / d / TR (£ () f(2)] dyd

= Citrana)= / U eI K (y, )dz} pilka—r)y g,
R4 Rd

d—3

(314) = Cg(ﬁlﬁQ)T / O-T(y’ H2i,)ei(f€2—l€1)§t~ydy’
Rd

where the estimate is similar to (3.12) with o€ being replaced by o”.
For (3.10) and (3.11), we rewrite the correlations as follows

B [1 @ e ()] = Clrare) 5 [ /}R e g [ f(y)f(2)| dydz,
B (o™ (6, k)0 (0 m0)] = Cilmm) T [ [ e R [1(y) ()] dyd,

Comparing the above formulas with (3.12) and (3.14), it is easily seen that they can
be estimated similarly to (3.8) and (3.9) by replacing ko by —ka, respectively, which
completes the proofs of (3.10) and (3.11). 0

THEOREM 3.5. Let f satisfy Assumption 3.1 with m € (d — 4,d]. Then for all
2 € S* 1 and T >0, it holds almost surely that

1@ — ~
(3.15) Qlim ) / KMy (&) K+ T)ue (T, k)dr = |Cql?at (),
e el
1 [ -
(3.16) Qlim ) / K37 (&, K+ T (— 2, K)drk = C2ar (1).
—o00

Moreover, a® and a” can be uniquely determined by (3.15) and (3.16), respectively,
with (1,%) € © and © C Ry x S being any open domain.

Proof. We only give the proof of (3.15) since the proof of (3.16) can be obtained
similarly by using (3.6) in Lemma 3.3.

Based on the proof of Lemma 3.3, we multiply both sides of (3.7) by &
take the integral with respect to , and get

m+3—d
3

1 [ —
6/ KMT3=IR {u"o(a@, K+ T)u>(Z, li)i| dk
Q

— |Cul?a(r2) 1/2Q( al )2d/<;
Q Jo K+T

+0(Q7").
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Noting
3—d
1 2Q =
—/ r dr <1
Q 0 K+T
and 3—d 3—d
1 [2Q K = 1 [2Q Q =
lim —/ dk > lim —/ ds =1
Q= Q Jo \k+T Q=0 Q Jo \Q+T
leads to

1 [ — -
(317)  lim — / KmH3—dg [uOO(:z, K+ ) (, H)] dk = |Cyl?ae(r3).
Q
To characterize the error between (3.15) and (3.17), we define an auxiliary process
Y (2, k) = gmH37d (u‘”(:ﬁ, K+ 71)u*(Z,k) —E [uoo(i", K+ T)u>(Z, ff)D .

For convenience, we denote by

U(z, k) = % [u‘x’(i‘,fﬁ) —I—W} , V(g k):

17 .. _—
S _ q®

5 [u (Z,k) —u (x,/@)}
the real and imaginary parts of u™(Z, k), respectively. Then u®(&,x + 7)u™>(Z, k)
can be rewritten as

u™ (T, k + T)uX (2, k) = U@,k + 1) +iV (2, k + 7)] [U(Z, k) — iV (Z, k)]
14
T2

—~ (U, k) = U,k +71))° — % (V(&,5) = V(i k+71))°
—5 U R+ 7) + V(@ 0)° = 5 (Vi@ k+7) = Ul r)°.

U2, k) + U (&, k+ 1) + V2(2,8) + V(2,6 + 7)]

Define I' =T'; UT'5, where
Iy :={U(& k), V(i k), U@ ck+7),V(Tr+T1)}
Iy :={U(&,k)-U@,c+71),V(&K) = V(& K+T),
U(‘ia K+ T) + V(‘%7 H)a V(i‘7 K+ T) - U(‘ia KJ)}v
and let W, be any random field in I". Based on these notations, we have

Y(#,k)= Y C(Wor™ W2 —EW?),
wW,.el

where C(W,,) € {1}, -1, —1} is a constant depending on W,.

