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Abstract. This paper is concerned with an inverse scattering problem for the time-harmonic
elastic wave equation with a random potential. Interpreted as a distribution, the potential is assumed
to be a microlocally isotropic generalized Gaussian random field with the covariance operator being
described by a classical pseudodifferential operator. The goal is to determine the principal symbol of
the covariance operator from the scattered wave measured in a bounded domain which has a positive
distance from the domain of the potential. For such a rough potential, the well-posedness of the
direct scattering problem in the distribution sense is established by studying an equivalent Lippmann—
Schwinger integral equation. For the inverse scattering problem, it is shown with probability one that
the principal symbol of the covariance operator can be uniquely determined by the amplitude of the
scattered waves averaged over the frequency band from a single realization of the random potential.
The analysis employs the Born approximation in high frequency, asymptotics of the Green tensor for
the elastic wave equation, and microlocal analysis for the Fourier integral operators.
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1. Introduction and statement of the main result. The scattering prob-
lems for elastic waves have significant applications in diverse scientific areas such as
geophysical exploration and nondestructive testing [18, 33]. In medical diagnostics,
elastography is an emerging imaging modality that seeks to determine the mechanical
properties of elastic media from their response to exciting forces [30]. By mapping
the elastic properties and stiffness of soft tissues, it can give diagnostic information
about the presence or status of disease [12]. Driven by these applications, the un-
derlying inverse problems, which are to determine the medium properties based on
the elastic wave equation, have been extensively studied and many mathematical re-
sults are available, especially for the uniqueness [9, 13, 14, 32]. We refer to [2] for a
comprehensive account of mathematical methods in elasticity imaging.

Stochastic modeling has been widely adopted to handle problems involving un-
certainties and randomness. In the research area of wave propagation, the wave fields
may not be deterministic but rather are described by random fields due to the un-
certainties for the media and/or the environments. Therefore, it is more appropriate
to consider the stochastic wave equations to describe the wave motion in random
settings. In addition to the ill-posedness and nonlinearity, stochastic inverse prob-
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lems have substantially more difficulties than their deterministic counterparts. The
random parameters to be determined in stochastic inverse problems can be character-
ized not by a particular realization but instead by its statistics, such as expectation
and covariance. Hence, the relationship between these statistics and the wave fields
needs to be established. In general, the statistics of the data for the wave fields are
required, which significantly increases the computational cost since a large number of
realizations is needed. It is an important and challenging problem to determine the
statistics of the random parameters through fewer realizations of the wave fields.

The paper is concerned with an inverse scattering problem for the time-harmonic
elastic wave equation with a random potential in two dimensions. Specifically, we
consider the stochastic elastic wave equation

(1.1) pAu + A+ @) VV - u+w*u — pu = —d,a in R?,

where w > 0 is the angular frequency, a is a unit polarization vector in R?, §,(-) :=
§(- — y) is the Dirac delta function concentrated at the source point y € R?, and A
and p are the Lamé parameters satisfying p > 0 and A+ 2u > 0 such that the second-
order partial differential operator A* := pA + (A + pu)VV- is strongly elliptic (cf.
[29, section 10.4]). The potential p in (1.1) could be viewed as an unknown external
linear load acting on a known homogeneous and isotropic elastic medium, or it could
be interpreted as a random parameter coming from an unknown anisotropic mass
density of the medium [9]. Throughout the paper, p is considered to be a generalized
Gaussian random field satisfying the following assumption.

Assumption 1.1. Assume that the centered random potential p is a microlocally
isotropic Gaussian random field of order —m in D with m € (1,2] and D being a
bounded domain. More precisely, p has the principal symbol ¢(x)|&|~™, where ¢ is
called the microcorrelation strength of the potential p and satisfies ¢ € C§° (D), ¢ > 0.

The displacement of the total field w € C? in (1.1) can be decomposed into
u(z,y) = u'(z,y) +u(z,y),
where u® represents the scattered field and wu’ is the incident field given by
u'(z,y) = G(z,y,w)a, = #y.

Here, G(z,y,w) € C?*2 denotes the Green tensor for the Navier equation. Explicitly,
1 1
(12) G(x,y,w) = ;@(x,y, HS)I + vavj [‘I)(l‘,% ’fs) - q)(xa Y, ’ip) )

where I is the 2 x 2 identity matrix, V, = (0,,,0,,)" is the gradient operator,
®(z,y, k) = * él)(:‘i|$ — y|) is the fundamental solution of the two-dimensional
Helmholtz equation with Hél) being the Hankel function of the first kind with or-
der zero, and K, := cpw and kg := csw with ¢, = (A + 2p)~% and ¢; = 2 are known
as the compressional and shear wavenumbers, respectively.

Since the elastic wave equation (1.1) is imposed in the whole space R?, an ap-
propriate radiation condition is needed to complete the problem formulation. By the
Helmholtz decomposition (cf. [8, Appendix B]), the scattered field u® can be decom-
posed into the compressional wave component u;, and the shear wave component ug,
ie.,

u® =uy +u; in R?\ D.
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S

5 and ug satisfy the

The Kupradze-Sommerfeld radiation condition requires that u
Sommerfeld radiation condition

(1.3) rll>nolo r? (Opup —ikpus) =0, rli>nolo r? (Opul —ikgul) =0, r=|z|.

As is known, the inverse scattering problems are challenging due to the nonlin-
earity and ill-posedness. Apparently, the stochastic inverse scattering problems are
even harder in order to handle the extra difficulties of randomness and uncertainties.
There are very few results concerning the solutions of the stochastic inverse scatter-
ing problems. For the inverse random source problems, when the source is driven by
an additive white noise, effective mathematical models and efficient computational
methods have been proposed for the stochastic acoustic and elastic wave equations
[4, 6,25, 24, 5, 7]. To determine the unknown parameters in the above models, in gen-
eral, the data of the expectation and variance for the measured wave field is needed,
and hence a fairly large number of realizations of the random source are required.
If the source is described as a generalized Gaussian random field whose covariance
is a classical pseudodifferential operator, the results of uniqueness were established
in [20, 21] for the stochastic acoustic and elastic wave equations. It was shown that
the principal symbol of the covariance operator can be uniquely determined by the
amplitude of the wave field averaged over the frequency band. It is worth mention-
ing that the methods in [20, 21] only require the scattering data corresponding to a
single realization of the random source. For the random Schrédinger equation where
the potential is a generalized Gaussian random field, it was proved in [10] and [19]
that the principal symbol of the covariance operator can be uniquely determined by
the backscattered far-field data associated with the plane wave and the scattered
wave field associated with the point source, respectively. Similarly, the approach only
needs a single realization of the random potential. A related work can be found in
[16], where an inverse scattering problem in a half-space with an impedance bound-
ary condition was studied where the impedance function is modeled as a generalized
Gaussian random field.

In this work, we study both the direct and inverse scattering problems for the
stochastic elastic wave equation (1.1) along with the radiation condition (1.3). Given
the random potential p, which is rough and can only be interpreted as a distribu-
tion, the direct scattering problem is to determine the displacement w which satisfies
(1.1) and (1.3) in an appropriate sense. Using Green’s theorem and the Kupradze—
Sommerfeld radiation condition, we deduce an equivalent Lippmann—Schwinger inte-
gral equation. Based on the Fredholm alternative theorem and the unique continu-
ation principle, the Lippmann—Schwinger equation is shown to have a unique solu-
tion in the Sobolev space with a positive smoothness index. The inverse scattering
problem is to determine the microcorrelation strength ¢(z) from the scattered field
measured in a bounded and convex domain U C R?\ D, which has a positive distance
from D.

It is clear to note from the elastic wave equation (1.1) that the displacement u
depends on the observation point z, the location of the source point y, the angular
frequency w, and the unit polarization vector a. To express explicitly the depen-
dence of u on these quantities, we write u(z,y,w, a), u'(r,y,w,a), u®(r,y,w, a), and
u;(z,y,w,a) in the Born series (cf. (4.1) and (4.2) for the definition of u;) for u(z,y),
u'(z,y), u(z,y), and u;(x,y), respectively. Moreover, when the observation point
x coincides the source point y, for simplicity, we write ©®(z,w, a) and u;(z,w, a) for
u®(z,z,w, a) and u,;(x, z,w, a), respectively.
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The following theorem concerns the uniqueness of the inverse scattering problem
and is the main result of this paper.

THEOREM 1.2. Let p satisfy Assumption 1.1 and additionally m > g Let U C

R2\D be a bounded and convex domain having a locally Lipschitz boundary and a
positive distance from D. Then for all x € U, it holds almost surely that

3 1 @ m—+2 2 s 2 _ 1
(4 Jim 5= [T >~ (e, 0y = O | = geo

067nz+06—7n

where Cpy, := “smroor—, and ai and as are orthonormal vectors in R2. Moreover, the
function ¢ can be uniquely determined from the integral equation (1.4) for all x € U.

Since the scattered field u® depends on the realization of the random potential
p, the scattering data given on the left-hand side of (1.4) is random for any finite Q.
However, (1.4) indicates that the scattering data is statistically stable when @ ap-
proaches to infinity, i.e., it is independent of the realization of the potential. The main
result demonstrates that the function ¢ can be uniquely determined by the amplitude
of two scattered fields averaged over the frequency band, which are generated by a
single realization of the random potential. Here, the two scattered fields are excited
by the incident waves Ga; and Gas. The proof of the main result is quite techni-
cal. The analysis employs the Born approximation in the high frequency regime, the
asymptotics of Green’s tensor for the elastic wave equation, and microlocal analysis
for the Fourier integral operators.

