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Abstract This paper is concerned with the cavity scattering problem in an
infinite thin plate, where the out-of-plane displacement is governed by the
two-dimensional biharmonic wave equation. Based on an operator splitting,
the scattering problem is recast into a coupled boundary value problem for
the Helmholtz and modified Helmholtz equations. A novel boundary integral
formulation is proposed for the coupled problem. By introducing an appropri-
ate regularizer, the well-posedness is established for the system of boundary
integral equations. Moreover, the convergence analysis is carried out for the
semi- and full-discrete schemes of the boundary integral system by using the
collocation method. Numerical results show that the proposed method is highly
accurate for both smooth and nonsmooth examples.
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1 Introduction

Scattering problems for biharmonic waves have significant applications in thin
plate elasticity. For instance, the ultra-broadband elastic cloaking has been
experimentally realized at acoustic frequencies and could serve as a model

The first author was supported in part by the NSFC grant 12171201. The second author
was supported partially by the NSF grant DMS-2208256.

H. Dong
School of Mathematics, Jilin University, Changchun, Jilin 130012, China
E-mail: dhp@jlu.edu.cn

P. Li (corresponding author)
Department of Mathematics, Purdue University, West Lafayette, Indiana 47907, USA
E-mail: lipeijun@math.purdue.edu



2 Heping Dong, Peijun Li

for seismic cloaks to protect infrastructure from earthquakes [5, 24]. Similar
to photonic and phononic crystals, platonic crystals (PlaCs) are fabricated
by using regularly spaced arrays of holes, called cavities, cut into thin elastic
plates [9,18]. The design of PlaCs can be utilized to guide or harness destruc-
tive wave energy for constructive purposes [4, 22, 25]. As an emerging passive
vibration control technique, the acoustic black hole (ABH) has recently been
developed for vibration and noise reduction of a system [20]. The basic idea
of ABH is to arrange some inhomogeneous medium in a thin beam or plate so
that the wave can be trapped from propagating. In the wave motion of these
structures, the out-of-plane displacement of the thin plate satisfies the bihar-
monic wave equation. Although the scattering theory has been well developed
for acoustic, elastic, and electromagnetic waves, many scattering problems
remain unsolved for biharmonic waves. This paper concerns the biharmonic
wave scattering of a time-harmonic plane wave by a cavity in an infinite thin
plate. A novel boundary integral formulation is proposed for the boundary
value problem and a spectrally accurate collocation method is developed for
the boundary integral system.

The method of boundary integral equations has several advantages: the so-
lution is represented by surface distributions which leads to fewer unknowns;
the radiation condition is exactly enforced that avoids the truncation error of
artificial boundary conditions; the surface geometry can be represented to high
precision using appropriate boundary elements. However, in a conventional
boundary integral method, these advantages may be offset by two factors: the
high cost of evaluating interactions among all the boundary elements and the
need to evaluate singular integrals. The former can be resolved by fast evalu-
ation methods such as the panel clustering algorithm [8] or the fast multipole
method [7], and the latter has to be treated using special quadrature formulas
or analytical expansions. Despite the difficulties, the boundary integral method
provides an efficient approach for solving many problems, especially for those
imposed in unbounded domains [1, 2].

We consider the cavity scattering problem in an infinite thin elastic plate,
where the wave motion is governed by the two-dimensional biharmonic wave
equation. As an exterior boundary value problem, it is analogous to the ob-
stacle scattering problem for the acoustic, elastic, or electromagnetic wave
equation. Compared with the obstacle scattering problem, the cavity scatter-
ing problem is much less investigated. A numerical study was given in [22] on
the boundary integral method for solving the biharmonic wave scattering by
smooth cavities embedded in thin plates. In [23], boundary integral equations
were deduced for cavities with different boundary conditions, and the full dis-
cretization of the boundary integral system was discussed by expanding the
unknown boundary values in terms of Fourier series. However, the mathe-
matical and numerical analysis are not available on the method of boundary
integral equations for solving the biharmonic wave scattering problem.

Motivated by [3], we present the first theoretical analysis on the biharmonic
wave scattering problem. Based on a splitting of the biharmonic wave oper-
ator, two auxiliary functions are introduced to represent the Helmholtz and
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modified Helmholtz wave components, respectively. The scattering problem is
recast into a coupled boundary value problem for the Helmholtz and mod-
ified Helmholtz equations. The uniquneness is established for the scattering
problem by utilizing Rellich’s lemma and the exponentially decaying property
of the modified Helmholtz wave component. By the double- and single-layer
potentials representing the Helmholtz and modified Helmoltz wave compo-
nents, respectively, a novel boundary integral formulation is proposed for the
coupled boundary value problem. Following [3, 17], we introduce a regular-
izer to the boundary integral system and split the singular operator into an
isomorphic operator plus a compact one. The Riesz–Fredholm theory is then
employed to show the well-posedness of the coupled boundary integral sys-
tem. Moreover, the collocation method is empolyed to examine the semi- and
full-discretization of the boundary integral equations. Special quadratures are
adopted for the hypersingular and logarithmic singular integrals to carry out
the convergence analysis for both schemes. In [13, 16], the quadratures were
investigated on the similar hypersingular and logarithmic singular integrals for
solving the acoustic obstacle scattering problem. In [14], a collocation method
was developed and the convergence was analyzed by using the trigonometric
interpolation to discretize the principal part of the hypersingular operator.
We refer to [11, 19, 21] for studies on general singular integral equations. In
addition to the convergence analysis, numerical experiments are provided to
demonstrate the high accuracy of the proposed method for both smooth and
nonsmooth examples.

The rest of this paper is structured as follows. In section 2, the scattering
problem is introduced and the uniqueness is proved for the boundary value
problem. Section 3 presents the boundary integral equations and discusses
the well-posedness of the coupled system. The convergence analysis is carried
out in section 4 for the semi- and full-discrete schemes of the system. Sec-
tion 5 presents numerical experiments to verify the theoretical findings and
to demonstrate the superior performance of the proposed method. Section 6
concludes the paper with remarks and future work.

2 Problem formulation

We consider the biharmonic wave scattering problem in a two-dimensional thin
plate with a cavity, which is represented by a bounded domain D ⊂ R2 with
an analytic boundary Γ . The plate is assumed to be made of a homogeneous
and isotropic elastic medium in R2 \ D. Let τ = (τ1, τ2)> and ν = (ν1, ν2)>

be the tangential and normal vectors on Γ , respectively. It is clear to note
τ1 = −ν2 and τ2 = ν1. The plate is excited by a time-harmonic plane wave

uinc(x) = eiκx·d, x ∈ R2, (1)

where κ > 0 is the wavenumber and d = (cos θ, sin θ)> is the incident direction
with θ ∈ [0, 2π) being the incident angle.



4 Heping Dong, Peijun Li

The out-of-plane displacement of the plate u satisfies the two-dimensional
biharmonic wave equation

∆2u− κ4u = 0 inR2 \D. (2)

Assuming that the cavity satisfies the clamped boundary condition, we have

u = ∂νu = 0 onΓ. (3)

The total displacement u is composed of the incident wave field uinc and the
scattered field v, i.e.,

u = uinc + v.

It can be verified from (1)–(2) that the scattered field v satisfies

∆2v − κ4v = 0 inR2 \D. (4)

By (3), v satisfies the following boundary conditions on Γ :

v = −uinc, ∂νv = −∂νuinc. (5)

In addition, v and ∆v are required to satisfy the Sommerfeld radiation condi-
tion

lim
r→∞

r
1
2 (∂rv − iκv) = 0, lim

r→∞
r

1
2 (∂r∆v − iκ∆v) = 0, r = |x|. (6)

Consider two auxiliary functions

vH = − 1

2κ2
(∆v − κ2v), vM =

1

2κ2
(∆v + κ2v). (7)

It is clear to note v = vH + vM and ∆v = κ2(vM − vH). From (4), we have

(∆− κ2)(∆+ κ2)v = 0 inR2 \D,

which implies that vH and vM satisfy the Helmholtz equation and the modified
Helmholtz equation in R2 \D, respectively, i.e.,

∆vH + κ2vH = 0, ∆vM − κ2vM = 0. (8)

By (5), vH and vM satisfy the coupled boundary conditions on Γ :

vH + vM = f1, ∂νvH + ∂νvM = f2, (9)

where f1 = −uinc and f2 = −∂νuinc. Combining (6) and (7) yields that vH
and vM satisfy the Sommerfeld radiation condition

lim
r→∞

r
1
2 (∂rvH − iκvH) = 0, lim

r→∞
r

1
2 (∂rvM − iκvM) = 0, r = |x|. (10)

Clearly, the scattering problems (4)–(6) and (8)–(10) are equivalent. Hence,
it suffices to consider the scattering problem (8)–(10), where vH and vM are
called the Helmholtz and modified Helmholtz wave components, respectively.
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Remark 1 Let vM be a solution to the scattering problem (8)–(10). Denote
D ⊂ Ba = {x ∈ R2 : |x| < a}. Then vM has the Fourier series expansion

vM(r, θ) =

∞∑
n=−∞

Kn(κr)

Kn(κa)
v̂
(n)
M (a)einθ, r = |x| > a,

where v̂
(n)
M (a) are the Fourier coefficients of vM on ∂Ba = {x ∈ R2 : |x| = a}

given by

v̂
(n)
M (a) =

1

2π

∫ 2π

0

vM(a, θ)e−inθdθ

and Kn(z) denotes the modified Bessel function of the second kind with order
n. By [26, p. 511], Kn(z) has no zeros for | arg z| ≤ π/2, which implies that
Kn(κa) 6= 0. Moreover, we have from [26, §3.7 and §7.23] that Kn(t) = K−n(t)
and it admits the asymptotic expansion

Kn(t) =

√
π

2t
e−t
{

1 +O
(1

t

)}
, t→ +∞, t > 0,

which shows that vM and ∂rvM decay exponentially as r →∞ for a fixed κ.