Now it suffices to show for all W,. € I" that

1 [
(3.18) lim — / KMT3=AW2 _EW2)dk = 0.
Q—>ooQ Q
Hence
1 [
lim — Y (%, k)dk =0,
Q—>00Q Q

which, together with (3.17), yields (3.15).
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To prove (3.18), by denoting the R-valued centered random field
X, =" W2 —EW?)

according to [8, Theorem 4.1] and [23, Lemma 6], one only needs to show that there
exist some constants 7 > 0, § > 0, and C; > 0 independent of x and ¢ such that

EB[X, Xl S Cr (L[t =)™ ¥kt >0.
More precisely, it suffices to show
|E [x" 574 (W2 —EW?2)(k + )" 374 (W2,, —EWZ,,)]|
m — m 2
= 2 (E |:I§J +23 d(K}+ ) +3 dW Wn+t:|)
(3819)  <C(1+ft—n) "

for all W,, € T, where in the first step we used [8, Lemma 4.2] and the fact that W,
is Gaussian.
For any W, € T'y, based on the identities

1
4
V(i 51)V (3 ko) = —i [ (@ m1) — w2 ()| [ 8, ) — 5 (3]

U(z, k1)U(Z, ko) = [uoo(:&m) + u>e(&, Iil)} [u‘x’(i‘ ko) + u>® (%, :‘{2)}

and Lemma 3.4, we get

43 d-3_ _
B U (&, 5)U (&, m2)]l S 517 6" (L4 |k — r2) ™
d—3

— ﬂ7rn —
E[V(&,k1)V (& k2)]| S 6,2 ka® (L4 |k — ka]) ™V

As a result, it holds

‘]E |:K/7n+237d (H + t) m+3—d WNWK+t:|
)T TR T (k)T ()N
%
~(K+t)
(3.20) (14t~ (V+5 A0>7

where we used the facts that

il <1
K+t -

m m
2

</<;it>2: <1+i>_ <(1+t)°%

for m < 0. Then (3.20) implies that (3.19) holds for W, € I'; by choosing N > —7.

for m > 0 and
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For any W, € T'y, we take W, = U(Z,k) — U(Z, k + 7), for instance. The other
cases can be estimated similarly. Note that

|E[WiWeii]| = [E[(U(Z,8) = U@, 6 +7))(U(E, 5 +1) = U@, 5+ 7 +1))]|
< |E[U(&,k)U(&, &+ )]+ [E[U&, &)U (& Kk + 7+ 1)
+E[U@E k+1)U@E K+ ]|+ |E[U@E, &+ 7)U@E,k+7+1)]
SKT ()T A+ N 48T (k1) T A+t +7) N
FE+n) T (k)T A+t — 1)
Fa+) T (h+T+t) T A1) N
ST (k+) T A+ ) N+ (k1) T (k+ )T A+t — )N
Fr+T) T (kT +0) T (141N,
It then leads to

d—3
= (
d—3
= (

m+3—d

‘E[Ii 2 (H+t)nL+23_dWmWn+t:|‘

3—d

m R m
<KE(RED)FQL)N 4 RF (K_”;T) (k) A+ [t—7)N
m+3

3—d m " —d
K 2 K 2 K:“F 2 _
+ (L+¢)N
K+T K+t+T K+t+T

(3.21) < (A +t)" N+ (4 4 g — )7V,

where we used the estimates in (3.20) and the facts that

z e z z
K K+t < K K+t <1
K+t+T7 K+t+T7 T\K+EL+T K+t+T7 -

for m > 0 and
K+t+7

K z K+t
K+t+T1 kK+t+T1
S(A4+7)""A+)™™

for m < 0. It then completes the proof of (3.19) for W,, € I's.
Combining (3.20) and (3.21) yields (3.19) for all W,, € T" and deduces (3.15).
Since a® and a” are analytic, they can be uniquely determined by {a¢(72)} and
{a" (1)}, where (7,4#) € © with © being any open subdomain of R x S%~1. 0

m+3—d
2

< (“)mg (Iftt+r)™m

4. Biharmonic waves. In this section, we study the direct and inverse source
problems for the stochastic biharmonic wave equation

(4.1) A%y — k*u=f inR%

where f is assumed to be a C-valued GMIG random field satisfying Assumption 3.1
with m € (d — 6,d]. In addition, the wave field v and its Laplacian Awu are required
to satisfy the Sommerfeld radiation condition

(4.2) lim |27 (Oayu — iku) = 0, lim 2| “F ()0 Au — ik Aw) = 0.