For readability, we briefly sketch the steps of the proof for the main result. As
mentioned above, the scattering problem (1.1) and (1.3) can be equivalently formu-
lated as a Lippmann—Schwinger integral equation which admits a unique solution.
A careful analysis shows that the Born series of the Lippmann—Schwinger integral
equation Z;’;O u; (cf. (4.1) and (4.2) for the definition of u;) converges to the unique
solution to the direct scattering problem when the angular frequency w is sufficiently
large. Hence, the scattered field u® can be written as

u® = uy +us + b, b:Zuj.
=3

For the first item u;, by employing the asymptotic expansions of the Green tensor
and microlocal analysis for the Fourier integral operators via multiple coordinate
transformations, we show in Theorem 5.1 that

1

R2 \13—(|2

1 Q
(1.5) lim 7/ wmt2 Z lug (2, w, aj)|2dw =Cn P(¢)dc.
1

It is shown in Theorem 5.5 that the contribution of the second item us can be ne-
glected, i.e.,

1 Q
(1.6) Jim ﬁ/1 W2 |uy (2, w, a)|2dw = 0.

For the remaining term b, by means of estimating the order with respect to the angular
frequency w, we deduce in section 5.3 that

Q
(1.7) lim / W™ b(x,w, a)*dw = 0.
1
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The main result then follows from (1.5)—(1.7).

The rest of the paper is organized as follows. In section 2, we briefly introduce the
microlocally isotropic generalized Gaussian random fields and present some of their
properties. Section 3 concerns the well-posedness of the direct scattering problem. We
show that the direct problem is equivalent to a Lippmann—Schwinger integral equation
which is uniquely solvable for a distributional potential. In section 4, the Born series is
studied for the Lippmann—Schwinger integral equation in the high frequency regime.
Section 5 is devoted to the inverse scattering problem. The paper is concluded with
some general remarks and directions for future work in section 6.

2. Generalized Gaussian random fields. In this section, we give a brief in-
troduction to the microlocally isotropic generalized Gaussian random fields in R,
d =2 or 3. Let C§°(R%) be the set of smooth functions with compact support, and let
D := D(R?) be the space of test functions, which is C§°(R?) equipped with a locally
convex topology. The dual space D’ := D’(R%) of D is called the space of distributions
on R? and is equipped with a weak-star topology (cf. [1]). Denote by (Q,.%7,P) a
complete probability space, where € is a sample space, .% is a g-algebra on 2, and P
is a probability measure on the measurable space (€, .%).

A function p is said to be a generalized random field if, for each @ € €, the
realization p(@) belongs to D’'(R?) and the mapping

(2.1) weEN— (p(w),Y) eR

is a random variable for all ¢ € D, where (-,-) denotes the dual product between D’
and D. The distributional derivative of p € D’ is defined by

<3z]07¢>:_<973z]¢> V¢GD7 leavd

A generalized random field is said to be Gaussian if (2.1) defines a Gaussian random
variable for all ¢ € D.

For a generalized random field p € D', we can define its expectation Ep € D’ and
covariance operator @, : D — D’ as follows:

(Ep,¢) :=E(p,¢) V¢ €D,
<Qp1/}17w2> =E [(<p7 l/}1> - E<p7 ¢1>)(<Pa T/’z) - E<,0, 7/}2>>] Vil)l,quQ eD.

It follows from the continuity of ), and the Schwartz kernel theorem that there exists
a unique kernel function K, € D'(R? x R?) satisfying

(Qpih1,v2) = (Kpyho @ 11) Vb1, 1P € D.

The following definition can be found in [19] on the microlocally isotropic generalized
Gaussian random fields.

DEFINITION 2.1. A generalized Gaussian random field p on R? is called microlo-
cally isotropic of order —m in D with m > 0 if the realizations of p are almost surely
supported in D and its covariance operator Q, is a classical pseudodifferential oper-
ator having an isotropic principal symbol ¢(x)||~™ with ¢ € C(RY), suppp C D
and ¢ > 0.

Without loss of generality, we choose the bounded domain D which not only
contains the support of p almost surely but also has a locally Lipschitz boundary.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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To have a better understanding of microlocally isotropic Gaussian random fields,
we give an example by introducing the centered fractional Gaussian fields (cf. [26, 28])
defined by

(2.2) fm(x) = (=4)~

m

TW(z), zecRY

where (—A)~% is the fractional Laplacian and W € D’ denotes the white noise. It is
shown in [26] that the kernel Ky, of f, is isotropic since its value depends only on the
distance between z and ¥y, and f,, is a microlocally isotropic Gaussian random field of
order —m and satisfies Definition 2.1 with ¢ = 1. In particular, if m € (d,d + 2), the
fractional Gaussian field f,, defined above is a translation of the classical fractional
Brownian motion. More precisely,

fon(®) == (fm, 02 — 80), z€RY,

has the same distribution as the classical fractional Brownian motion with Hurst
parameter H = % € (0,1) up to a multiplicative constant.

The regularity and kernel functions can be obtained for the microlocally isotropic
Gaussian random fields by using the relationship between them and the fractional
Gaussian fields defined in (2.2). It is clear to note that the fractional Gaussian field
fm defined by (2.2) has the same regularity as the microlocally isotropic Gaussian
random field p of order —m in Definition 2.1. Hence, we have the following regularity
results for the microlocally isotropic Gaussian random fields. The proof can be found
in [26].

LEMMA 2.2. Let p be a microlocally isotropic Gaussian random field of order —m
in D with m € [0,d + 2).

(i) If m € (d,d+2), then p € C®%(D) almost surely for all a € (0, Z54).

(ii) If m € [0,d], then p € Wmde_e’p(D) almost surely for any € > 0 and p €

(1,00).

3. The direct scattering problem. According to Lemma 2.2 with d = 2, if
m € (2,4), the random potential p is a Holder continuous function almost surely and
has enough regularity such that the scattering problem (1.1) and (1.3) is well-posed
in the traditional sense (cf. [8]). However, if m € [0, 2], then the random potential
pE WMTJ_E”’(D) is a distribution, and the elastic wave equation (1.1) should be
considered in the distribution sense instead.

In this section, we study the well-posedness of the scattering problem (1.1) and
(1.3) with m € [0,2] (cf. Assumption 1.1) by considering the equivalent Lippmann—
Schwinger integral equation.

In what follows, we denote by X := X2 = {g = (g1,92) ' : g; € X Vj = 1,2} the
Cartesian product vector space of X and use the notation W™ := (W"P(R?))? and
H" := W"? for simplicity. The notation a < b or a > b stands for a < Cb or a > Cb,
where C' is a positive constant whose value is not required but should be clear from
the context.

3.1. The Lippmann—Schwinger integral equation. Based on the Green ten-
sor G in (1.2) and given a source point y € R?, the Lippmann-Schwinger integral
equation takes the form

31 wen)+ [ Ganpluti: = Gepwe 1eR oty
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For a fixed y € R?, define two scattering operators H,, and K, by

(How)(@) = [Hou(,p)l(z) = | G(2,2,w)ulz,y)dz

and

(3-2) (Kou)(z) = [Kou(,y)l(z) = - G(z,z,w)p(2)u(z,y)dz,

which have the following properties (cf. [27, Lemma 4.2]).

LEMMA 3.1. Let p satisfy Assumption 1.1, O C R? be a bounded set, and V C R?
be a bounded open set with a locally Lipschitz boundary.
(i) The operator H,, : Haﬁ(O) — HP(V) is bounded for any S € (0,1].
(ii) The operator H,, : W, "P(O) — WYV) is compact for any q € (2,00),
v e (O7 %), and p satisfying % + % =1.
(iii) The operator K, : W9(V) — W4(V) is compact for any q € (2, 72—) and
ve (9
The following result gives the well-posedness of the Lippmann—Schwinger integral
equation (3.1).

THEOREM 3.2. Let p satisfy Assumption 1.1. Then the Lippmann-Schwinger
integgal equation (32.1) ailmits a unique solution w € W1 almost surely with q €
(2. 75) and v € (3%, 7).

Proof. Let V C R? be any bounded open set with a locally Lipschitz boundary.
By the definition of the operator K, the Lippmann—Schwinger integral equation (3.1)
can be written as

(3-3) (I + Ko)u(p)(2) = Glo,y.w)a, = €R?,

where y € R? is fixed and I is the identity operator. It follows from Lemma 3.1 that
the operator I + K, : W74(V) — W71(V) is Fredholm. Moreover, it is shown in [20,
Lemma 4.1] that G(-,y,w) € (W (V))2%2 with p’ € (1,2). Choosing p’ = 2 — e with
€ > 0 being sufficiently small, we obtain from the Kondrachov compact embedding
theorem that the embedding Wl’pl(V) — W74(V) is compact, which indicates that
the right-hand side of (3.3) satisfies G(-,y,w)a € W4(V).

By the Fredholm alternative theorem, the Lippmann—Schwinger integral equation
(3.3) has a unique solution w € W1(V) if

(3.4) (I+K,)u=0

has only the trivial solution © = 0. This fact can be proved by the unique continuation
principle (cf. [27]), which restricts the parameters ¢ and 7 to intervals (2, ﬁ) and
(27m 1

5, 5, respectively. 0

3.2. Well-posedness. Now we show the existence and uniqueness of the solu-
tion of (1.1) in the distribution sense by utilizing the Lippmann—Schwinger integral
equation.

THEOREM 3.3. Let p satisfy Assumption 1.1. The elastic wave equation (1.1)
together with the radiation condition (1.3) is well-defined in the distribution sense and

admits a unique solution w € W% almost surely with q € (2, 72-) and v € (252, %)

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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Proof. First we show the existence of the solution to (1.1). It suffices to show
that the solution of the Lippmann—Schwinger integral equation (3.1) is also a solution
of (1.1) in the distribution sense.