Theorem 1 The boundary value problem (8)–(10) has at most one solution.

Proof It is required to show that vH = vM = 0 in R2 \D when f1 = f2 = 0.
Applying Green’s theorem in Da := Ba \D and the boundary condition (9),
we obtain∫

∂Ba

vH∂νvHds =

∫
Da

(
vH∆vH +∇vH · ∇vH

)
dx+

∫
Γ

vH∂νvHds

=

∫
Da

(
− κ2|vH|2 + |∇vH|2

)
dx+

∫
Γ

vM∂νvMds,∫
∂Ba

vM∂νvMds =

∫
Da

(
κ2|vM|2 + |∇vM|2

)
dx+

∫
Γ

vM∂νvMds,

which give

=
∫
∂Ba

vH∂νvHds = =
∫
Γ

vM∂νvMds = =
∫
∂Ba

vM∂νvMds.

It follows from the above equation and the Sommerfeld radiation condition (6)
that

lim
a→∞

∫
∂Ba

|∂νvH − iκvH|2ds (11)

= lim
a→∞

∫
∂Ba

{
|∂νvH|2 + κ2|vH|2 + 2κ=(vH∂νvH)

}
ds

= lim
a→∞

∫
∂Ba

{
|∂νvH|2 + κ2|vH|2 + 2κ=(vM∂νvM)

}
ds = 0. (12)
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By Remark 1 and (11), we have

lim
a→∞

∫
∂Ba

{
|∂νvH|2 + κ2|vH|2

}
ds = 0.

Using Rellich’s lemma yields vH = 0 in R2 \D. It follows from the continuity
of vH and ∂νvH and (9) that vH = ∂νvH = 0 and vM = ∂νvM = 0 on Γ , which
shows vM = 0 in R2 \D by Green’s representation theorem (cf. [2, Theorem
2.5]).

3 Boundary integral formulation

In this section, we propose a novel formulation of boundary integral equations
for the scattering problem (8)–(10). Based on the Riesz–Fredholm theory, a
regularizer is constructed to split the operator equation into the form of an
isomorphic operator plus a compact one.

3.1 Coupled integral equations

Denote by GH and GM the fundamental solutions to the two-dimensional
Helmholtz and modified Helmholtz equations, respectively. Explicitly, we have

GH(x, y) =
i

4
H

(1)
0 (κ|x− y|), GM(x, y) =

i

4
H

(1)
0 (iκ|x− y|),

where H
(1)
0 is the Hankel function of the first kind with order zero. Using the

fundamental solutions, we represent the solutions of (8) as the double- and
single-layer potentials with densities g1 and g2, respectively, i.e.,

vH(x) =

∫
Γ

∂GH(x, y)

∂ν(y)
g1(y)ds(y), vM(x) =

∫
Γ

GM(x, y)g2(y)ds(y) (13)

for x ∈ R2 \ ΓD.
It follows from the solution representation (13), the boundary conditions

(5), and the jump relations of the single- and double-layer potentials, we may
deduce the boundary integral equations on Γ :

1

2
g1(x) +

∫
Γ

∂GH(x, y)

∂ν(y)
g1(y) ds(y) +

∫
Γ

GM(x, y)g2(y) ds(y) = −uinc(x),∫
Γ

∂2GH(x, y)

∂ν(x)∂ν(y)
g1(y) ds(y)− 1

2
g2(x) +

∫
Γ

∂GM(x, y)

∂ν(x)
g2(y) ds(y) = −∂u

inc(x)

∂ν(x)
.

(14)

For x ∈ Γ , introduce the following integral operators:

(Lg)(x) = 2

∫
Γ

∂GH(x, y)

∂ν(y)
g(y)ds(y), (T g)(x) = 2

∫
ΓD

∂2GH(x, y)

∂ν(x)∂ν(y)
g(y)ds(y),
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(Kg)(x) = 2

∫
ΓD

∂GM(x, y)

∂ν(x)
g(y)ds(y), (Sg)(x) = 2

∫
Γ

GM(x, y)g(y)ds(y).

Since the fundamental solutionGM decays exponentially, the modified Helmholtz
wave component vM given in (13) does not propagate. Hence we may obtain
from (13) that the far-field pattern of the scattered wave v is

v∞(x̂) = %

∫
Γ

∂e−iκx̂·y

∂ν(y)
g1(y) ds(y), (15)

where % = eiπ/4/
√

8κπ and x̂ = x/r is the observation direction.
With the help of the integral operators, it is convenient to rewrite (14) into

the operator form Ag = f , i.e.,[
I + L S
T −I +K

] [
g1
g2

]
=

[
2f1
2f2

]
. (16)

Theorem 2 The coupled boundary integral equations (16) has at most one
solution provided that the wavenumber κ is not the Dirichlet eigenvalue of the
Helmholtz equation in D.

Proof It is required to show that g1 = g2 = 0 if f1 = f2 = 0. Let

vH(x) =

{
viH, x ∈ D,
veH, x ∈ R2 \D,

vM(x) =

{
viM, x ∈ D,
veM, x ∈ R2 \D.

Since veH and veM satisfy the boundary value problem (8)–(10), it follows from
Theorem 1 that they are identically zero in R2 \D. Using the jump relations
of the single- and double-layer potentials, we have on Γ that

veH − viH = g1, veM − viM = 0,

∂νv
e
H − ∂νviH = 0, ∂νv

e
M − ∂νviM = −g2.

Since neither κ nor iκ is the Dirichlet eigenvalue of the Helmholtz equation in
D, we deduce viH = viM = 0 in D, which implies g1 = g2 = 0.

By Theorem 2, the uniqueness holds for the coupled system (16) if the
wavenumber κ is not the Dirichlet eigenvalue of the Helmholtz equation in D.
In general, this assumption can be removed by using combined double- and
single-layer potentials for the boundary integral formulation [1]. In this work,
we assume that this assumption is satisfied and the coupled system (16) has
at most one solution.

To investigate the well-posedness of integral system (16), in the rest of
the section, we focus on demonstrating the Fredholm property of the system,
given by A2g = Af , which is facilitated by the injectivity of operator A.
The presence of a regularizer A in the original integral system is implied. For
detailed information, please refer to Theorems 3 and 4.
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3.2 Parameterization

Let the analytic boundary Γ have a parametrization of the form

Γ = {γ(t) = (γ1(t), γ2(t)) ∈ R2 : 0 ≤ t < 2π},

where γ1 and γ2 are 2π-periodic functions satisfying |γ′(t)| > 0 for t ∈ [0, 2π).
By the Maue’s formula (cf. [13, (2.4) and (2.6)])

(T g)(x) = 2

∫
Γ

∂Φ(x, y)

∂τ(x)

∂g(y)

∂τ
ds(y) + 2κ2

∫
Γ

Φ(x, y)ν(x) · ν(y)g(y)ds(y)

and

2

∫
Γ

∂Φ(x(t), y)

∂τ(x(t))

∂g(y)

∂τ
ds(y)

=
1

|γ′(t)|

∫ 2π

0

(
1

2π
cot
(ζ − t

2

)∂g(y(ζ))

∂τ
− h(t, ζ)g(y(ζ))

)
dζ,

and plugging the parameterization of Γ into T , the parameterized integral
operator T can be represented as

|γ′|Tφ = (T0φ−M0φ)−Hφ+Rφ,

where the operator T0 : Hp[0, 2π]→ Hp−1[0, 2π] and M0 are defined by

(T0φ)(t) =
1

2π

∫ 2π

0

cot
(ζ − t

2

)
φ′(ζ)dζ+

i

2π

∫ 2π

0

φ(ζ) dζ
def
= (T̃0φ)(t)+(M0φ)(t),

and the operators R and H are defined by

(Rφ)(t) =

∫ 2π

0

r(t, ζ)φ(ζ)dζ, (Hφ) =

∫ 2π

0

h(t, ζ)φ(ζ)dζ.

Similarly, plugging the parameterization of Γ into L, S and K, we define the
parameterized integral operators

(Lφ)(t) =

∫ 2π

0

l(t, ζ)φ(ζ)dζ, (Kφ)(t) =

∫ 2π

0

k(t, ζ)φ(ζ)dζ,

(Sφ)(t) =

∫ 2π

0

s(t, ζ)φ(ζ)dζ.