Given f, the well-posedness of the problem (4.1)—(4.2) was studied in [27, Theorem
3.2] and is given below.
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THEOREM 4.1. Let f satisfy Assumption 3.1 withm € (d—6,d]. Then the problem
(4.1)~(4.2) admits a unique solution

(43) u(e ) =~ [ Fale,y ) f()dy
R

in the sense of distributions such that u € WIZ’Cq(]Rd) almost surely for any ¢ > 1 and

0 <y < min{é=gtm O=dtm 4 (% - 3)d}.

Next we address the inverse problem for biharmonic waves. Combining (2.8) and
(4.3) leads to

ein|x|

(u(2,5) + O(l2[ ™) ,

u(z, k) = m@
2

where the far-field pattern is given by

Coou -
(4.4) uX (k) = — kT [ e f(y)dy,
2 Rd
It is easy to note from (3.4) and (4.4) that the procedure used in section 3 for
acoustic waves is applicable for biharmonic waves. The following is the main result
for the inverse source problem of the biharmonic wave equation.

THEOREM 4.2. Let f satisfy Assumption 3.1 with m € (d — 6,d]. Then for all
# €St and T > 0, it holds almost surely that

1 [ — 1 ~

(4.5) lim —/ KM=y (&) K+ T)ue (2, k)dr = ~|Cy|?at (1),
1 [ 1 o

(4.6) Jim 0 /Q KT (G, K+ 7)™ (=&, k) dk = 1 jar(ri).

Moreover, a® and a” can be uniquely determined by (4.5) and (4.6), respectively, with
(1,2) € © and © C Ry x S being any open domain.

Proof. A simple calculation yields
E |u™(Z, k + T)u>e(E, ,‘i)}

a-7

1 a-7 —i(k+7)Ty ikT-z
= Z'Cde(H+T) z K2 / / e~ i(vtn)Ey E [f(y)f(z)} dydz

a—7

1 5 iK% A
= e TS [ [ [ Kgtoge o] ey
4 o | e

1 5 = 1 T . ~
= —|Cal*(r + T)d27“d27 [/ a(y)e " Vdy|kz|T™ +/ bc(y,/ﬁf:)e_m'ydy]
4 y .
7—d
= 1 2 k : d—T—m (-5 d—8—m
= 4|Cd| e K a®(1t2) + O(k ),

which gives
- 1 N
lim ™7 9E [u“(:)ﬁ7 K+ T)u>(Z, n)} = Z|Cd|2ac(755).
K—00
Using

7—d 7—

2Q e 2Q e
1> lim l/ < r ) drk > lim l/ ( @ ) de =1
Q~>00Q Q K+T Q*}OOQ Q Q+T
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and the estimates of the correlations of the far-field pattern u°° at different frequencies,
which can be obtained by following the same procedure as the one used in Lemma
3.4, we may replace the high frequency limit in the above result by the limit of the
averaged data over the frequency band at a single sample path with probability one,
ie.,

Q—o0

1 [ — 1 -
lim —/ KT (8 k4 T)ue (2, k)dR = ~|Cy|?al(1).
Q Jg 4

The recovery formula (4.6) can be obtained similarly, and the details are omitted for
brevity. ]

5. Electromagnetic waves. This section is concerned with the direct and in-
verse source problems for electromagnetic waves. The inverse random source problem
for Maxwell’s equations was considered in [25], where the source was assumed to be
a centered GMIG random vector field whose real and imaginary parts were indepen-
dent and identically distributed. Under this assumption, the relation operator of the
random source vanishes, and the random source is only determined by its covariance
operator. The strength matrix of the covariance operator was proved to be uniquely
determined by the phased near-field data of the electric field.