Suppose that u* € W7 is the solution of (3.1) and satisfies

loc

w*(z,9) + | G(z,z,w)p(2)u*(z,9)dz = G(v,y,w)a, z € R
R2

Since the Green tensor G is the fundamental solution for the operator A* + w?, we

have
(A* + WQ)G(',va) = _6yIa

where I is the 2 x 2 identity matrix, and 0, is a distribution, i.e., d,, € D’. Hence, we
get for any @ € D that

(3.5) (A" +W)G(,y,w), ) = —(6,1,9) = —(y).
For any 4 € D, it follows from (3.5) and a simple calculation that
(AU + A+ p)VV - u* + wu® — pu*, 1)
—— ([ (&) Glmwple (2 )iz )
+ (A" +0?) G(y,w)a, ) — (pu*, ) = —(5,a,),

which implies that w* € W7 is also a solution of (1.1) and shows the existence of
the solution of (1.1) according to Theorem 3.2.

The uniqueness of the solution to (1.1) can be obtained by following the same
procedure as that used in [27, Theorem 3.5], which completes the proof. ]

4. The Born series. The results in the previous section indicate that the scat-
tering problem (1.1) and (1.3), which is interpreted in the distribution sense, is equiv-
alent to the Lippmann—Schwinger integral equation (3.1). In what follows, we may
just focus on the Lippmann—Schwinger integral equation (3.1).

To get an explicit expression of the solution, we consider the Born sequence of
the Lippmann—Schwinger integral equation

(41) uj(xvy) = [_Kwuj—l('ay)](x)7 .] € N7
where the leading term is
(4.2) uo(z,y) = G(z,y,w)a.

The goal of this section is to prove that the Born series Z;‘;O u; converges to the
solution wu for sufficiently large w.

4.1. Estimates of the scattering operators. Before showing the convergence
of the Born series, we first introduce a weighted space which is equipped with a
weighted LP-norm (cf. [23]). For any 6 € R, let

LE(R?) := {f € Lipe(R?) : || fll 2z < oo},

which is denoted by L for short and is equipped with the norm

g = 10+ 1Bl = ([ 0+ o) #ip@Pa)
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Define the space
H{P(R?*) :={feS:(I-A)z2fe L}
which is denoted by H;"” for simplicity and is equipped with the norm

£z e = 1T = A)% fll 2

Here &’ denotes the dual space of & which is the space of all rapidly decreasing
functions. When § = 0, the space H;” can be identified with the classical Sobolev
space W*P. When p = 2, let Hj := H§’2. For any s € R and ¢ € [0, 1], it is easy to
verify that

s s 7 s A
43) Sl = 1T =22+ |- 12 flle 2 N+ -2 fllze = 1 f ]l me

where the inequality is obtained by using [11, Theorem 13.5].
Based on these weighted norms, the operators H, and K, can be estimated as
follows.

LEMMA 4.1. Let V C R? be any bounded domain. For any s € (0, %) and € > 0,
the following estimates hold:

(4.4) Wl g proe ey S w42,
(4.5) ||HwHL(H;S,L°°(v)) Swite
Proof. The Green tensor G(z,y) := G(z,y,w) satisfies
(4.6)  pAG(z,y) + AN+ p)VV - G(z,y) + w*G(z,y) = —6(x —y)I in R%
Taking the Fourier transform on both sides of (4.6) with respect to x — y leads to
~plEPGE) — A+ e €GO +wP G = T,

where ¢ = (£1,&) 7. A simple calculation gives

CEC2
(47) GO = e a)g e
where the matrix
Ale) = plg)? — w? 4+ (A + p)é3 —(A+ i
' —(A+ p)érée ulé)? —w? + A+ p)éd|

Let f = (f1,/2)" € CY and g = (g1,92) " € CF. We have from the Parseval
identity that

(Hot.e) = [ HFOs€E = [ GOF©aEE
RQ R2
- [ ([Ea©4© +Ga©r@)n©
(4.8) + (G916 + Goal©) ()] 32(6) ) de,

where é; denotes the (i, j)-entry of G. Noting that each term in (4.8) has the same
singularity at |£| = csw and |{] = cpw, we only need to estimate the terms
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o _ 22 plé)? —w? + N+ p)éd 5o

(49) - Gll(g)fl(g)gl(g)dg — &6p 42 (|€|2 — ng2)(|£‘2 — C%wg)fl(g)gl(g)dg?
- ~ N . 6262 *(A‘Fﬂ)gng 7 N

110 [ Gal@h©n©dk = | ot hen @

and the other two terms can be estimated similarly.
Define the Bessel potential operator J° by

T*hix) = F L+ [E)FRE))(x) VseR heS,

where F~! is the inverse Fourier transform. To deal with the singularity, we split the
whole space R? into three parts:

Q= {£eR?: ||¢] — cw| < 1w},
Qy:={£ € R : [|¢] — eow| > erw and [[¢] - cpw| < eaw},
Q3= {€ € R”: ||| — cow| > erw and [[¢] - cpw| > eaw},

where £; > 0 and 5 > 0 are two constants.
First we estimate (4.9). Let

22 plé —w+ AN+ )& ;o
e MO

sTp
p

_ 22/ plE]? — w? 4+ (A + p)&3
a, (

— % Jo, (6P = 2P (e~ )

For the term I3, using the definition of {23 and noting

(1462 T[T *q(€)ds, j=1,2,3.

A+ & = (A +2m)€5 — p&3| < (A +20)[€)* — w? + pl¢]? — w? + 202

and
pEP—wP+ QMg | 1 1
(€7 = c2w?) (6 — ) | ™ [I€1? — cGw?]  [I€]* — cdw?|
w2
R = ) (e - cgw?)|’
we get
A+ (4P w?(1+1€%)°
1. <
fs] 5 /Q [Ilél2 — gw?| T eE ] T (e - 2w (el - cpw?)|

x| T F1(6)]| T 5 01(6)]de
sw [ TR O]
3
Sw | fill s gl
where in the second step we have used the following estimates: if |£| < (¢p — €2)w,

then
A+1e?) _ _(A+[gP)”

(14 |(cp — e2)wl?)® < W2t
€12 — c2w?| ~ eaw([§] + cpw)

eacpw? ~ ’

<
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if [€] > (¢p + e2)w in Q3, then

(e _ O+l

(2|§|2)S < 1 < ,,—2+2s
1€]? — cgw?| — eaw([€] + cpw) '

eqwl§| 7~ wlgft =

<

For the term I;, we have

1 ST sF (&) T—50,
h:@AJW_%Mu+mﬂj (6T g1 ()dg

2 —_— —_—
v | e e (1 P T RO T €

ciw?)([§]* — cgw?)
=:I11 + Iia.

For £ € Q, we can choose €1 small enough such that ||£] — cpow| > cw for some ¢ > 0,
and follow similarly the estimate of I3 to get

Ll S w225 full g gl g

To estimate 112, we make the following change of variables:

£ = €+ 2(csw — [€)€ = 2c,wE — &,

where € = ¢ /1€]. It can be easily verified that the change of variables maps the
domain Qy; := {£ € R? : cqw — g1w < |€| < csw} to the domain Qg5 := {€ € R? :
csw < €| < csw + e1w}, and the Jacobian for the change of variables is
2csw

€]

Using the fact Q1 = Q53 U Q1 U {€ € R? : [¢] = cow} with {€ € R? : [¢] = cow}
being a set of zero measure, we obtain

J(6) =2 -1,

(A +p)&s $TTTE (o T
I12 - 036123 /Qanlz (|£|2 7ng2)(|£|2 7012)(’02)(1 + |€|2) j fl(g)j gl(f)df
A+ )& $ FTIF (N e
—ﬁﬁﬂéﬂw_éwxmhﬂy%u+m%3 7 (6)T g (€)de

)\ *2 e o
+ 24 || Ter e e TRET @
12 p

_ccl/ my (&, w)(1+ [€2)° T F1 ()T g1 (€)de
+@%/ [ma(6,) [(1+ |2 T A€ T (")
Q12
— (L+ 6P T ROT ()] ()| de
=:I13 + I14,

where

(A + p)&3 (A + p)&s?
(P =P =) T (e —aw) (e —aw)”©

ml(fvw) =

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 09/21/22 to 128.210.107.131 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

INVERSE ELASTIC SCATTERING 5137
A+ p)&?
|£*[? — c2w?)([€*]? — c2w?)