The kernels l(t, ζ), s(t, ζ), k(t, ζ), r(t, ζ), and h(t, ζ) can be split into the
following forms:

χ(t, ζ) = χ1(t, ζ) ln
(

4 sin2 t− ζ
2

)
+ χ2(t, ζ),

χ2(t, ζ) = χ(t, ζ)− χ1(t, ζ) ln
(

4 sin2 t− ζ
2

)
,

(17)
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where χ = l, s, k, r, h, and χ1, χ2 are analytic functions. Please refer to Ap-
pendix A for the detailed representations of the kernels and their corresponding
splittings.

Substituting the Maue’s formula into (16) and multiplying |γ′| on both
sides of the second equation of (16), we obtain([

I 0
T0 −I

]
+

[
L S

R−H −M0 K

])[
ψ1

ψ2

]
=

[
η1
η2

]
, (18)

where η1 = 2(f1 ◦ γ), η2 = 2(f2 ◦ γ)|γ′|, ψ1 = (g1 ◦ γ), ψ2 = (g2 ◦ γ)|γ′|, and I
is the identity operator.

3.3 Operator equations

For p ≥ 0, we denote the space of 2π-periodic functions by Hp[0, 2π], which is
equipped with the norm

‖u‖2p :=

∞∑
m=−∞

(1 +m2)p|ûm|2 <∞,

where the Fourier coefficients ûm are given by

ûm =
1

2π

∫ 2π

0

u(t)e−imt dt, m = 0,±1,±2, · · ·

Define the Sobolev space

Hp[0, 2π]2 =
{
η = (η1, η2)> : ηj ∈ Hp[0, 2π], j = 1, 2

}
,

which has the standard norm ‖η‖p = ‖η1‖p + ‖η2‖p.
Define the integral operators S0 : Hp[0, 2π]→ Hp+1[0, 2π], S1 : Hp[0, 2π]→

Hp+2[0, 2π], and S2 : Hp[0, 2π]→ Hp+3[0, 2π] by

(S0φ)(t) =− 1

2π

∫ 2π

0

ln
(

4 sin2 t− ζ
2

)
φ(ζ) dζ +

i

2π

∫ 2π

0

φ(ζ)dζ

def
=(S̃0φ)(t) + (M0φ)(t),

(S1φ)(t) =
1

4π

∫ 2π

0

ln
(

4 sin2 t− ζ
2

)
sin(t− ζ)φ(ζ)dζ,

(S2φ)(t) =− 1

8π

∫ 2π

0

ln
(

4 sin2 t− ζ
2

)
sin2(t− ζ)φ(ζ)dζ,

which are bounded for any p ≥ 0. We split the operators S, L, K, R, and H
as

S = S̃0 + E1S2 + S̃, L = E2S2 + L̃, K = −E2S2 + K̃,
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R = E1S̃0 + 2E3S1 + E4S2 + R̃, H =
1

2
E1S̃0 + E3S1 + E5S2 + H̃,

where E1φ = κ2|γ′|2φ, E2φ = κ2n · γ′′φ, E3φ = κ2γ′ · γ′′φ, E4φ = κ4|γ′|4φ +
2κ2γ′·γ′′′φ, E5φ = − 3

4κ
4|γ′|4φ+κ2γ′·γ′′′φ are bounded operators on Hp[0, 2π],

and E1 is isomorphic on Hp[0, 2π] since |γ′(t)| > 0 is analytic (cf. [3, Theorem

3.1]). Here, S̃, L̃, K̃, R̃, H̃ : Hp[0, 2π]→ Hp+4[0, 2π] are bounded, and they are
integral operators of the form

(Qφ)(t) =

∫ 2π

0

ln
(

4 sin2 t− ζ
2

)
q1(t, ζ)φ(ζ)dζ +

∫ 2π

0

q2(t, ζ)φ(ζ)dζ

def
= (Q1φ)(t) + (Q2φ)(t),

where q1 satisfies q1(t, t) = ∂tq1(t, t) = ∂2ttq1(t, t) = 0.
Hence the integral equations (18) can be reformulated into the operator

form

Aψ := (N +D)ψ = η, (19)

where ψ = (ψ1, ψ2)>, η = (η1, η2)>, and

N =

[
I 0
T0 −I

]
+

[
E2S2 S0 + E1S2

1
2E1S0 + E3S1 + E6S2 −E2S2

]
def
= N1 +N2,

D =

[
L̃ S̃ −M0

R̃− H̃ −M0 − 1
2E1M0 K̃

]

with E6φ := E4φ − E5φ. It can be seen that N : Hp[0, 2π]2 → Hp−1[0, 2π]2

and D : Hp[0, 2π]2 → Hp+4[0, 2π]2 are bounded operators.

Theorem 3 For all p ≥ 0, the operator N 2 : Hp[0, 2π]2 → Hp+2[0, 2π]2

satisfies

N 2ψ = (U + J )ψ ∀ψ ∈ Hp[0, 2π]2,

where J : Hp[0, 2π]2 → Hp+2[0, 2π]2 is a compact operator and U : Hp[0, 2π]2 →
Hp+2[0, 2π]2 is an isomorphism given by

U =

[
I + S0T0 + E1S0S0 0

0 I + T0S0 + E1S0S0

]
.

Proof Let fm(t) := eimt,m ∈ Z be the trigonometric basis functions. A simple
calculation yields

T0fm = λmfm, λm =

{
−|m|, m = ±1,±2, · · · ,
i, m = 0,

S0fm = ξmfm, ξm =

{
1
|m| , m = ±1,±2, · · · ,
i, m = 0.
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It is clear to note that S0 : Hp[0, 2π] → Hp+1[0, 2π] and T0 : Hp[0, 2π] →
Hp−1[0, 2π] are isomorphic for any p ≥ 0. Since E1 is isomorphic fromHp[0, 2π]
into Hp[0, 2π] and (I + T0S0)fm = (I + S0T0)fm = 0, we have(

E−11 (I + T0S0) + S0S0

)
fm =

(
E−11 (I + S0T0) + S0S0

)
fm = ξ2mfm, (20)

which implies that U is isomorphic from Hp[0, 2π]2 to Hp+2[0, 2π]2.
A straightforward calculation yields

N 2 =

[
1
2S0E1S0 + E1S2T0 0
T0E2S2 − E2S2T0

1
2E1S0S0 + T0E1S2

]
+ J1

+

[
I + S0T0 0

0 I + T0S0

]
where

J1 =

[
F1 F2

F3 F4

]
with the entries being defined by

F1 = 2E2S2 + E2S2E2S2 + S0(E3S1 + E6S2) + E1S2

(1

2
E1S0 + E3S1 + E6S2

)
,

F2 = E2S2(S0 + E1S2)− (S0 + E1S2)E2S2,

F3 =
(1

2
E1S0 + E3S1 + E6S2

)
E2S2 − E2S2

(1

2
E1S0 + E3S1 + E6S2

)
,

F4 = 2E2S2 + E2S2E2S2 + (E3S1 + E6S2)S0 +
(1

2
E1S0 + E3S1 + E6S2

)
E1S2.

(21)

Since Fj , j = 1, 2, 3, 4 are bounded from Hp[0, 2π] into Hp+3[0, 2π], J1 is
bounded from Hp[0, 2π] into Hp+3[0, 2π], which shows that J1 is compact
from Hp[0, 2π] into Hp+2[0, 2π].

Using the identities

(T0E1S2ϕ)(t) =
1

2π

∫ 2π

0

cot
ζ − t

2
(E1S2ϕ)′(ζ)dζ +

i

2π

∫ 2π

0

(E1S2ϕ)(ζ)dζ

= − 1

2π

∫ 2π

0

ln
(

4 sin2 ζ − t
2

)
(E1S2ϕ)′′(ζ)dζ + (M0E1S2ϕ)(t)

=
(
S̃0{(E1S2ϕ)′′}

)
(t) + (M0E1S2ϕ)(t)

and

(E1S2ϕ)′′(ζ) =− κ2

8π

∫ 2π

0

∂2

∂ζ2

{
|γ′(ζ)|2 ln

(
4 sin2 ζ − s

2

)
sin2(ζ − s)

}
ϕ(s)ds

=
1

2
(E1S̃0ϕ)(ζ) + (E7S2ϕ)(ζ) + 4(E3B1ϕ)(ζ) + (E1B2ϕ)(ζ),
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where E7φ = 2κ2(|γ′′|2 + γ′ · γ′′′)φ, and

(B1ϕ)(ζ) = − 1

8π

∫ 2π

0

ln
(

4 sin2 ζ − s
2

)
sin 2(ζ − s)ϕ(s) ds

− 1

8π

∫ 2π

0

m1(ζ, s)ϕ(s)ds,

(B2ϕ)(ζ) = − 1

4π

∫ 2π

0

ln
(

4 sin2 ζ − s
2

)[
cos 2(ζ − s)− 1

]
ϕ(s) ds

− 1

4π

∫ 2π

0

m2(ζ, s)ϕ(s)ds

with m1(ζ, s) = cot ζ−s2 sin2(ζ − s), m2(ζ, s) = cot ζ−s2 sin 2(ζ − s)− cos2 ζ−s2
being analytic functions, we obtain from S0S0 = S̃0S̃0 +M0S0 that

1

2
E1S0S0 + T0E1S2

=
1

2
E1S0S0 +

(1

2
S̃0E1S̃0 + S̃0E7S2 + 4S̃0E3B1 + S̃0E1B2 +M0E1S2

)
=

1

2
E1S0S0 +

1

2
E1S̃0S̃0 +

1

2

(
S̃0E1 − E1S̃0

)
S̃0 + S̃0E7S2

+ 4S̃0E3B1 + S̃0E1B2 +M0E1S2

= E1S0S0 + J1,

where

J1 :=
1

2
B̃3S̃0 + S̃0E7S2 + 4S̃0E3B1 + S̃0E1B2 −

1

2
E1M0S0 +M0E1S2 (22)

is compact from Hp[0, 2π] into Hp+2[0, 2π] due to the fact that B2 is bounded
from Hp[0, 2π] into Hp+3[0, 2π], B1 and

(B̃3ϕ)(t) : = (S̃0E1ϕ)(t)− (E1S̃0ϕ)(t)

= −κ
2

2π

∫ 2π

0

ln
(

4 sin2 t− ζ
2

)(
|γ′(ζ)|2 − |γ′(t)|2

)
ϕ(ζ) dζ

are bounded from Hp[0, 2π] into Hp+2[0, 2π].