In this work, we remove the assumption that the real and imaginary parts of
the random source are independent and identically distributed, and investigate the
recovery of the strengths of both the covariance and relation operators for the random
source from the far-field pattern of the electric field.

Consider the stochastic Maxwell’s equations

(5.1) Vx E—ikH =0, VxH+ikE =f in R

where E and H are the electric and magnetic fields, respectively, and the random
source f represents the electric current density satisfying the following assumption
with d = 3.

Assumption 5.1. The electric current density f is assumed to be a C%-valued
centered GMIG random field of order —m in a bounded domain D C R?. The
principal symbols of its covariance operator C¢ and relation operator Ry have the
forms A¢(z)|£]~™ and A" (z)|¢|~™, respectively, where A, A" € C$°(D;C4*4).

As usual, an appropriate radiation condition is required for (5.1). Note that f €
D' (R3; C3) is a distribution, and hence (5.1) is interpreted in the sense of distributions.
In [25], the following weak Silver—Miiller radiation condition was proposed to the
electromagnetic fields:

(5.2) lim (Hxi—E)-¢pds=0 VY ¢c D(R?.
r—00 || =r
In addition to Assumption 5.1 with m € (=1, 3], f is required to be a distribution
belonging to the space

X:= {U € D'(R%):
R3

U (V(V-¢))dz=0 v¢eD(R3)}.

Apparently, the space X is nonempty: if f is smooth enough and divergence-free,
then f € X. In fact, X can be regarded as the space of all distributions which
are divergence-free in the sense of distributions. The weak divergence-free condition
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ensures that Maxwell’s equations (5.1) can be reduced to the Helmholtz equation
and the electric field has an integral representation in terms of the source, where the
integral kernel is exactly the fundamental solution to the Helmholtz equation. The
details can be found in [25].

The following result concerns the well-posedness of (5.1)—(5.2) with a relaxed
assumption on the order m of the random source.

THEOREM 5.2. Let f € X satisfy Assumption 5.1 with m € (=1,3]. The prob-
lem (5.1)~(5.2) admits a unique solution (E, H) with E € XN W, (R?) and H €
(W=7P(curl)) almost surely forg > 1, 0 < v < min HT"‘, %Jr%fl} and p satisfying
% + % = 1. Moreover, the electric field has the form

Bla.r) =i [ @3, (1)

The proof can be obtained directly from the well-posedness of the Helmholtz
equation given in Theorem 3.2 and [25, Corollary 2.3]. The details are omitted here.

To recover A and A" of the covariance and relation operators for the random
source, respectively, we consider the far-field pattern of the electric field

E>®(i,r) = irCy / e £ (y)dy,
R3
which is obtained from the asymptotic behavior of the fundamental solution ®3 given
in (2.6). By similar arguments as those for the Helmholtz equation in Theorem 3.5,
we can establish the following uniqueness theorem.

THEOREM 5.3. Let f € X satisfy Assumption 5.1 with m € (—1,3]. Then for all
#€S% and T > 0, it holds almost surely that

1 1 —~

2Q -

(5.3) Qliinw /Q K" 2E™ (2,5 + 7)E>(2,K) dk = =3 (1),
129 2 T L =

(5.4) ngnoo /Q KM2E>® (%, s+ 17)E°(-%,k)  dk = — 6 Ar (),

where the Fourier transform of a matriz A = [aji];i=1,...3 is defined by A= [Ej\l]j Ie12.3 -
Moreover, the strength matrices A° and A" are uniquely determined by (5.3) and
(5.4), respectively, with (7,2) € © and © C Ry x S? being any open domain.

6. Elastic waves. This section is devoted to the direct and inverse random
source problems for elastic waves. Consider the stochastic Navier equation in a ho-
mogeneous medium

(6.1) pAu+ A+ p)VV - u+w?u = f in RY

where w > 0 is the angular frequency, u € C? is the displacement, A and p denote
the Lamé parameters satisfying ¢ > 0 and A\ + 2 > 0 such that the second order
partial differential operator A* := pA+ (A+p)VV- is strongly elliptic (cf. [29, section
10.4]), and the source f is assumed to be a C%valued GMIG random field satisfying
Assumption 5.1 with some restrictions on m to be given later.