For £ € Q1, it is not difficult to show that £* € Q11 with |€*]? = 4c2w? + [€]? — 4eswl€].
Then there exists a constant C' > 0 such that

m2(§7 w) - (

A+ wés
)m? —aw?| =
and
1 1
et e
_ ‘ 1 N 1 2csw — |¢] ‘
(€] = co) (€] + o)+ (€] — o) (€] — 3eww)  [&

2c2w? — 2c,w|€| 9

< w ,
(1€] = esw) ([€] + esw) ([€] = Besw)[€] ™~

which leads to
A 2 1 1
ma(e,w)] < |- ng J(S)”

+
€7 — 3 [EP = u? T [P —

J () { A+wé&® A+ we }

+ —
e e
Hence, the term I3 admits the estimate

s S w 22| fill gr—sllga | -

Ttem I;4 can be decomposed as

Ly =2 /Q ma(€,w) [(1+ [6°2)° = (1 +€%)°] T F1(6) T 91 (€) J(€£)d¢

~

—

+ e /Q ma(&,w)(1+ [€°2)° [T (&%) = T F1(6)] T01(€) J (€)d¢

—_—

+ e ma(&,w) (1 + |€5[})* [7/_5\91(5*) T (§)] T~ f1(£) T (€)d¢

Q12
=:I15 + Lis + L7
By the mean value theorem, we get
ma(€,w) [(1+[€°%)° = (1 + [€%)°] J(€)]
A+ () (L0162 + (1= 0)[¢[*)" s(€7[2 = [¢]) 2¢00 — [¢] |

(& = 2w?)(€ 7 — cBw?) €]
|+ &) (140182 + (1 - 0)I€2)" dsewlew — [€]) 2e0 — [¢]
(&l = csw) (1€] = Besw) (1€°[* = c3w?) €]

< w72+25
with some 6 € (0,1). It shows that

Lis| S w2728 full s

To estimate I;5 and I;7, we employ the following characterization of W1P(R%)
introduced in [15].

gl”H*S-
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LEMMA 4.2. For 1 < p < oo, the function u € W'P(RY) if and only if there exist
g € LP(RY) and C > 0 such that

u(z) = uly)| < Clo —yl(9(z) + 9(y))-
Moreover, we can choose g = M(|Vul), where M is defined by

1
M(f)(x) = sup B@) Lo |f(y)ldy

and is called the Hardy-Littlewood mazimal function of f.

For f1 € C§°, we have ﬂ € S C H'. An application of Lemma 4.2 gives
(411) |TA(E) = TR S e~ €l [MAVTAD(E) + MIVTAD(E)].

By [31, Theorem 2.1}, we get

1MV T Fil)lze S IVT~*fillze S I = A)2T~*Ful 12
(4.12) = [T =23 +]-A)FAOIe = il g

where (4.3) is used in the last step. Combining (4.11) and (4.12) gives

g < w12 / [M(VTRNE) + M(VT L)1 T 9 (€)|de

Q12
S e

~

gl”H*S-

Item I;7 can be similarly estimated and satisfies

Li7| S w 28| frll -

g1 ” Hy®
Hence we conclude from the above estimates that

L] S w2l

ngH;S-

Similarly, we may repeat the steps for the estimate of I; and show that

o] S @™ 2 full gy

91HH;S-

It follows from the estimates of I, j = 1,2, 3, that (4.9) satisfies the estimate

[ G OA©On (O] S Ul

Next is to estimate (4.10). Let

A+ 2 ey
1= | e e g Om O

2 2/ (A + €16
a, (

% Jo, (€ — 2a?) (P — 3w?)

) (1+ [€P) T F) T—gu(€)de, j=1,2,3.
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Following the same estimate as that of I3 and noting

A2 2 2 2 2
O+ 26l —u? | i e

[(A + 1)€1&a] = [(A +21)6162 — p€iéa| <

we have
5| < w25 fall g lga |z

As for the estimate of

h =it [ e e (1 € T RO €.

€12 = cEw?)(|€]? — gw?)

it is similar to that of I;5 and admits

| < w_1+25||f2||H;-*

g1 ||H1_S’

which may further lead to the estimate
L] S w2 foll e llga -

Combining the above estimates yields

GO F(©1(€)de] S w2 | fall y—+llgnll -

R2

It follows from (4.9)—(4.10) that (4.8) has the following estimate:

(Hof.g)| S | gl ¥ F.g€CF.

This result can be extended for any f,g € H;® since C{° is dense in H;®. The
density argument can be found in [23, Theorem 2.2]. It then completes the proof of
(4.4).

To prove (4.5), let f = (f1, f2)" € C;°. We have

(1@ = | Gty
- [0+ 1ePiGE.oTF e

Cur (2, T—F1(6) + Cra(2, )T~ o(€)

_Z dg,
Ga1(z,£)T 5 f1(§) + Gaz(2,§) T 5 f2(€) ¢

(413) - [La+ieps

where Gz, ¢), different from G(¢), denotes the Fourier transform of G(z, ) obtained
by taking the Fourier transform on both sides of (4.6) with respect to y and satisfies

—pl¢PG () = (A + pE - €T G(a,€) + W C(x, ) = —e L

Comparing the above equation with (4.7), we get ég(x, &) = e’i“"géi\j(f). It follows
from the same arguments as those for item (4.9) that

[+ )G 0T R
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—1

P d¢

s+

/R2 CL(©)(L+ 1) 5 T fi(€)e ™41 + [¢[?)

1
S WHﬁHHI—S S WS+6||f1||H;Sv

where we have used the fact that the function

—1l—¢

9(6) = E 1+ JeP)
satisfies ¢ € H'! for any € V. The estimates can be similarly obtained for the other
three items in (4.13). Therefore we have

[ Hos £ll poe vy S @0 NF Il g
which completes the proof of (4.5). o

Based on the estimates for the operator H,, the following results present the
estimates for the operator K.

LEMMA 4.3. Let V C R? be a bounded domain and p satisfy Assumption 1.1. For

any s € (25™, 1) and € > 0, the following estimates hold almost surely:

2 72
IKollems ) Sw ',

IKulloeers Loy Sw*.

Proof. For any w € H? |, it holds that K,u = H,(pu) with H, being a bounded
operator from H® to H? ; according to Lemma 4.1.
We first claim that pu € H{® for any w € H®,. Note that p € W, 7?(D)
2—m

for any v > =5™ and p > 1 according to Lemma 2.2. For any u,v € S, define

(pu,v) := (p,u - v) and a cutoff function ¥ € C§° whose support D has a locally
Lipschitz boundary and 9(x) = 1 if x € D C D. It is easy to verify that

[(pu, v)| = [{p, (Vu) - (Vv))]

= [{(I =2)7p, (I = A)[(Wu) - (Y0)])|

< lpllw=» (I = A)Y[(Yw) - (0)]]| La
with ¢ > 1 satisfying % + % = 1. It follows from the fractional Leibniz principle with
G satisfying % = % + % that

(I = 8)7[(0w) - (F0)]l|a < [[0ul| 2 py [P0llwa py + 100 L2 ) 19wl lya iy -

For any s € (232, 1), there exist v € (252,s) and ¢ > 1 such that v < s and
é -1= % > 1 — 527 which implies H*(D) < W4(D). Hence

(o, 0)] < lollw o 90l a0 190l wa 5y S Mol 19l g ) 199 g

Using the facts that [[ul g.p) < [ullm:, S ||lulm:, and that S is dense in H?

o v

proved in [23, Theorem 2.2], we get almost surely that

(pw, o) S lullse, Jollae, Vv e HY,,

which completes the claim. Then the following two estimates hold almost surely:
|, < Holl g e e s loullgrs S 0™ 2 ullmre

and
| Kotall o) < 1ol ppr o go o loull e < @ [lullre

which complete the proof. ]
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4.2. Convergence of the Born series. Let assumptions in Lemma 4.3 hold
and U C R?\D be a bounded and convex measurement domain which has a locally
Lipschitz boundary and a positive distance from D. This section shows the conver-
gence of the Born series defined in (4.1).

It follows from (4.1) that

N
414) |+ E) S wi(9) | (@) = wolz,y) + (DN [EY g (-, )] ().

Jj=0

Note that
Kool )] (@) = /D Gla, 2 w)p(2uo(z,y)dz Y,y e U,

where ug(z,y) = G(z,y,w)a and G(z,y,w) is smooth for any z € D and y € U.
We begin with the estimate for uy.

LEMMA 4.4. Let U C R?\D be a bounded and convex domain having a locally
Lipschitz boundary and a positive distance to D. For any s € [0,1], p € (1,00) and
any fized y € U, the following estimate holds:

_1
||u0(.7y)||Ws,p(D) 5 w 2+S'
Proof. For any y € U, it is easy to check that

[uo (-, 9)llLr(p) = |G (- y,w)allLe(py S

||U0('7Z/)HW1«P(D) = HG('vy7w)a||W1~P(D)

N €
E\

Utilizing the interpolation inequality [17], we get

—S s —l s
lwo (- 9)llw=s ) S luoC el pyllwo - 9)l3wro(py S w277,

which completes the proof. ]
By Lemmas 4.3 and 4.4, we have for s € (235, 1) that

(—1+23)(N+1)HUO( < (F1+28) (N1 —14s 0

1KY ol s () Sw Y e (D)

as N — oo, where we have used the fact
_1 s
||U0(',y)||Hil(D) =T+ |2) 2(I - A)2’110('7Z/)||L2(D) S ||u0('7y)||HS(D)-
Combining the above estimate with (4.14) leads to
(I+EK,)Y uj=uy in H*, ().
§=0

Note also that G(-,y,w) € (Lfocﬂﬂfl})’f/)MQ for any p’ € (1,2). Choosing p’ = 2—e¢
for sufficient small € > 0, we may follow the same proof as that of Theorem 3.2 and
get WHP(U) — H*(U), which implies that wuo(-,y) € H*(U) — WT(U) and
(I + K,) 'ug = u in W"9(U). Hence, the Born series converges to the unique
solution u of (1.1) in W"4(U) and
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(4.15) u=> u
=0

Moreover,

N 0o

lu = willpewy S Y 1K uollpew)
3=0 J=N+1
j—1
< > IKullee , Lo wplKullz g ot v)la: ()
J=N+1

(4.16) L

as N — oo, which implies that (4.15) also holds in L*(U).

5. The inverse scattering problem. In this section, we study the inverse
scattering problem which is to reconstruct the microcorrelation strength ¢ of the
random potential p.