In addition, it can be verified from the integration by parts that S2T̃0ϕ =
1
2 S̃0S̃0ϕ+B2S̃0ϕ. Using E1S2T0 = E1S2T̃0+E1S2M0 and S0E1S0 = E1S0S0+
B3S0, where

(B3ϕ)(t) : = −κ
2

2π

∫ 2π

0

ln
(

4 sin2 t− ζ
2

)(
|γ′(ζ)|2 − |γ′(t)|2

)
ϕ(ζ) dζ

+
iκ2

2π

∫ 2π

0

(
|γ′(ζ)|2 − |γ′(t)|2

)
ϕ(ζ) dζ,

we obtain

1

2
S0E1S0 + E1S2T0 =

(1

2
E1S0S0 +

1

2
B3S0

)
+

1

2
E1S̃0S̃0 + E1B2S̃0 + E1S2M0
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=E1S0S0 + J2,

where J2 := 1
2B3S0+E1B2S̃0− 1

2E1M0S0+E1S2M0 is compact from Hp[0, 2π]
into Hp+2[0, 2π], since B2 : Hp[0, 2π] → Hp+3[0, 2π] and B3 : Hp[0, 2π] →
Hp+2[0, 2π] are bounded.

Analogously, we observe that

T0E2S2 − E2S2T0

=
(1

2
S̃0E2S̃0 + S̃0E8S2 + 2S̃0E9B1 + S̃0E2B2 +M0E2S2

)
− 1

2
E2S̃0S̃0 − E2B2S̃0 − E2S2M0

=
1

2
(S̃0E2 − E2S̃0)S̃0 + S̃0E8S2 + 2S̃0E9B1 + S̃0E2B2 − E2B2S̃0 := J3

is compact from Hp[0, 2π] into Hp+2[0, 2π], where E8φ = κ2n·γ(4)φ and E9φ =

κ2n · γ′′′φ are bounded from Hp[0, 2π] into Hp[0, 2π], and B̃4 := S̃0E2−E2S̃0

is bounded from Hp[0, 2π] into Hp+2[0, 2π].
The proof is completed by defining the operator

J = J1 + J2, (23)

where

J1 =

[
F1 F2

F3 F4

]
, J2 =

[
J2 0
J3 J1

]
.

The well-posedness of the boundary integral equation (19) is stated as
follows.

Theorem 4 For any p ≥ 0, the operator equation (19) admits a unique solu-
tion in Hp[0, 2π]2.

Proof It follows from Theorem 2 that the operator A = N + D in (19) is
injective. Hence A2 is injective. Consider the operator equation

A2ψ = (N +D)2ψ = Aη. (24)

Noting the boundedness ofN : Hp[0, 2π]2 → Hp−1[0, 2π]2 andD : Hp[0, 2π]2 →
Hp+4[0, 2π]2, we have from Theorem 3 that

(N +D)2 = U + J +ND +DN +D2, (25)

where U is isomorphic and J +ND + DN + D2 is compact from Hp[0, 2π]2

into Hp+2[0, 2π]2 for p ≥ 0. It follows from the Fredholm alternative that the
operator equation (24) has a unique solution ψ ∈ Hp[0, 2π]2, which shows that
ψ ∈ Hp[0, 2π]2 is also the solution to Aψ = η due to A(Aψ − η) = 0 and the
injectivity of A.
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4 Collocation method

Combining (24) and (25) yields

Uψ + (J + V)ψ = Aη,

where V = ND + DN + D2 is compact from Hp[0, 2π]2 into Hp+2[0, 2π]2.
Equivalently, we consider the operator equation

E−1Uψ + E−1(J + V)ψ = E−1Aη, (26)

where

E =

[
E1 0
0 E1

]
, E−1U =

[
E−11 (I + S0T0) + S0S0 0

0 E−11 (I + T0S0) + S0S0

]
.

It is clear to note that E−1U is isomorphic and E−1(J + V) is compact from
Hp[0, 2π]2 into Hp+2[0, 2π]2 for p ≥ 0.

In this section, we adopt the collocation method to study the convergence
of the semi- and full-discretization of the boundary integral equation (26). A
related work can be found in [3] on the convergence analysis of the collocation
method for solving the elastic obstacle scattering problem.

4.1 Semi-discrete scheme

Denote by Xn the space of n-th order trigonometric polynomials. For any
ϕ ∈ Xn, it has the form

ϕ(t) =

n∑
m=0

am cosmt+

n−1∑
m=1

bm sinmt.

Let Pn : Hp[0, 2π] → Xn be the interpolation operator, i.e., (Png)(ζ
(n)
j ) =

g(ζ
(n)
j ), where the interpolation points ζ

(n)
j := πj/n, j = 0, · · · , 2n−1. Clearly,

Pn is bounded.
Let X2

n = {ψ = (ψ1, ψ2)> : ψ1 ∈ Xn, ψ2 ∈ Xn} and define the interpolation
operator Pn : Hp[0, 2π]2 → X2

n by

Png = (Png1, Png2)> ∀ g = (g1, g2) ∈ Hp[0, 2π]2.

It is clear to note that X2
n is unisolvent with respect to the points {ζ(n)j }

2n−1
j=0 .

By [15, Theorem 11.8], we have

‖Png − g‖q ≤
C

np−q
‖g‖p ∀ g ∈ Hp[0, 2π]2, (27)

where 0 ≤ q ≤ p, 12 < p, and C is a positive constant depending on p and q.
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Hence ψ = (ψ1, ψ2)> can be approximated by ψn = (ψn1 , ψ
n
2 )> ∈ X2

n,
which satisfies the approximate operator equation

E−1Uψn + Pn[E−1(J + V)]ψn = Pn(E−1A)η, (28)

where ψn satisfies Pn(E−1U)ψn = E−1Uψn by noting (20).
The unique solvability of (28) and the error estimate of the solution are

given in the following theorem. Based on the fact that J ,V : Hp[0, 2π]2 →
Hp+3[0, 2π]2 are bounded for any p ≥ 0, the proof is similar to that of [3,
Theorem 4.1] and is omitted for brevity.

Theorem 5 Let ψ be the unique solution to (19). For sufficiently large n, the
approximate operator equation (28) has a unique solution ψn, which satisfies

‖ψn − ψ‖p ≤ C‖Pn(E−1U)ψ − E−1Uψ‖p+2,

where C is a positive constant depending on E−1J , E−1V and E−1U .

4.2 Full-discrete scheme

Based on the Lagrange basis (cf. [15, eqn. (11.12)])

Lj(t) =
1

2n

{
1 + 2

n−1∑
k=1

cos k(t− ζ(n)j ) + cosn(t− ζ(n)j )
}
, j = 0, 1, · · · , 2n− 1,

an approximate solution ψ̃n ∈ X2
n of (28) can be written as

ψ̃n(t) =
(
ψ̃n1 (t), ψ̃n2 (t)

)>
=

( 2n−1∑
j=0

ψ̃n1 (ζ
(n)
j )Lj(t),

2n−1∑
j=0

ψ̃n2 (ζ
(n)
j )Lj(t)

)>
.

Moreover, it satisfies

E−1n Unψ̃n + Pn[E−1n (Jn + Vn)]ψ̃n = Pn(E−1n An)η, (29)

where An = Nn + Dn = N1,n +N2,n + Dn, Jn = J1,n + J2,n, Vn = NnDn +
DnNn +DnDn. The involved quadrature operators are given by

T0,n = T0Pn, Sj,n = SjPn, Ei,n = Ei (30)

for j = 0, 1, 2, i = 1, · · · , 9, and the quadrature operators corresponding the
integral operators of the form

(Bφ)(t) =

∫ 2π

0

ln
(

4 sin2 t− ζ
2

)
b1(t, ζ)φ(ζ) dζ +

∫ 2π

0

b2(t, ζ)φ(ζ) dζ

def
= (B1φ)(t) + (B2φ)(t)
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are defined by

(Bnφ)(t) =

∫ 2π

0

ln
(

4 sin2 t− ζ
2

)
Pn[b1(t, ζ)φ(ζ)] dζ +

∫ 2π

0

Pn[b2(t, ζ)φ(ζ)] dζ

def
= (B1,nφ)(t) + (B2,nφ)(t).