By the Helmholtz decomposition [4, Appendix B], the displacement u outside
the support D of the random source can be decomposed as u = u, + u,, where the
compressional and shear parts u, and u, are defined by
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1 —
up=——=VV-u, u;:=—Vx(Vxu) inR'\D,

i
b K2
where, for d = 3, “Vx” denotes the classical curl operator; for d = 2, “V x (V x -)”
is defined by

V X (V % W) = (D, Oy tis — 02,111, Oy Dyuig — 2 us)

for w = (u1,us)". The Kupradze-Sommerfeld radiation condition requires that u,
and ug satisfy the Sommerfeld radiation condition

(6.2) lim |x|d2;1 (Ozup — ikpuy) =0,  lim \x|% (O)z)us — iksus) = 0.

The well-posedness of the problem (6.1)—(6.2) was investigated in [26], where
the random source f was assumed to be Re-valued satisfying Assumption 5.1 with
m € (d—1,d]. The following result gives the well-posedness of the problem (6.1)—(6.2)
with a C%valued random source and a relaxed condition on the order m.

THEOREM 6.1. Let f satisfy Assumption 5.1 with m € (d — 4,d]. The problem
(6.1)(6.2) admits a unique solution uw € W;:/(R?) almost surely given by

(63) u(wv('U) = - - Gd(x,y,w)f(y)dy

for any ¢ > 1 and 0 < y < min{?=4tm A=dtm 4 (% — 3)d}.

Similar to the operator H, defined in Theorem 3.2, the operator
(Hof)la) == | Galon) f)dy

generated by the Green tensor Gy is also bounded from H~*!'(D) to H**(G) with
s1,82 > 0 and s1 + s2 € (0, 2], since the Green tensor G4 has the same singularity as
the fundamental solution ®4 to the Helmholtz equation. Hence, the proof of the above
theorem can be obtained following the same procedure as the one used in Theorem
3.2 and is omitted here.

Based on the asymptotic behavior of the Green tensor Gy given in (2.9), we can
rewrite u in (6.3) as the following asymptotic expansion

eirip\w| eims\w|

wlw) = e (5 e) b (Ew) + 0 (Ie1= ), Jal = oo,

where

dtl 43 T AN
(6.4) up?(d,w) = —Cacy” w'F ¢ / e f(y)dy,

R4

PSR -

(6.5) u (T, w) = —Cycs? W' (I - QZJET)/ e Y f(y)dy
R4

are known as the compressional and shear far-field patterns of the scattered field w,
respectively. Due to the presence of matrices #2' and I — #2' in (6.4)—(6.5), each
component of uy°(%,w) and ug®(#,w) consists of combinations of all components of
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the random source f, which makes it more complicated than the cases for acoustic
waves, biharmonic waves, and electromagnetic waves.
Define vectors

Vp,j = TjT, Vs,j = €5 — Up 4, ] = 1, ey d,

where # = (#1,...,%4)" and e; is the unit vector in R? with its jth entry being one.
For any matrix A = [ai];=1,... a4, define a reshape operator Z : Rixd _y R by

%(A) = (041,. ey Qldy -5 Qdly .- ,(de)T7

which rearranges the entries of matrix A in rows into a vector. Let up® = (up, ...,
ug‘fd)T and ug® = (ugy, ..., ug d) Then, according to (6.4)—(6.5), we get the follow-
ing expressions for components of u,” and ug”:

o0 (4 % a3 —icpwa-y
(6.6) uy i (3, w) = —Cacp® w2 g e Ty, - fy)dy,

0 (A % a3 —icsw-y
(6.7) ud% (&, w) = —Cacs* w2 » e Ty, i - fy)dy.