We consider the case y = x and recall that notations u*(z,w, a) and u;(z,w, a)
stand for u®(z,z,w,a) and u;(z,z,w,a), respectively. Then we rewrite (4.15) in
terms of the scattered field

us(‘rawva) = ul(x7w7a) + ug(x,w,a) + b(x,w,a),

where

b(z,w,a) = Z uj(z,w,a).
j=3

5.1. The analysis of wu;. This subsection is devoted to the analysis of the
leading term u;. Explicitly, we have

(5.1) ui(z,w,a) = —/Dp(z)G(x,z,w)zadz.

THEOREM 5.1. Let p satisfy Assumption 1.1 and U C R*\D be a bounded and
convex domain having a locally Lipschitz boundary and a positive distance to D. Then
for all x € U, it holds that

1@ 2 1
lim 7/ w2 Z luy (2, w, a;)|?dw = Cm/ T 0()d¢  a.s.,
1 =1 r2 |7 — (|
where a1 and as are two orthonormal vectors in R, and C,, is given in Theorem 1.2.

Before giving the proof of Theorem 5.1, we first introduce the truncation of the

Green tensor G and some a priori estimates. Let Hr(bl) be the Hankel function of the
first kind with order n, which has the following asymptotic expansion (cf. [3]):

N
(5.2) HV(e) = Y om0 4 0| ~N72), ceC, |¢f - oo,
j=0
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where b(()") = 1—\}%‘ and

bgn \fgjjl H )2)’

i>1

For the sufficiently large argument ¢ = |z|, define the truncated Hankel function

N

H{N(e) =Y by e O )i,
j=0
It follows from (5.2) that
_N_3 _N_3
(5.3) |HD (kl2]) — BN (k]2])| S N3 [2) N2,
N1 _N_3
(5.4) V. [HY (w]2]) — BN (5]2)] | S 67527V 5,

By (1.2), a straightforward calculation shows that G' can be written as

1 1
raH{) (sl = y)) = o Y (1l —y|>}1

1 Lo
G =i{ —H (kelz — y|) —
(xvva) 1{4;U 0 ("{ |£L’ y|) 4w2|a:—y\
R
dw? |z —y[?

(5.5) + [K2H (ks|z — yl) — k2H (kple — )] (@ — ) (@ — )7,

where x —y = (x1 —y1, 22 — yg)T. Denote by G™) the truncation of the Green tensor
G. Explicitly,

1 1
R HLA (sl — 1) — o B (ipl — ) }I

1
N) - (1)
G! (:E,y,w)l{4uHo7N('fs|$y) 42|z — y|

i K?H(l) Ks|T — —KzH(l) Kolr —
1 s 2,N( | y|) p 2,N( P| yD(l‘—y)(.’E—y)T

5.6 —
(5:6) 4w? |z —yl?

Let G;; and GEJN) be the (i, j)-entry of G and G, respectively. Using (5.2)-(5.4),
we have the following asymptotic estimates:
|Gij(x,y,w)|§w*§|$—y|*§, ‘V G”(l' Yy, w )‘ §|IC y|7§7
N 1 _1
G (@, y,w)| Swile—y72, V.G @y w)
N _N_3 3
Gis(,y,w) = G (@, y,0)| Sw VT E e -y 7N,

Vo (Gij(z,y,w) — GV (2,y,0))] S w N "5z —y[ 7N,

w
Swilz—y|73,

(5.7)

Replacing G by G in (5.1), we define
(5.8) ugz) (z,w,a) = 7/ p(2)GP (x,z,w)adz, xeU.
D

For the difference u; — ugz), we have the following estimate.
LEMMA 5.2. Under the assumptions in Theorem 5.1, it holds for x € U that
|lui(z,w,a) — ug )(:c,w,a)| <COw™ as.,

where the constant C' depends on the distance between U and D.
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Proof. Using (5.1) and (5.8), for z,y € U and z € D, we obtain

i (2w, @) — ui? (2,0, a)| <

[ p(Ga2.) = G (,2.) Gl 2.z

_|_

/D p(2)GP (2, 2,w)(G(z, z,w) — G (z, z,w))adz
=:Ji + Jo.
For J;, we have from (5.7) that
I < pll g2 oy (G, w) = G2 (@, -, w) Gz, -, w)al ()
<ol iy () [IV(G (@, w) = G (@, )| (12022 |G 2, - w)al o)

+|G(z, - w) — G (x,,w)|(r2(py)2x2
x (|G(z, - w)al L= p) + [IVG(z, ,w)al L= (D)) ]

A

1
[ iw™F fw (W E +w?)] (/ |z — Z|_7dz)2 sup [o — 2|72 Sw™,
D z€D

m=2
where we have used the facts p € W, >~ “*(D) ¢ Hy *(D) by choosing a sufficiently
small € > 0 and that there is a positive distance between U and D. Similarly, we can
prove that Jo < w™3, which completes the proof. 0
Let u§2) = (u§2{7u§2%)—r, where
2

u§2])€ =— Z / p(z)G,(j)(x,z,w)GZ(-?)(x,z,w)ajdz, k=12,

s

ij=1"D

and a; is the component of the vector a. A straightforward calculation gives

- 2
2) 2 (2 2
Bl @wna) ulewna) = Y ae [ [ 600060 @ zw)

ki g,i,5=1

(5.9) x G2 (w2, wa) G2 (2, 2, wo)Ep(2)p(=") d=d',

where the entries G,(fl) in G? can be expressed by

C 2 [ it Moyt g
G2 (x,2,w) = - ! 1 3 A
4]—0 wta|e — 2Ptz Wt — 2t
2) —j+3
_ b§ Ve 7tz (zr — 2x) (21 — 21) icsw|z—z|
wits|z — z|it5
o () —i+d (2) ~9+3
_ ! Z ib; " cp 25161‘ B bi ep” P (ke — zi) (w1 — &) elerle =2l
12 [+ T —opd witi|z — 2t

and dy; is the Kronecker delta function. Substituting the expression of G,(j) into (5.9),

we get that ]E(u(12)(x,w1,a) : qu) (z,ws,a)) is a linear combination of the following
type of integral:
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I(z, w1, w2) 32/ / ilerwle—zl—cawle=2"D Py o 2E[p(2)p(2')|dzdz,
R? JR2

where ¢1, ¢z € {2¢s,¢5 + ¢p, 2¢p} and

(21 — 21) M (w9 — 29) D2 (w1 — 27) %21 (wg — 25)%22

[ = 2]z — 2]%

F(z,7,x) =

with di;dij S NJr for i, =1,2.

As studied in [20, Lemma 3.4] and [26, Proposition 4.1], the estimate of the above
integral I can be similarly made by examining the behavior of the kernel E[p(2)p(2")]
under coordinate transformations. The result is stated as follows and the proof is
omitted for brevity.

LEMMA 5.3. For wi,ws > 1, the following estimate holds uniformly for x € U:
(5.10) |I(z,wi,ws)| < Car(wy 4+ w2) ™1 + |wy — wa]) ™M,

where M € N is an arbitrary integer and the positive constant Cy; depends only on
M. Moreover, if wy = wo = w, then the following identity holds:

(5.11) I(z,w,w) = R(z,w)w™™ + O(w™ M+,
where
om o B (331 _ Cl)d11+d21 (q:2 _ §2)d12+d22
R — i(e1—e2)wlz—(| dc.
)= o [ PRI oo
COROLLARY 5.4. For wy,ws > 1, the following estimates hold uniformly for x €
U:
(5.12)
[E(ui? (@, w1, @) - ui? (@, wp, @))] < Car(wiws) ™ (wr +wz) (1 4wy —wal) ™,
(5.13)
E(ul® (2, w1, a) - ul? (2, ws, @) < Crr(wiws) ™ (wr + wa) ™M (1 + |y — wa|) ™™,

where M € N is arbitrary and Cys is a constant depending on M.

Proof. Since E(u?)(x, wi,a) ~u§2)(x, wa, @)) is a linear combination of the integral
I, where the coefficient of the highest order is (wjws)~!, it follows from Lemma 5.3

that the estimate (5.12) holds. A simple calculation shows that E(u?)(x,wl,a) .

qu) (z,ws,a)) is a linear combination of the following type of integral:

T= [ [ etelemstresste sl p (e, o a)Blp(e)pl)dzd
R2 JRR?

with the coefficient ~(wlwg)’l. Clearly, I is analogous to I except that wy in I is
replaced by —ws in I. Following the same proof as that for the estimate of I, we may
show that

[ (2, w1, w2)| < Car(wr +w2) ™M (1 + Jwy — wa]) ™™,

which implies (5.13) and completes the proof. d
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Proof of Theorem 5.1. Rewriting u; = u(1 )+ (ug — ugz)), we only need to show

1 1
W2 (2)
Gy Jim o | Z u® (2,0, ;) 2dw = /R e
1 @ 2 (2) 2
. im w ui(z,w,a) —uy’ (z,w,a)[*dv =0,
5.15 1 01 mt i dw=0
Q—oo () —
> 7o e 2)
(5.16) thaooﬁ/1 2R [ (2, w, @) (w1 (2,0, @) — u (z,w, @))] dw = 0.
For (5.14), it follows from a straightforward calculation that
2 i— ]. 72 / :
Elu)™ (z,w,a)|" = Z a;ja; Elp(z)p(z))]
R kyii=1
|:C§ ( Ok _ (l‘k — Zk?)(xl — Zl)) ics|z—2z| Ye (Z‘k — Zk)( — Zi)eicp|x—z:|
|z — 2|2 |z — 2|3 |z — 2|3
[ 2 dij i — 2) (%5 — %)\ 3 (i — 2i) (%5 — %) o |om
" §( i (x; — 2 )(xjé ZJ))@]CS|IZ| Jrcé (x; — 2 )(gc]é Zj)ewp‘z zl]
L |z — 2|2 |z — 2|2 |z — 2|2
[ s 5= (mk—zé)(xﬁ—zf,)> . , s(xp—2p)(z; — 2) . ,
x| c2 ki _ lr 4 e—lcs\w—z | +e2 Zr 4 6—10p|z—z |
. (|x—z'|2 o — 2|3 PR
< — 2 (s — 2L
% CS‘% 5;5 _ (1'7 ZZ)(x] Zj) efiCsLT*Z/‘
N @ — 2|3
s (@5 —2) (2 —25)
Mo ']d“l'z’ 0w,