Then we have N1,n = N1Pn, N2,n = N2Pn, and

En =

[
E1,n 0

0 E1,n

]
, J1,n =

[
F1,n F2,n

F3,n F4,n

]
, J2,n =

[
J2,n 0
J3,n J1,n

]
,

where Fj,n and Ji,n are quadrature operators corresponding to the integral

operators Fj and Ji, respectively. It is clear to note that E−1n Unψ̃n = E−1U ψ̃n

and Nnψ̃n = N ψ̃n for any ψ̃n ∈ X2
n.

Our objective is to analyze the convergence of the fully discretized equation
(29). Employing similar arguments as those presented in [3, Theorems 4.2 and
4.3], we derive the following two theorems, which address the error estimates
of Dn and Vn. Detailed proofs can be found in Appendix B.

Theorem 6 Let 0 ≤ q ≤ p and p > 1/2. Then for any ψ ∈ X2
n and χ ∈

Hp[0, 2π]2, it holds that

‖Dnψ −Dψ‖q+3 ≤ C
1

np+1−q ‖ψ‖p, ‖Dnχ−Dχ‖q+3 ≤ C̃
1

np−q
‖χ‖p, (31)

where C and C̃ are positive constants depending on p and q.

Remark 2 For any ϕ ∈ Xn and χ̃ ∈ Hp[0, 2π], we may follow the proofs
of [3, Theorem 4.2] and [15, Lemma 13.21] to show that S2, B2 satisfy the
following type of estimates:

‖S2,nϕ− S2ϕ‖q+2 ≤ C1
1

np+1−q ‖ϕ‖p, ‖S2,nχ̃− S2χ̃‖q+2 ≤ C̃1
1

np−q
‖χ̃‖p,

and S1, B1, B3, B̃3, B̃4 satisfy the following type of estimates:

‖S1,nϕ− S1ϕ‖q+1 ≤ C2
1

np+1−q ‖ϕ‖p, ‖S1,nχ̃− S1χ̃‖q+1 ≤ C̃2
1

np−q
‖χ̃‖p,

where 0 ≤ q ≤ p, p > 1
2 , and the positive constants Cj , C̃j , j = 1, 2 depend on

p and q.

Hereafter, the notation a � b stands for a ≤ Cb, where C > 0 is a constant
depending on p and may change step by step in the proofs.

Theorem 7 Let p > 3
2 . Then the following estimate holds:

‖Pn[E−1n Vn − E−1V]ψ‖p+2 �
1

n
‖ψ‖p ∀ψ ∈ X2

n.

The following result is concerned with the error estimate of Jn.
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Theorem 8 Let p > 1/2. Then the following estimate holds:

‖Pn[E−1n Jn − E−1J ]ψ‖p+2 �
1

n
‖ψ‖p ∀ψ ∈ X2

n.

Proof We claim for any ϕ ∈ Xn that

‖Fj,nϕ− Fjϕ‖p+2 �
1

n
‖ϕ‖p, ‖Ji,nϕ− Jiϕ‖p+2 �

1

n
‖ϕ‖p. (32)

for j = 1, 2, 3, 4, i = 1, 2, 3. In the following, we only show the proof for j = 1,
i = 1 since the other cases can be proved similarly.

First, we have from (21) that

‖F1,nϕ− F1ϕ‖p+2 ≤ I1 + I2 + I3 + I4 ∀ϕ ∈ Xn, (33)

where

I1 = ‖2E2,nS2,nϕ− 2E2S2ϕ‖p+2,

I2 = ‖E2,nS2,nE2,nS2,nϕ− E2S2E2S2ϕ‖p+2,

I3 = ‖S0,n(E3,nS1,n + E6,nS2,n)ϕ− S0(E3S1 + E6S2)ϕ‖p+2,

I4 = ‖E1,nS2,n(
1

2
E1,nS0,n + E3,nS1,n + E6,nS2,n)ϕ

− E1S2(
1

2
E1S0 + E3S1 + E6S2)ϕ‖p+2.

It is clear to note from (30) that I1 = 0. Using (27) and Remark 2, and
following the same techniques as those in [3, Theorem 4.4], we have

I2 � ‖S2,nE2,nS2,nϕ− S2E2S2ϕ‖p+2 = ‖(S2,n − S2)(E2S2ϕ− PnE2S2ϕ)‖p+2

� ‖E2S2ϕ− PnE2S2ϕ‖p �
1

n3
‖E2S2ϕ‖p+3 �

1

n
‖ϕ‖p.

By the uniform boundedness of S0,n − S0 : Hp[0, 2π]2 → Hp+1[0, 2π]2, we get

I3 � ‖S0,nE3,nS1,nϕ− S0E3S1ϕ‖p+2 + ‖S0,nE6,nS2,nϕ− S0E6S2ϕ‖p+2

= ‖(S0,n − S0)(E3S1ϕ− PnE3S1ϕ)‖p+2

+ ‖(S0,n − S0)(E6S2ϕ− PnE6S2ϕ)‖p+2

� ‖E3S1ϕ− PnE3S1ϕ‖p+1 + ‖E6S2ϕ− PnE6S2ϕ‖p+1

� 1

n
‖E3S1ϕ‖p+2 +

1

n2
‖E6S2ϕ‖p+3 �

1

n
‖ϕ‖p.

Analogously, we may show I4 � 1
n‖ϕ‖p. Combining Ij � 1

n‖ϕ‖p, j = 1, 2, 3, 4
and (33) leads to the first inequality in (32).

Next, it follows from (22) that

‖J1,nϕ− J1ϕ‖p+2 ≤ Q1 +Q2 +Q3 +Q4 +Q5 +Q6 ∀ϕ ∈ Xn,

where

Q1 = ‖1

2
B̃3,nS̃0,nϕ−

1

2
B̃3S̃0ϕ‖p+2,
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Q2 = ‖S̃0,nE7,nS2,nϕ− S̃0E7S2ϕ‖p+2,

Q3 = ‖4S̃0,nE3,nB1,nϕ− 4S̃0E3B1ϕ‖p+2,

Q4 = ‖S̃0,nE1,nB2,nϕ− S̃0E1B2ϕ‖p+2,

Q5 = ‖1

2
E1,nM0,nS0,nϕ−

1

2
E1M0S0ϕ‖p+2,

Q6 = ‖M0,nE1,nS2,nϕ−M0E1S2ϕ‖p+2.

Again, we have from Remark 2 that

Q1 � ‖(B̃3,n − B̃3)S̃0ϕ‖p+2 �
1

n
‖S̃0ϕ‖p+1 �

1

n
‖ϕ‖p.

The inequality Q2 � 1
n‖ϕ‖p can be obtained by the similar estimate of the

second item of I3. Noting (27) and the uniform boundedness of S̃0, S̃0,n− S̃0 :
Hp[0, 2π]→ Hp+1[0, 2π], we deduce

Q3 � ‖S̃0,n(E3,nB1,n − E3B1)ϕ‖p+2 + ‖(S̃0,n − S̃0)(E3B1ϕ− PnE3B1ϕ)‖p+2

� ‖(E3,nB1,n − E3B1)ϕ‖p+1 + ‖E3B1ϕ− PnE3B1ϕ‖p+1

� ‖(B1,n −B1)ϕ‖p+1 +
1

n
‖E3B1ϕ‖p+2

� 1

n
‖ϕ‖p +

1

n
‖ϕ‖p �

1

n
‖ϕ‖p.

Analogously, Q4 can be estimate as

Q4 � ‖(B2,n −B2)ϕ‖p+1 +
1

n
‖E3B2ϕ‖p+2

≤ ‖(B2,n −B2)ϕ‖p+2 +
1

n
‖E3B2ϕ‖p+3 �

1

n
‖ϕ‖p.

Clearly, Q5 = 0 by noting S0,nϕ = S0ϕ ∈ Xn. It follows from [10, Theorem
A.45] that M0 is a bounded operator from Hp[0, 2π] into Hr[0, 2π] for every
−r ≤ p ≤ r. Hence, we have

Q6 � ‖PnE1S2ϕ− E1S2ϕ‖p+2 �
1

n
‖E1S2ϕ‖p+3 �

1

n
‖ϕ‖p,

which implies the second inequality of (32).

Combining (8) and (23), we complete the proof by noting that the operators
E−1,Pn : Hp+2[0, 2π]2 → Hp+2[0, 2π]2 are uniformly bounded.

The following result concerns the convergence of the full-discrete scheme.
Based on the uniform boundedness of the operators Fj,n − Fj , Ji,n − Ji :
Hp[0, 2π] → Hp+2[0, 2π] from Remark 2 and (31), the proof is similar to
that of [3, Theorem 4.5] and is omitted here for brevity.
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Theorem 9 Let ψ be the unique solution to (19). For p > 3/2 and sufficiently

large n, the fully discrete equation (29) admits a unique solution ψ̃n, which
satisfies

‖ψ̃n − ψ‖p
� ‖Pn(E−1U)ψ − E−1Uψ‖p+2 + ‖Pn[E−1n (Jn +Kn)− E−1(J +K)]ψ‖p+2

+ ‖Pn[E−1n An − E−1A]η‖p+2.