Based on the relationship between the kernel and the symbol of the covariance
operator given in (2.5), together with (6.6), we obtain

E [um (2, csc, Yw+7))u Uy (&, cscp 1w)]
‘C |2 4 d 3(0J+T 2 w 2 / / flcﬁ(erT)z y€165w12
R4 JR
XE [0y, - f(y)vps - F(2)] dydz
‘Cd|2 4 d S(W—FT 2 w—/ / 71cg(w+'r)my icswd-z
R4 JR4

XE [#(v,50)) - R(F() F(2) )] dydz

‘Cd|2 4 d 3(0J-|—T) 2 52 / |:/ eicswi(y—2)
Rd | JRrd

X% (Vp,; pl) AK%(y, 2 )dz}@icsﬂb'ydy
_024d73 %% R 'T~%AC
=[Cal ey (w+T) 7w y (Vp,jVp1) (y)

xe 1 TEY dy|cowi| ™ 4 O(w_m_l)}

3—d

w 2
= |Cal?cped = () B, 0],) - RA(cgrit)u 3™ 4+ O(w=+m),

w+T

which leads to

1 /2@ -
lim 0 / wm+3_dc;n+3_dc;4E {u;‘fj (&, cscy H(w+ 7)) usS (2, cscglw)} dw

Q—00

(6.8) = |Cyl? K(vp,; pl) RAC (csTi).
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Similarly, by noting that
E [up] (x CsCpy (w + T)) ug (i,w)}
=[Cal*ciet™ 1(w+7)%w%/ / eTics (W)Y pleswid 2
R JRE
xE {'Up,j - fy)vsy m} dydz

= |Cal*cpel” 1(w+7)d23wd23[ | Pwn000) - RAY)

xe 1 TEY dyl e wid| 7™ + O(wml)}
3—d

=1Cq |2 2 d 1=m <w> ,@('UPJ'USTJ) -g@;l\c(csri“)wd*?’*m—|—O(wd747m),

w+T

we have

e .
lim é/ WmHdgnti—d,2g [um‘ (8o (w + 7)) 0 (z,w)} "

Q—o00
(6.9) \Cd|2,%’('vp]'v DE %Ac(csTx)

Following the same procedure as above, we may get the limit of the following
correlations:

Q—00

1 /2@ B
lim é/ wm+3_dc;"+1_dc;2E {ugj (T, w+7)uy (2, cscglw)} dw
(6.10) = |Cal*R(vsjv)),) - BA(cyTi),

lim Q/QQ m+3dm1dE[ (Iw+7')m}dw

Q—o00
(6.11) = |Cq|*Z(vs v, ) %Ac(csmv)
Note that the coefficients in (6.8)—(6.11) satisfy

T T T T
X (Up,jUp,z T Vp, Vs + Vs, jVp + Us,j”s )

=% (Up,jv;;r,l + 'Up,jvsT,l + (ej — 'Upu) i+ (€j — vy )v ;r,l)
= (ejv,; +ejler—vy1)")
=% (eje]),

which yields
%(vpjvpl + v, ; pl + v jvs |+ Uy Vs - %Ac(csmc) = a]l(csTic).
Adding (6.8)—(6.11), we derive that
. 1 20 t3—d mi3_d —ag u™ (7 coelw)
Ql_r)nooQ/Q w cl { [ (&, csey H(w+T)) u u, (2, cscp w)}
+¢;%c,°E [ (&, eseyH(w + 7)) W}
TR 0 (o + 1) T (e )

TR [ (T, w —&—T)m} }dw = |Cd|25§\l(cs7'£)
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for 5,1 =1,...,d, which can be rewritten into a compact form

1 [ — T
lim —/ wm+3_dc;”+3_d{c;4E [ugo (2, cscy M (w+ 7)) ue (2, cscp 'w)

_ T
—1—0;20ng [ugo (z, cscgl(w + 7)) uF(,w) }

- 7
—1—0;201721}3 [ugo (Z,w+T) uoe (:%, cscglw) }
4 50 /A — ! 277 .
(6.12) +c; °E {us (Z,w~+ 1) uX (Z,w) } }dw = |Cy|* Ac(csTi).