Together with Lemma 5.3, it gives

(5.17) Elul? (z,w,a)]* = Ty(z,w, )0~ (") 4 O™ ("),
where
62,0 ! = (2= )~ G)
— 6—m__—2 6-—m . o
Th(v,w,a) =2 T2l /}R2 [|$ P ”221 r —(jj\‘l j azaj} S(O)d¢
2
—6—m._—2 6—m c— ) — G
+2707 M e /]R2 [Uz_:l i | )_(?|4 j)aiaj}f)(C)dC

with a; being the ith component of the vector a. Let a; = (all,alg)T and ay =
(a21,a22)" be two orthonormal vectors, i.e., there exists some angle o such that
a; = (cosa,sina)’ and a; = (—sina,cosa)’. It then holds that a2, + a2 = 1,
a%z + a%Q =1 and aj1a12 + as1a29 = 0, which lead to

mea] = O | g lOC.

r2 |2 — (|2

It follows from (5.17) and the above equation that

2
1 —(m —(m
ZE‘U§2)($,W,CLJ')|2 = Om/ Wgﬁ(()d@w (m+2) +O(w ( +3)),
. ]R2 -
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which gives

1 (@ 2 . 1
lim 7/ w2 Elu!? T,W,a; de:Cm/ —_— dc.
Q~>OOQ—1 J; | 1 ( J)‘ R2 |.T—C‘2¢(C) C

To prove (5.14), based on the above equation, it suffices to prove

1 Q
(5.18) lim —— wmt? {|ug2) (z,w,a)* - E\u?)(x,w, a)ﬂ dw = 0,
Q—o0 Q -1 1
which can be shown by following the same procedure as that in the proof of [20
Theorem 3.10].
For (5.15), by Lemma 5.2, we obtain from the fact m < d = 2 that

1 ? m+2 .2 2
W g (2w, a) — uwy” (2, w, a)|*dw
Q-1/
1 (9 1 Qn3-1
5@—1/1 wm%dw:im—?)iQQ—l —0 as @ — oo.
Combining (5.14)—(5.15) and the Hélder inequality, we may easily verify (5.16) and
complete the proof. ]

5.2. The analysis of us. This subsection is devoted to analyzing the term wus
in the Born approximation (4.1), which is given by

(r,w,a) / / G(z,2,w)p(2)G(z, 2, w)p(z" )G (2, z,w)ad' dz

for x € U. The purpose is to show that the contribution of us can also be ignored,
which is presented in the following theorem.

THEOREM 5.5. Under the assumptions in Theorem 1.2, for all x € U, it holds
almost surely that

To prove Theorem 5.5, motivated by [19] in the acoustic wave case, we decompose
us into several terms by defining the following auxiliary functions:

(5.19) w9, (z,w,a) = / / G (z,2,w)p(2)G (2, 2 ,w)p(z')G(2, z,w)adz dz,
(5.20) ug,(z,w,a) = / / G (z,2,w)p(2)G(z, 2 ,w)p(z )G (2, z,w)ad? dz,
(5.21)  v(r,w,a)= / / G (2, 2,w)p(2)GO (2,2, w)p(2 )G (7, ,w)adz dz,
where G'? is defined in (5.6). It is clear to note that us = (ua — w2 )+ (u2; —ua,)+

(ug, —v) +v. To estimate these terms, the following preliminary results on G, el
and their difference are needed.

LEMMA 5.6. Let s € [0,1] and U C R?\D be a bounded and convex domain with
a positive distance from D.
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(i) For anyp € (1,00) and x € U, it holds that

IG (@, -, W)l wer(pyyexe Sw 2,
||G(O) (.’L‘, . w)||(Ws,p(D))2x2 5 w_%"'s,
IG(x,,w) = GO (x,,w) | wer(pyoe Sw 2 H.
(ii) For any p € (1, %), it holds that
IG(, - w) = GO, w)[wer(pupyexe Sw 2t
Proof. Results in (i) can be easily obtained by (5.7) and the interpolation between
the spaces LP(D) and WP(D). Next is to show (ii).
According to (5.7), we get

3
2,

HG(.7.7w)_G(O)(.)) w)ll(zr(Dx D)2z Sw™ g(//|z—z 2pdzdz> Sw”

where we use the facts that there exists a constant R > 0 such that |z — 2’| < R for

any z,z’ € D, and
R 3
/ / |z — 2| 3Pdzdz’ </ rm2Pldr < 0o
0

for any p € (1, %) Similarly,

M

HG(7 '7(“}) - G(O)('a 'a""’)”(WlJ’(DxD))2><2 Sw”

Finally, the result in (ii) is obtained by the interpolation. O

The operator K, defined by (3.2), satisfies the following estimates when restricted
to bounded domains, where the proof is given for a more general case m € (1,2]. We
also refer to [19, Lemma 5] for the acoustic wave case with m = 2.

LEMMA 5.7. Let p satisfy Assumption 1.1. For any s € (352,1), ¢ € (1,00),
and w > 1, the following estimate holds:

1Kol cows2e(pyy S w ™25

Proof. For any f,g € C°(D), denote by f,§ the zero extensions of f,g in R2
such that f,g € C;°. Using Lemma 4.1 leads to

(Hof,9)| = (HuF,8)| S w2052 | e 1G]] g omeas

where

HfHHfs o ST Flla-m) SNT > Fllesoy S I Fllw-<s(p);

190l gz == SNT°gllmz-—20) SNT "9l 7 () S 19w ()

according to the Sobolev embeddings

LP(D) < H (D) for s >

’Bz\w
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L7 (D) < H™**(D) for sy>1-—

< N

with 1 < p <2 < ¢ < oo and ¢ satisfying %—1— % =1 (cf. [31, Theorem 3.1]). By
choosing s; = % —land s =1— %, we have

1

[{H,f,g) < w_1+2s+2(;_5)”f”W*Svf'(D)”g”W—Sﬁ'(D)’

and hence
[Holl cow =7 (D), wea (D)) S w22 ),
Note that K,u = H,(pu). For any u € C;°(D) C W*2I(D), we obtain from [19,
Lemma 2] and Lemma 2.2 that
VK stullw200y S ol ggpp—esoor 0 wersag oy 1928y oo
S ||HwHQ(W—M%)'(D)YWS,M(D))||P||W*SwP(D)||u||WSv2Q(D)

< W H2s2(1-3) HUHWS’Q‘?(D)v

where p satisfies }% + % = 1 and (2q)’ satisfies ﬁ + ﬁ = 1. The proof is then
completed based on the fact that C5°(D) is dense in L*?(D) (cf. [1, section 2.30]). O
According to Lemmas 4.4, 5.6, and 5.7, we get for any x € U and w > 1 that

|us(z,w, @) — ug i (x,w, a)]
= ’<p, [G(z,,w) — G (z, S w)] /D G(-,z’,w)p(z’)G(z’,x,w)adz’>

< ||p“W(;s,p(D) H [G’(:E7 W) — G(O)(z, ',w)} Kwuo(.7x)H

W#:4(D)
< ||pHW(;°’p(D)||G(I7 '7LU) - G(O)(I7 '7("))“(W‘572‘1(D))2X2

X ([ Kol zows 2y [0 (5 2) [l ws.2a(py
< w—%+s—1+28+2(1—% —3+s _ w—3+4s+2(1—%)
for any s € (352, 1), ¢ € (1,00), and p satisfying % + % = 1. Taking ¢ = 1+ s, we
then deduce

(5.22)
Qm73+85+% -1 0

1 Q
lim 7/ W2 luy (2, w, @) — ug(z,w, a)?dw < lim
1 ' Q—ro0 Q-1

almost surely by choosing s € (Q*Tm, %) such that m —3+8s+ l‘fs <m-—3+12s < 1.

Note that such an s can be chosen in the interval (Q’Tm, 4;—2’”), which is not empty

due to the fact m € (%, 2] under assumptions in Theorem 1.2.
Similarly, for the term ug; — us ., we get

lug 1 (z,w,a) — ug,r(z,w,a)|
= ‘<p7 G(O) ({L‘7 '7w)/ G(7 Z/uw)p(zl) [G(Z/7x7w) - G(O) (Zlax7w)] ad’zl>‘
D

< Nolhwzenoy |G @ K (G = @) ()|
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< Nollwer oy GO (@, - )l worza (pyy2x2
X | Kol cowe2apy (G = GO (-, 2, w)al vz p)

< w—%+s—1+2$+2(1—%)—%+s w—3+4s+2(1—%)

~

for any s € (—m %), q € (1,00) and p satisfying % + é = 1, which leads to

1 Q
(5.23) om W/ WP ug i (2, w, @) — ug,(2,w,a)*dw = 0
o0 g — 1

in the almost surely sense by taking ¢ =1 + s.
The term uy, — v satisfies

(5.24)

lug,,(z,w,a) —v(z,w,a)]

//G(O T, Z,w) ()[G(z,z’,w)—G(O)(z,z’,w)]p(z’)G(O)(z’,x,w)adz’dz

SIG(, - w) — GO, w)|| (w2er(Dx DY) p22 [ Fllw=209(px pys

where p € (1, %), q satisfies 1 5+ 5 =1, and

F(z,2) = p(2)p(') G (@, 2,0) GO (2 2, w)a.
Note that for any g € W2SP(D x D) and s € (7m %)7

[(F DI S 10 plly 20 (0 oy (GO (@, ) GO (2, w)a) - gllween(px )
S ol () |G (@, -, 0) GV (-, 2, w)allw2e (D ) |9 we (D D)

Swit? lgllw=sr(Dx D)

according to (5.7), Lemma 2.2, and the fact that p ® p € W, >*°(D x D) C
Wy 29(D x D) for any p € W s (D) (cf. [19]). As a result,

1Fllw 200y S 07142

Hence, (5.24) turns out to be
lug (7, w,a) —v(zr,w,a)| S w3t

which leads to

(5.25)
lim 71 Wy (2, w, @) — v(z,w,a)|?dw < lim 72 mol =0
Q-0 @ —1 BT Y ~ Q- Q-1

almost surely by choosing s € (25, 1) with m € (3,2] such that m — 2+ 8s < 1.
Finally, the result in Theorem 5.5 is obtained by combining (5.22), (5.23), (5.25),
and the following lemma, whose proof is rather technical and is given in the appendix.