Remark 3 Similar to the arguments presented in [15, pp. 262], exponential
convergence can be achieved when both the boundary Γ and the exact solution
ψ are analytic.

5 Numerical experiments

In this section, we present numerical implementation and show some examples
to demonstrate the superior performance of the proposed method. In particu-
lar, we introduce a simple alternative boundary integral formulation by using
a combination of the single- and single-layer potentials.

5.1 Double-single layer potential formulation

As discussed in section 3, the boundary integral formulation is based on a
combination of the double- and single-layer potentials. Here we introduce two
different approaches to solve the corresponding full-discrete boundary integral
equations.

5.1.1 Approach 1

The first approach is to solve directly the equivalent full-discrete equation of
(18), i.e., ([

I 0

T̃0 −I

]
+

[
L S

R−H K

])[
ψ1

ψ2

]
=

[
η1
η2

]
,

where T̃0 = T0 −M0. By the decomposition (17), we apply the simple trape-
zoidal for the smooth integrals:∫ 2π

0

f(ζ)dζ ≈ π

n

2n−1∑
j=0

f(ζ
(n)
j ),

while we employ the quadrature rules via the trigonometric interpolation for
the weakly singular integrals (cf. [2, 13]]:∫ 2π

0

ln
(

4 sin2 t− ζ
2

)
f(ζ) dζ ≈

2n−1∑
j=0

R
(n)
j (t)f(ζ

(n)
j ),
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1

2π

∫ 2π

0

cot
ζ − t

2
f ′(ζ) dζ ≈

2n−1∑
j=0

T
(n)
j (t)f(ζ

(n)
j ),

where the quadrature weights are given by

R
(n)
j (t) = −2π

n

n−1∑
m=1

1

m
cos
[
m(t− ζ(n)j )

]
− π

n2
cos
[
n(t− ζ(n)j )

]
,

T
(n)
j (t) = − 1

n

n−1∑
m=1

m cos
[
m(t− ζ(n)j )

]
− 1

2
cos
[
n(t− ζ(n)j )

]
.

5.1.2 Approach 2

The second approach is to solve the equivalent full-discrete equation of (19),
i.e.,

PnNnψ̃n + PnDnψ̃n = Pnη ⇔ Anψ̃
n = ηn, (34)

where An is the coefficient matrix of the full-discrete equation. As mentioned
in [3, section 5], it is more convenient to handle the equivalent full-discrete
equation (34) due to the simple quadrature operators Nn and Dn.

To handle the singular integrals S1 and S2, we use the trigonometric inter-
polation in the quadrature rules∫ 2π

0

ln
(

4 sin2 t− ζ
2

)
sin(t− ζ)f(ζ) dζ ≈

2n−1∑
j=0

V
(n)
j (t)f(ζ

(n)
j ),

∫ 2π

0

ln
(

4 sin2 t− ζ
2

)
sin2(t− ζ)f(ζ) dζ ≈

2n−1∑
j=0

W
(n)
j (t)f(ζ

(n)
j ),

where the integral weights are defined by

V
(n)
j (t) = − π

2n
sin(ζ

(n)
j − t) +

2π

n

n−1∑
m=2

sin[m(ζ
(n)
j − t)]

m2 − 1
+
π sin[n(ζ

(n)
j − t)]

n(n2 − 1)
,

W
(n)
j (t) =

π

n

{1

4
+

2

3
cos(t− ζ(n)j ) +

1

8
cos[2(t− ζ(n)j )]

}
+

1

2
R

(n)
j (t)

+
π

n

n−1∑
m=3

m

m2 − 4
cos[m(t− ζ(n)j )] +

π

2(n2 − 4)
cos[n(t− ζ(n)j )].

Remark 4 By a straightforward calculation, we get

W
(n)
j (t)−R(n)

j (t) sin2(t− ζ(n)j )

=
π

2n2
sin[n(t− ζ(n)j )] sin[2(t− ζ(n)j )] +

π

n2 − n
sin[n(t− ζ(n)j )] sin(t− ζ(n)j )

− π

n(n− 1)(n+ 1)
cos[(n− 1)(t− ζ(n)j )]− π

n(n− 2)(n+ 2)
cos[n(t− ζ(n)j )].
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Table 1 The parameterized boundary curves.

Boundary type Parameterization

Apple-shaped γ(t) =
0.55(1 + 0.9 cos t+ 0.1 sin 2t)

1 + 0.75 cos t
(cos t, sin t), t ∈ [0, 2π]

Peanut-shaped γ(t) = 0.275
√

3 cos2 t+ 1(cos t, sin t), t ∈ [0, 2π]

Peach-shaped γ(t) = 0.22(cos2 t
√

1− sin t+ 2)(cos t, sin t), t ∈ [0, 2π]

Drop-shaped γ(t) = (2 sin
t

2
− 1,− sin t), t ∈ [0, 2π]

Heart-shaped γ(t) = (
3

2
sin

3t

2
, sin t), t ∈ [0, 2π]

It is clear to note that W
(n)
j (ζ

(n)
i )−R(n)

j (ζ
(n)
i ) sin2(ζ

(n)
i −ζ

(n)
j ) 6= 0, which is dif-

ferent from [3, Remark 5.1]. However, we haveW
(n)
j (ζ

(n)
i )−R(n)

j (ζ
(n)
i ) sin2(ζ

(n)
i −

ζ
(n)
j )→ 0 as n→∞.

5.2 Single-single layer potential formulation

As a comparison, we introduce a computationally more convenient boundary
integral formulation by using the single- and single-layer potentials. Using the
fundamental solutions to the Helmholtz and modified Helmholtz equations, we
represent the solutions of (8) in terms of two single-layer potentials

vH(x) =

∫
Γ

GH(x, y)g1(y)ds(y), vM(x) =

∫
Γ

GM(x, y)g2(y)ds(y) (35)

for x ∈ R2 \ ΓD, where g1 and g2 are densities.
Using the boundary condition (5) and the jump relation of the single-layer

potentials (35), we deduce the coupled boundary integral equations

−uinc(x) =

∫
Γ

GH(x, y)g1(y)ds(y) +

∫
Γ

GM(x, y)g2(y)ds(y),

−∂u
inc(x)

∂ν(x)
= −1

2
g1(x) +

∫
Γ

∂GH(x, y)

∂ν(x)
g1(y)ds(y)

− 1

2
g2(x) +

∫
Γ

∂GM(x, y)

∂ν(x)
g2(y)ds(y).

(36)

The parametric form of (36) and the decompositions of the integral kernels
can be obtained in a similar manner to those described in subsection 3.2, but
the details are omitted in this discussion. Computationally, the coupled sys-
tem (36) is simpler compared to (14) as it does not involve any hypersingular
integral kernel. However, it remains unclear whether the boundary integral
equations (36) and their corresponding parametric form possess a unique so-
lution. A comprehensive analysis of this matter will be addressed in future
research.
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Table 2 Numerical errors of the wave fields for the apple- and peanut-shaped cavities by
using the first approach for the double-single layer potential formulation.

Apple-shaped Peanut-shaped

n ‖v∗H − v
(n)
H ‖ ‖v∗M − v

(n)
M ‖ time ‖v∗H − v

(n)
H ‖ ‖v∗M − v

(n)
M ‖ time

8 9.1028e-03 4.9959e-03 0.008s 6.4240e-03 3.3783e-03 0.006s
16 1.9452e-03 7.4528e-04 0.01s 2.6370e-04 7.9816e-05 0.01s
32 8.0695e-08 4.8943e-08 0.03s 5.1058e-08 1.5750e-08 0.02s
64 2.2710e-12 6.4901e-13 0.08s 7.9013e-14 2.7135e-14 0.07s
128 1.0169e-12 4.4399e-13 0.16s 1.1928e-12 3.8851e-13 0.15s

Table 3 Numerical errors of the far-field patterns for the apple- and peanut-shaped cavities
by using the first approach for the double-single layer potential formulation.

Apple-shaped Peanut-shaped

n ‖v(n∗)
∞ − v(n)∞ ‖ time ‖v(n∗)

∞ − v(n)∞ ‖ time
8 2.9366e-02 0.007s 1.7153e-03 0.004s
16 8.0457e-04 0.009s 5.8490e-07 0.007s
32 2.2996e-07 0.02s 5.0560e-10 0.02s
64 4.4398e-10 0.08s 5.0548e-10 0.07s
128 4.4586e-10 0.16s 5.0677e-10 0.14s
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Fig. 1 The reference and numerical solutions for the apple-shaped cavity: (a) the real part
of the far-field pattern; (b) the imaginary part of the far-field pattern.

5.3 Numerical examples

In this section, we present some numerical examples of both smooth and nons-
mooth cavities to demonstrate the performance of the proposed methods. The
code is written in Matlab using double precision arithmetic and the compu-
tations are run on a personal computer with a 64 GB RAM, 3.70 GHz Intel
core i9 processor.
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Table 4 Numerical errors of the wave fields for the apple- and peanut-shaped cavities by
using the second approach for the double-single layer potential formulation.