A similar result for the strength A" of the the relation operator can be obtained
based on the same procedure:

1 [
Jin & [Cemstasf gt [ (g e+ ) wE (g )|
Q

+C;2C];2E [u‘;o (ig cscgl(w + ’7')) u® (-1, w)T]

+c;20;2E [ufo (2, w+7)u’ (—4, cscglw)—r}

(6.13) +eTiE [uoo (&0 + ) U (-@,W)T} }dw = C2A7 (cyri).

The above recovery formulas (6.12) and (6.13), where the expectation of the corre-
lations between u,° and ug® is involved, can be improved by removing the expectation.
In fact, according to (6.6)—(6.7), one can easily find that components up% and ug
are both linear combinations of far-field patterns for acoustic waves given in (3.4)
perturbed by random sources f;, i = 1,...,d, which are components of the source f.
Thus, the estimates of the far-field pattern for acoustic waves given in Lemma 3.4 also
hold for u;° and ug®. Then following the same procedure used in Theorem 3.5, we can
get that the strengths A¢ and A" can be uniquely recovered from the compressional
and shear far-field patterns at a single realization of the random source almost surely,
which is stated in the following theorem.

THEOREM 6.2. Let f satisfy Assumption 5.1 with m € (d — 4,d]. Then for all
# €St and 7 > 0, it holds almost surely that

1 [ — 7
dim & [t st G (e o 1) ()
Q
’

+c;20;2u;° (z, csc;I(w + 7)) uP(Z,w)
T

+c;26;2u§° (Z,w+T) ug® (i", cscglw)

(6.14) e ul (2w + 7) ue (;%,w)T] dw = |Cd|221\c(csT:%),

1 2@
ngnoo a/ C:l+37dwm+37d |:Cp4u;o (.’2, CSC;I(W + T)) u;o (7‘%,056;1(’0)7—
Q

—l—cs_gc;Qu;o (, cscgl(w +7)) u(—i,w) "

o . W 1 N\T
+e5 %2 u (B,w + ) uy (&, csc, ' w)

(6.15) e tu® (B w4 71)ul (3 w) } dw = C’g:ﬁ(csmi“).
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Moreover, the strengths A and A" can be uniquely determined by (6.14) and (6.15),
respectively, with (7,2) € © and © C Ry x S~ being any open domain.

Remark 6.3. By Theorems 3.5, 4.2, 5.3, and 6.2, the strength appearing in the
principal symbols of the covariance and relation operators of the random source can
be uniquely determined with probability one by the high frequency limit of the far-
field pattern averaged over the frequency band generated from a single path. When
the GMIG random field reduces to the classical white noise, i.e., m = 0, it is possible
to have the uniqueness by using a fixed frequency data (cf. [28, Corollary 4.1]). It is
unclear whether the uniqueness can still be obtained for general GMIG random fields.
Moreover, if the data is noisy and incomplete as it always occurs in applications,
these issues are concerned with the stability of the inverse problems, which are more
challenging in the random case and worth investigating in the future.

7. Conclusion. In this paper, we have discussed the direct and inverse random
source problems for acoustic waves, biharmonic waves, electromagnetic waves, and
elastic waves. The source is assumed to be a centered GMIG random field whose
covariance and relation operators are classical pseudodifferential operators. For such
a rough source, the unique solvability is achieved for a larger class of distributions
compared with the existing results. The inverse problem is to recover the principal
symbols of the covariance and relation operators. A relationship is established in
the high frequency limit which connects the principal symbols of the covariance and
relation operators and the far-field pattern averaged over the frequency band gener-
ated from a single realization of the random source. Based on the relationship, the
uniqueness of the inverse problem is obtained.

A possible continuation of this work is to study the stochastic wave equations
with a random potential, where both the source and the potential are complex-valued
GMIG random fields. These problems are more challenging due to the nonlinearity
and coupling of the random source and potential. We hope to be able to report the
progress on these problems elsewhere in the future.
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