LEMMA 5.8. Under assumptions in Theorem 1.2, for all x € U, the auxiliary
function v defined in (5.21) satisfies

Q
5.26 lim —— W2l (z,w,a)Pdw =0 a.s.
(5.26) Jim 5= [ e (e, a)
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5.3. The analysis of b. For any z,y € U and s € (352, 1), it follows from

Lemmas 4.3 and 4.4 and (5.7) that

o0

zy) =D uilz,y)| = >, w)uj-1(y))
7j=3 7j=3
S Z [ollw=s.(p) | G(z, 'aw)uj(',y)”WS’l(D)
N Z |G (x, 'aW)”(WSW(D))?“”uj('a y)”HS(D)
S D NG, w)llwes (pyy2e | Kl e ) a0 y)l e
< Zw—%—&-s (w—1+2s)jw—%+s < w—3+6s

Then it holds for b(z,w, a;) := b(x, x) that

1 Q +2) e 1 @ t2t(_346s)2
— w4 b(x, w, a;)|*dw w™ T2 dw
Q*lﬁ d ”Qfl/
Qm 3+12s _ 1
<S——— 50 as@Q > 0
S 5 Q
by choosing s € (%Tm, 5) and s < 41—2’". We mention that such an s exists since

m > 2 under assumptions in Theorem 1.2.

5.4. The proof of Theorem 1.2. Based on the analysis of u;, us, and b, we
are now able to prove the main result: the strength ¢ in the principal symbol of the
covariance operator (), can be uniquely determined by the amplitude of two scattered
fields averaged over the frequency band with probability one. Here, the two scattered
fields are associated with the incident waves given by G(z,y)a; and G(z,y)as for
any two orthonormal vectors a; and as.

Recall that the scattered field u® can be written as

Us(l‘7w7aj) = ul(x7w7aj) + 'U,2(I7w,aj) + b(l’,(.d,(lj), .] = 1727

where w1, us, and b satisfy for x € U that

: 1 m+2
) e > Ty g

1 Q
ngn W/ WP ug (2, w, a5)[Pdw = 0,
oo — 1
1 @ 2 2
Qh—{nooﬁ/l Wt |b($7w’aj)| dw = 0.

Using the Holder inequality gives

Q
7/ wmTIR [ui(x,w,aj)b(m,w,aj)} dw
1
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1 Q
< / wm+2|ui(x,w7aj)||b(x,w,aj)|dw

Q-1J;

1 “ +2 2 : 1 N +2 2 :
< Wi (2, w, a; / w2 b(r,w, a; —0
go1 [ e meea)P| (g0 [ e ibeea)
as ) — oo for 4,5 = 1,2 and similarly

1@ e
ﬁ/ wmt2R [ul(x,w,aj)uz(%waaj)] dw
=1/

as @ — oo for j = 1,2. Hence, we obtain

—0

1 (@ 2
= lim —— / wmt? Z lui(z,w, a;) + us(z,w, a;) + b(m7w,aj)|2 dw
1 -
j=1

Q—)ooQ—l

1@ 2
= lim 7/ wm+22|u1(x,w,a]—)|2dw
1 .
Jj=1

1

r2 |7 — (|2

=Cp, P(¢)dc.

It follows from [20, Lemma 3.6] that the function ¢ can be uniquely determined
from the integral equation (1.4) for all z € U, which completes the proof of Theorem
1.2.

6. Conclusion. We have studied the direct and inverse scattering problems for
the time-harmonic elastic wave equation with a random potential in two dimensions.
The potential is assumed to be a microlocally isotropic generalized Gaussian random
field whose covariance is a classical pseudodifferential operator. For such a distribution
potential, we deduce the equivalence between the direct scattering problem and the
Lippmann—Schwinger integral equation which is shown to have a unique solution. Em-
ploying the Born approximation in the high frequency regime and microlocal analysis
for the Fourier integral operators, we establish the connection between the principal
symbol of the covariance operator for the random potential and the amplitude of the
scattered field generated by a single realization of the random potential. Based on the
identity, we obtain the uniqueness for the recovery of the microcorrelation strength
of the random potential.

For the three-dimensional case, the well-posedness of the direct scattering problem
can be obtained based on the same procedure as the two-dimensional case. The
convergence of the Born series and the estimate for u; obtained in Theorem 5.1 can
also be extended to the three-dimensional case. However, what is different from the
two-dimensional case is that the Green tensor in three dimensions does not decay with
respect to the frequency w. It is unclear whether the contribution of higher-order terms
can be neglected in three dimensions. Hence, a frequency-dependence assumption of
the potential p, e.g., p(z,w) = p(x)w™? with § > mT_l, might be required to uniquely
recover the microcorrelation strength by using near-field data [16]. A possible way
to overcome this difficulty in the three-dimensional case is to recover the strength by
using the far-field patterns as the data [22].
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Another interesting and challenging problem is to investigate the inverse random
medium problem which is to replace (w? — p)u in (1.1) by w?pu. In this case, the un-
known parameter p describes the density of the random medium. The direct problem
has been studied in [27]. However, the inverse problem is open. The method used
in this paper cannot be applied to the inverse random medium problem, since p is
involved in the high frequency term and the Born series defined by the corresponding
Lippmann—Schwinger equation does not converge for large frequency w. We hope to
report the progress on these problems elsewhere in the future.

Appendix A. Proof of Lemma 5.8.

3

For simplicity, we first introduce the notations 7 := —& (%) 2 J(Q) :=¢CT,

Dr(C) 1= 5 Tl () 1= 2 eIl eZeimwldl () = ef eIl — 3 einnldl
for ¢ € R?, and the integral

Bi(x — 2)P2(z — 2")Ps5(2" — x)
A M, My, Ms3) :=
(81, B2, B3, p1,p2,p3, M1, M2, M) /D =2 — | — o

xp(2)p(ZYM1(x — 2)Mo(z — 2" )M 3(2' — x)adzd?’,

where f; € {t1,¢2,93} and M; € {I,J} for i = 1,2,3. Substituting (5.6) into (5.22)
shows that

where

vie,w,a) = e ST A (b, % % S LI
+e’%”iu*25A(1/)1,1/11,¢3,%,%,;I IJ) e ™25 A4y, U3, U1, %7%7%3I7J7I)
T AR CONTSTE N O )RR LT VISR NN 8 )
+€_%Wiﬂ_1514(1/13,1/11,w5’g’%’g’J’IvJ)+e_%ﬂiﬂ_l5l4(¢37¢37w1’g’g’%’J’J’I)
+e g A(1p3, 3,13, g g g J,J,J),

va(z,w, @) = e 1T 25 Ay, 1y, o, % % g I,1,I)

e 1T G A, s, o %S%I JI)+e” %”iu_laA(wg,wl,wg,g,%,;,J,I,I)
e TG AW bt 0 LD 2 A e v, 2 L L L)
—l—e’%”iu’l&A(dn,d/z,%,%,g,;I,I,J)+e’%“iu’léA(zbg,zbz,%,g,;%,J,I,I)
+e*%”iaA(¢3,¢2,¢3,g,;,g,J,I, J)+e*%"iu*26A(wz,w1,w1,%,%,%J,I,I)
+e’%”iu’15A(1/)2,1/11,¢3,%,%,S,I,I,J)+e*%”i,uflﬁA(dlz,%ﬂ/fh;ga%,IaJaI)
L Z N & )
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13 3
vs(,w,a) = € AT G AW Va2, 550 5 L L)
533 T 313
+e (1/J371/)2a¢2a§7§7§ J,I,I)+€ 4 UA(1P2a¢1 ¢2;§,§7§717171)
) 353 . 331
+€_%ﬂ16‘4(¢27w3aw2a7a77va7JaI)+e_%ﬂl:u_la.A(w2aw2awla7777771—7171—)
2°2°2 2°2°2
1 335
TaTgA — =, = I T
+e 1750 (¢27w25w3a272727 5 aJ);
and
’1}4(35,&),0,):ei%ﬂiﬁA(wQ,wg,wg,;,g,;,I,I,I)

Then applying the Cauchy—-Schwarz inequality leads to

4 Q
1 Z/ W™ CF Dy (2, w, @) 2dw.
k=171

1 Q
Al 7/ W (z,w, a)Pdw <
A g [ el < 5
Noting that w2 ‘ﬂj(zz,‘iz) M (z — 2') involved in vy has the same singularity as
G(O)(Z, Z' w), we get

w_%vk(x,w, a)’ < ‘w_

[N

/ Bi(x — 2)B2(z — 2")Bs3(2" — )
DJD

|x — Z|p1|Z — Z/|P2|Z/ — gj|P3

x p(2)p(Z YM1(x — 2)Mo(z — 2" YM3(2 — x)adzd?’