Apple-shaped Peanut-shaped

n ‖v∗H − v
(n)
H ‖ ‖v∗M − v

(n)
M ‖ time ‖v∗H − v

(n)
H ‖ ‖v∗M − v

(n)
M ‖ time

8 3.6851e-02 2.0239e-02 0.006s 1.1121e-02 6.5680e-03 0.007s
16 1.7791e-03 1.2935e-03 0.008s 2.6716e-04 8.4432e-05 0.01s
32 3.4434e-07 9.9280e-08 0.02s 5.1173e-08 1.5776e-08 0.02s
64 2.2717e-12 6.4932e-13 0.08s 7.8660e-14 2.7224e-14 0.08s
128 1.0171e-12 4.4408e-13 0.17s 1.1929e-12 3.8858e-13 0.16s

Table 5 Numerical errors of the wave fields for the apple- and peach-shaped cavities by
using the single-single layer potential formulation.

Apple-shaped Peach-shaped

n ‖v∗H − v
(n)
H ‖ ‖v∗M − v

(n)
M ‖ time ‖v∗H − v

(n)
H ‖ ‖v∗M − v

(n)
M ‖ time

8 1.5871e-02 7.9131e-03 0.008s 2.2946e-03 1.1103e-03 0.008s
16 1.6863e-02 9.6869e-03 0.01s 3.1410e-04 1.1890e-04 0.01s
32 5.9174e-10 4.5291e-10 0.02s 3.9650e-05 1.4962e-05 0.02s
64 7.1981e-15 5.9586e-15 0.06s 4.9690e-06 1.8742e-06 0.06s
128 1.1133e-15 3.0029e-16 0.13s 6.2163e-07 2.3443e-07 0.12s

Table 6 Numerical errors of the far-field patterns for the apple- and peach-shaped cavities
by using the single-single layer potential formulation.

Apple-shaped Peach-shaped

n ‖v(n∗)
∞ − v(n)∞ ‖ time ‖v(n∗)

∞ − v(n)∞ ‖ time
8 3.3854e-03 0.003s 5.4010e-04 0.003s
16 1.0286e-03 0.005s 1.4150e-05 0.005s
32 4.7122e-10 0.01s 1.6853e-06 0.01s
64 1.8565e-14 0.04s 2.0524e-07 0.05s
128 1.4716e-14 0.11s 2.5289e-08 0.11s

0 5 10 15 20 25 30 35

-1.5

-1

-0.5

0

0.5

1

Reference solution

Numerical solution

(a) <(v
(n∗)
∞ ) and <(v

(n)
∞ )

0 5 10 15 20 25 30 35

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Reference solution

Numerical solution

(b) =(v
(n∗)
∞ ) and =(v

(n)
∞ )

Fig. 2 The reference and numerical solutions for the peach-shaped cavity: (a) the real part
of the far-field pattern; (b) the imaginary part of the far-field pattern.
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5.3.1 Smooth cavities

First, we consider the scattering by smooth cavities: the apple-, peanut-, and
peach-shaped cavities. Table 1 shows the parameterized equations for the
boundary curves, where the appled- and peanut-shaped cavities have ana-
lytic boundary curves while the peach-shaped cavity has a C2 boundary curve.
These examples have been commonly used for benchmark tests of various scat-
tering problems, e.g., the elastic obstacle scattering problem [3].

Let us begin with an example which has an analytic solution in order
to test the accuracy of the methods. We consider a point source located at
x̄ = (0.1, 0.2)> ∈ D and construct the corresponding exact solutions to the
Helmholtz and modified Helmholtz equations

v∗H(x) = H
(1)
0 (κ|x− x̄|), v∗M(x) = H

(1)
0 (iκ|x− x̄|), x ∈ R2 \D, (37)

which satisfy the Sommerfeld radiation condition (10). Then the numerical
solution is obtained by solving the boundary value problem (8)–(10) with the
following boundary conditions on Γ :

f̃1 = v∗H + v∗M, f̃2 = ∂νv
∗
H + ∂νv

∗
M.

Tables 2, 4, and 5 list the L2(∂B1) errors of the wave fields vH and vM at the
wavenumber κ = 2, where ∂B1 = {x ∈ R2 : |x| = 1}. Specifically, Tables 2 and
4 show the results by using the first and second approaches for the double-
single layer potential formulation, respectively; Table 5 gives the results by
using the single-single layer potential formulation.

Now, we consider the scattering problem that the cavity is illuminated
by a plane wave. Since there are no analytic solutions, we use the numerical
solution with the number of collocation points n∗ = 2048 as the reference
solution. We take the incident angle θ = π/6, solve the boundary integral

equations, and use (15) to calculate the corresponding far-field patterns v
(n∗)
∞

at 32 observation points which are uniformly distributed on the unit circle
Ω. To examine the convergence, the reference solutions are compared with
the numerical solutions computed by using different numbers of collocation
points. Table 3 shows the errors of the far-field patterns for the apple- and
peanut-shaped cavities by using the first approach for the double-single layer
potential formulation. Table 6 shows the errors of the far-field patterns for
the apple- and peach-shaped cavities by using the single-single layer potential
formulation. Figures 1 and 2 plot the real and imaginary parts of the reference

solution v
(n∗)
∞ and the numerical solution v

(n)
∞ with the number of collocation

points n = 32 for the apple- and peach-shaped cavities, respectively. Since the
results are similar for the second approach to the double-single layer potential
formulation, they are not shown here for brevity.

Based on the above numerical experiments, it can be observed that the
errors decrease exponentially as the number of collocation points increases,
which indicates the exponential convergence of the method and confirms our
theoretical analysis. It can also be found that the convergence rate of the
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apple-shaped cavity is faster than that of the peach-shaped cavity, which is
consistent with the fact that the apple-shaped cavity has an analytic boundary
curve while the peach-shaped cavity has only a C2 boundary curve.

5.3.2 Non-smooth cavities

Next we report the scattering by nonsmooth cavities: the drop- and heart-
shaped cavities. The parameterizations of the boundary curves of these two
cavities are shown in Table 1. Clearly, the drop-shaped cavity is convex but
the heart-shaped cavity is concave; both of the boundary curves have a single
corner at x0 ∈ Γ and are analytic on Γ \{x0}. The angle at the corner is defined
as ϑ which satisfies 0 < ϑ < 2π. It can be seen from the parameterizations
that the drop- and heart-shaped cavities have interior angles of ϑ = π/2 and
ϑ = 3π/2, respectively, and the corner point x0 corresponds to the parameter
t = 0.

Again, to test the accuracy, we consider the point source located at x̄ =
(0.1, 0.2)> and x̄ = (−0.5, 0.2)> for the drop- and heart-shaped cavities, re-
spectively, and construct the corresponding exact solution (37). Moreover, we
employ the graded mesh in order to efficiently resolve the wave field near the
corner, i.e., more collocation points are adopted on the boundary curve near
the corner while less points are allocated at the part of the boundary curve
that is far from the corner. Specifically, we take the substitution t = w(s) in
the parametric curve of the drop- and hear-shaped cavities [2, 12], where

w(s) = 2π
[v(s)]p

[v(s)]p + [v(2π − s)]p
, 0 ≤ s ≤ 2π

with

v(s) =
(1

p
− 1

2

)(π − s
π

)3
+

1

p

s− π
π

+
1

2
, p = 2.

In the experiments, the collocation points are chosen as sj := πj/n+ π/(2n).
The graded mesh of the collocation points w(sj), j = 0, · · · , 2n − 1 can be
found in [3, Figure 3] for both of the drop- and heart-shaped boundary curves.

Table 7 lists the L2(∂B2) errors between the numerical solution and the
exact solution (37) for the drop- and heart-shaped cavities, where ∂B2 = {x ∈
R2 : |x| = 2}. Clearly, the errors decay rapidly for both cases by using the
graded meshes. This is due to the reason that the exact solution is analytic.
On the other hand, the results are more accurate for the heart-shaped cavity
than those of the drop-shaped cavity. We believe that this phenomenon is
related to the geometry of the cavity. The analysis will be left for a future
work. Similar to the scattering by smooth cavities, we consider the plane wave

incidence with incident angle θ = π/6 and compute the far-field patterns v
(n∗)
∞

with n∗ = 2048 as reference solutions. Table 8 shows the errors of the far-field
patterns by using the single-single layer potential formulation. The numerical

solution v
(n)
∞ and the reference solution v

(n∗)
∞ are shown in Figures 3 and 4 for

the drop- and heart-shaped obstacles, respectively. It can be seen that the two
solutions agree with each other very well.
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Table 7 Numerical errors of the wave fields for the drop- and heart-shaped cavities by
using the single-single layer potential formulation.

Drop-shaped Heart-shaped

n ‖v∗H − v
(n)
H ‖ ‖v∗M − v

(n)
M ‖ time ‖v∗H − v

(n)
H ‖ ‖v∗M − v

(n)
M ‖ time

8 3.9875e-03 7.3325e-04 0.003s 2.0080e-01 3.9261e-02 0.003s
16 1.2025e-05 2.2451e-06 0.007s 6.2198e-02 3.5015e-02 0.007s
32 1.5096e-06 1.8009e-07 0.02s 1.5920e-03 1.0946e-03 0.02s
64 1.8909e-07 2.2602e-08 0.07s 4.4875e-05 3.6727e-05 0.07s
128 2.3294e-08 2.7856e-09 0.13s 3.2170e-09 2.5981e-09 0.13s
256 4.5217e-09 5.4078e-10 0.67s 3.2103e-12 1.5088e-12 0.68s
512 2.1147e-10 2.5291e-11 5.95s 6.0989e-13 3.3518e-13 5.89s
1024 1.3734e-11 1.6426e-12 53.88s 4.9250e-13 3.0598e-13 53.90s

Table 8 Numerical errors of the far-field patterns for the drop- and heart-shaped cavities
by using the single-single layer potential formulation.