,S Hw1p®p61(1‘ — )53( — 17) Ml(x _ )M3( _ m)a
|x — .|P1| . _x|p3 W2*4(Dx D)
|
| | (W2s:p(DxD))2%2
gw—%-i-?)s

based on Lemma 5.6 and a similar argument used in (5.25). As a result,

4

1 Q
lim 72/ W Ry (2, w, @) [Pdw
1

k=2
<th Q 12/ (2k—1)+63dw
—oo () —
m— 2+687
(A.2) < lim @ =0

~ Q—o00 Q —1
almost surely by choosing s € (252, 1) with m € (35, 2] such that m — 2 4 6s < 1.
Hence, to prove (5.27), according to (A.1) and (A.2), we only need to show for z € U
that

1 Q
(A.3) ngnoo 01 /1 W™ oy (2, w, a)|?dw =0
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in the almost surely sense. Note that

@ > wl
W/ wm71|v1(x,w,a)|2dw < / me2|vl(‘rawva)|2dw
_ 1 1 _

with 1;,g) being the characteristic function on the interval [1, @], and it holds point-
wise that

wl[LQ] (w)
Q-1

By the dominated convergence theorem, to show (A.3), it suffices to prove

1
lim YILeI) [1’Q](w)
Q—o0 Q -1

2 2

=0 and W 2oy (z,w, @) | S w2 v (z,w, a)|?

(A4) / WM E|vy (7, w, a)|?dw < oc.
1

Substituting 1, ¥, 13, and J into vy gives that v, is a linear combination of the
integral

(A.5) B(z,w) ::/ / eiw(clIw_ZH_CZIZ_Z/|+CS‘ZI_$DK(£L',Z,Z/)p(z)p(zl)dzdz/’
DJD

where c1, ¢, cs € {cs,¢p} and

(A.6)
K(z, 2, 2) = (1 — 21)" (w2 — 29)P2 (21 — 21)"% (22 — 25)"* (21 — 1) (25 — w2)"°
7 |x—z‘?’7|272/‘p8‘z/71’|?9
with

15
pef012)1<i<6,pe{5 2} T<i<9,

(p17"'7p9)€{(p17"'7p9)
_1 _1 _1}
pr—p1 P2—27P8 b3 P4—2,p9 D5 P6—2-

It follows from the Cauchy—Schwarz inequality that a sufficient condition for (A.4)
is

(A.7) / W 2EIB(z, w)|*dw < oo.
1

To deal with the roughness of the random potential p, similar to the technique used
in [22], we introduce a modification p. := p x p. with p.(x) := e 2p(x/e) for ¢ > 0,
where ¢ € C§°(R?) is a radially symmetric function satisfying [, ¢(x)dz = 1, and
define
(A8) B.(z,w):= / / ei“(cl|w‘z‘+02|Z_Z/|+03\z'—””|)K(x7z,z’)ps(z)pg(z’)dzdz’

DJD

by replacing p in (A.5) by p.. It is easy to show that lim. .. E|B.|? = E[B|? (cf.
[22]), which, together with Fatou’s lemma and the fact m € (3,2], leads to

| em BB < Ty [ BB sw)Pde.
1 e—0 1
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Hence, it suffices to show

oo
(A.9) lim E|B. (z,w)|?dw < 00 V x € U.
e—0 Jq

The procedure to show (A.9) is similar to the proof for the acoustic wave case
with m = d = 2 given in [19]. To be self-contained and for completeness, we present
the details below.

The basic idea is to express B, in terms of a one-dimensional Fourier transform
and then get the estimate with respect to w by utilizing the Parseval formula. To this
end, we first consider the phase function L(z,2') := ¢1|z — z| + ea|z — 2/| + 312’ — 2|,
which is smooth in the domain © := {(z,2') € D x D|z # 2’} and

z—x z—2z 2 —z Z—x

V.L(z,7) = +co VoL(z,2') =co = +c3 |
2 —z

|z — x| |z — 2’|’ 2 — x|
for any (z,2') € ©. Without loss of generality, we assume that 0 € U such that |z| and
|z’| are bounded from below and above for z,z’ € D since U has a positive distance

to D. Hence, it holds for (z,7') € © that
(A.10) 0<C; <|VL(2,2")] < Cy <

for some constants C; and Cs, where we use the facts that U is bounded and convex,
and that

—

(2,2") - VL(2,2) =12 i

+colz — 2| + 32’
|z — x

2" — x|
= c1]z|cos by + 2|z — 2’| + c3]2| cos By > C3 > 0
for some constant Cs with #; and 62 being the angle between z and z — z and the

angle between 2z’ and 2’ — x, respectively. Due to the boundedness of D and U and
the fact that they have a positive distance, the surface

I, :={(z,2') € Dx D|L(z,2') =t}, t>0,

is nonempty only for ¢ € [Tp, T1] with some positive values Ty = Ty(z) and Ty = Ty ().

For a fixed t € [Ty, T}], there exists a 77 = 7j(#) and an open cone E = E(f) C R*
centered at the origin such that it holds for tg = to(t) :=t — 7 and t; = t1(t) ==t + 7
that

(A.11) DxDnN{ty < L(z,2)<ti} CEN{to < L(z,2') < t;}:=T
and
r= |J Ty with Ty:=Tn{(z2)|L(z2) =t}
t€[to,t1]
According to (A.8) and (A.11), we obtain
B.(z,w) = / LK (2, 2, 2) pe(2) pe (2 ) dzd2!
r

t1 .
= [ [ K s VL )M e
to I'y

_. / " s, (1)t = (FS.)(—w),

to
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where

(A.12) S.(t) := A K(z, z,2)|VL(z, 2 )| pe(2)pe(2)dH? (2, 2)

is compactly supported in [Ty, T3] and the integral in (A.12) is with respect to the
three-dimensional Hausdorff measure H?3 on I';. Note that

E[S.(t)]* = /F ) K(z, 2,2 )K(z, 2,2)|VL(z,2")| ' VL(Z, )|
XDy
(A.13) XE[p. (2)pe(2))p- (2)p- (2 dH? (2, ) aH? (2,2,
where |VL(z,2')| 7Y VL(2,%")|~! is bounded according to (A.10) and
[K(z,2,2)| <o = 2|72 = 2|73 —al 73 S| — 2|
for x € U and (z,2') € © according to (A.6). Moreover, the Wick formula leads to

E[pe(z)pg(z')pe(é)pg (2/)] = ,Cl?s (Zv Z/)Icl)s (27 2/) + ’Cps (Zv E)ICPE (Zlv 2,)
+ K. (2, 2)K,. (7, 2),

where K,_(z,2") := E[p-(2)pe(2")] is the covariance function of p.. Thus, (A.13) turns
out to be

E|S.(t)* < / |2 = 27212 = |72 Ky (2, 2)K,. (2, 2) dHP (2, 2 )dHP (2, 7))

'y xI'y
+ / |z — 2|32 = 2|72 K, (2, ), (2, )| dHP (2, 2 )dHP (3, 2
'y xIy
+ / |z — 2|72 — 2|72 |K,. (2, 2)K,. (2, )| dH? (2, 2 )dH? (3, Z)
Iy xIy
=1 +L+I.
For sufficiently small € > 0, it follows from [22, Lemma 10] that

Kp.(2,2) S |Inlz — 2|+ O(1) for m =2,
Ko (2. 2) S 12— 277 +0(1) for m e (1,2).

Hence, for any m € (2,2], there exists a sufficiently small € > 0 such that
Koo (2,2)| S |2 = 2|7 Bme)

when |z — 2| < 1.
For I7, we have

S| 2= 272K, (2 2)dHP (2, 2) | 15— 272K, (5, 2)|dHP(2,2') < o0
Iy Iy

according to [19, Lemma 6].
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For I, it follows from the Holder inequality and [19, Lemma 6] that
I < / 2= 2|27 = F| 73|z — 2" CrmAa |y 5" ComA9 33 (5 2 YaHP (2, 2)
'y xIy

1
3

< [/ 2= 2|73 |2 = 2[R dH3 (2, ) dHP z’)}
Iy xTy

Wl

x [/ |z — 2|73 CmmHa) | — |7 2Cmmt g3 (2 2 )M (5, z')]
Iy xIy

3

< [/ |z—z'|’%d7-l3(z,z’)/ 2—2’|3d7-l3(2,2’)}
Ty I

1
3

X [ / |z — z|3<2m+€>dH3(z,z')dH3(z,g/)]
'y xIy

Wl

X [/ |2" — 2| 73@= ) g3 (2, 2 dH3 (2, 2’)] < o0
'y xIy

for m € (%7 2]. An argument similar to the one used in I} shows that I§ < co.
Hence, for any fixed ¢ € [Tp, T1], there exists a constant C(t) such that

E[S:() < C(F) V te (to(D),ta(F)

and sufficiently small € > 0. By compactness, there is a countable subset A C [Tp, T1]
with finite elements such that

[To, 1] < | (to (D), t1(8)).

teA
By defining C' :=>";., C (), we get
E|S.(t)> <C V te [Ty, Ti]

and sufficiently small € > 0. Then it follows from the Parseval formula that

o0

T
lim E|B. (z,w)|?dw = @)/ E|S.(t)|?dt < C(Ty — Tp) < oo,
e— To

e—0 Jq

which yields (A.9) and thus (A.7). Then (A.4) holds due to (A.7), which completes
the proof together with (A.2).
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