Drop-shaped Heart-shaped

n ‖v(n∗)
∞ − v(n)∞ ‖ time ‖v(n∗)

∞ − v(n)∞ ‖ time
8 8.5518e-02 0.003s 1.7155 0.003s
16 2.4203e-03 0.008s 1.6035e-01 0.007s
32 3.5585e-04 0.02s 4.1046e-04 0.02s
64 6.1901e-05 0.07s 4.1476e-06 0.07s
128 6.7751e-06 0.13s 3.9402e-10 0.12s
256 1.1587e-05 0.66s 9.9265e-13 0.69s
512 3.6241e-06 5.99s 2.0886e-13 5.99s
1024 1.5637e-06 53.62s 2.0840e-13 54.15s
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Fig. 3 The reference and numerical solutions for the drop-shaped cavity: (a) the real part
of the far-field pattern; (b) the imaginary part of the far-field pattern.

6 Conclusion

In this paper, we have studied the biharmonic wave scattering problem of
a cavity embedded in an infinite thin plate. Based on the biharmonic wave
operator splitting, the scattering problem of the fourth-order biharmonic wave
equation is reduced into a coupled boundary value problem of the Helmholtz
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Fig. 4 The reference and numerical solutions for the heart-shaped cavity: (a) the real part
of the far-field pattern; (b) the imaginary part of the far-field pattern.

and modified Helmholtz equations. With the help of potential theory, a novel
boundary integral formulation is proposed for the scattering problem. Based
on an appropriate regularizer, the operator equation is split into an isomorphic
operator plus a compact one. The well-posedness is established for the coupled
system. The convergence analysis is carried out for both the semi- and full-
discrete schemes by using the collocation method. To demonstrate the superior
performance of the proposed method, numerical experiments are presented for
both smooth and nonsmooth cavities. The numerical results show that the
proposed method is highly accurate even for nonsmooth examples.

In this work, we examined only the clamped boundary condition. At the
edge of cavities, many other boundary conditions can be considered to take
into account of different physical behavior [6]. Clearly, a different boundary
condition will lead to a different formulation of boundary integral equations.
We are investigating these problems and will report the progress elsewhere in
the future.
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A Representations and splittings of the kernels

The integral kernels of the operators L, S,K,R,H are given by

l(t, ζ) =
iκ

2
n(ζ) · [γ(t)− γ(ζ)]

H
(1)
1 (κ|γ(t)− γ(ζ)|)
|γ(t)− γ(ζ)|

,

s(t, ζ) =
i

2
H

(1)
0 (iκ|γ(t)− γ(ζ)|),

k(t, ζ) =
κ

2
n(t) · [γ(t)− γ(ζ)]

H
(1)
1 (iκ|γ(t)− γ(ζ)|)
|γ(t)− γ(ζ)|

,

r(t, ζ) =
iκ2

2
H

(1)
0 (κ|γ(t)− γ(ζ)|)n(t) · n(ζ),

h(t, ζ) =
i

2
h̃(t, ζ)

{
κ2H

(1)
0 (κ|γ(t)− γ(ζ)|)−

2κH
(1)
1 (κ|γ(t)− γ(ζ)|)
|γ(t)− γ(ζ)|

}
+

iκγ′(t) · γ′(ζ)
2|γ(t)− γ(ζ)|

H
(1)
1 (κ|γ(t)− γ(ζ)|) +

1

4π

1

sin2 1
2

(t− ζ)
.

Here n(t) :=
(
γ′2(t),−γ′1(t)

)>
, n⊥(t) := γ′(t) =

(
γ′1(t), γ′2(t)

)>
, and

h̃(t, ζ) =

[
γ′(t) · (γ(t)− γ(ζ))

][
γ′(ζ) · (γ(t)− γ(ζ))

]
|γ(t)− γ(ζ)|2

.

For the splitting (17), we have

l1(t, ζ) =
κ

2π
n(ζ) ·

[
γ(ζ)− γ(t)

]J1(κ|γ(t)− γ(ζ)|)
|γ(t)− γ(ζ)|

,

s1(t, ζ) = −
1

2π
J0(iκ|γ(t)− γ(ζ)|),

k1(t, ζ) =
iκ

2π
n(t) ·

[
γ(t)− γ(ζ)

]J1(iκ|γ(t)− γ(ζ)|)
|γ(t)− γ(ζ)|

,

r1(t, ζ) = −
κ2

2π
J0(κ|γ(t)− γ(ζ)|)n(t) · n(ζ),

h1(t, ζ) = −
1

2π
h̃(t, ζ)

(
κ2J0(κ|γ(t)− γ(ζ)|)−

2κJ1(κ|γ(t)− γ(ζ)|)
|γ(t)− γ(ζ)|

)

−
κγ′(t) · γ′(ζ)

2π|γ(t)− γ(ζ)|
J1(κ|γ(t)− γ(ζ)|),

where J0 and J1 are the Bessel functions of the first kind with order zero and one, respec-
tively. The diagonal entries are given by

l1(t, t) = 0, l2(t, t) =
1

2π

n(t) · γ′′(t)
|γ′(t)|2

,

s1(t, t) = −
1

2π
, s2(t, t) =

i

2
−
C

π
−

1

π
ln
( iκ

2
|γ′(t)|

)
,

r1(t, t) = −
κ2

2π
|γ′(t)|2, r2(t, t) = κ2|γ′(t)|2

{ i

2
−
C

π
−

1

π
ln
(κ

2
|γ′(t)|

)}
,

k1(t, t) = 0, k2(t, t) =
1

2π

n(t) · γ′′(t)
|γ′(t)|2

, h1(t, t) = −
κ2|γ′(t)|2

4π
,

h2(t, t) =
(
πi− 1− 2C − 2 ln

κ|γ′(t)|
2

)κ2|γ′(t)|2
4π

+
1

12π
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+
[γ′(t) · γ′′(t)]2

2π|γ′(t)|4
−
|γ′′(t)|2

4π|γ′(t)|2
−
γ′(t) · γ′′′(t)

6π|γ′(t)|2
,

where C denotes Euler’s constant. We refer to [2, 13] for the details of the decomposition.

B Proofs for Theorems 6 and 7

B.1 Proof of Theorem 6

The function Dψ can be split into the following two parts:

(Dψ)(t) =

∫ 2π

0
ln
(

4 sin2 t− ζ
2

)
α(t, ζ)ψ(ζ) dζ +

∫ 2π

0
β(t, ζ)ψ(ζ) dζ,

where

α(t, ζ) =

[
α1(t, ζ) α2(t, ζ)
α3(t, ζ) α4(t, ζ)

]
, β(t, ζ) =

[
β1(t, ζ) β2(t, ζ)
β3(t, ζ) β4(t, ζ)

]
with αj(t, t) = ∂tαj(t, t) = ∂2ttαj(t, t) = 0, j = 1, 2, 3, 4 and αj , βj being analytic. We write

the derivative d2

dt2
(Dψ) in form of

(D′′ψ)(t) :=
d2

dt2
(Dψ)(t)

=

∫ 2π

0
ln
(

4 sin2 t− ζ
2

)
α̃(t, ζ)ψ(ζ) dζ +

∫ 2π

0
β̃(t, ζ)ψ(ζ) dζ,

where

α̃(t, ζ) = ∂2ttα(t, ζ),

β̃(t, ζ) = 2 cot
t− ζ

2
∂tα(t, ζ)− α(t, ζ)

1

2 sin2 t−ζ
2

+ ∂2ttβ(t, ζ).

By the interpolatory quadrature, the full discretization of D′′ can be written as

(D′′nψ)(t) =

∫ 2π

0
ln
(

4 sin2 t− ζ
2

)
Pn
{
α̃(t, ·)ψ

}
(ζ) dζ +

∫ 2π

0
Pn
{
β̃(t, ·)ψ

}
(ζ) dζ.

Noting p > 1/2, 0 ≤ q ≤ p, α̃(t, t) = 0, and the analyticity of the elements in α̃(t, ζ) and

β̃(t, ζ), we have from [15, Lemma 13.21 and Theorem 12.18] that

‖D′′nψ −D′′ψ‖q+1 ≤ C1
1

np+1−q ‖ψ‖p, ‖D′′nχ−D′′χ‖q+1 ≤ C̃1
1

np−q
‖χ‖p

for any ψ ∈ X2
n and χ ∈ Hp[0, 2π]2, where the positive constants C1 and C̃1 depend on p

and q. Since D′′nψ = d2

dt2
(Dnψ), the above inequalities reduce to

‖Dnψ −Dψ‖q+3 ≤ C2
1

np+1−q ‖ψ‖p, ‖Dnχ−Dχ‖q+3 ≤ C̃2
1

np−q
‖χ‖p,

where C2 and C̃2 are positive constants depending on p and q. By [15, Theorem 8.13], the
proof is completed since the above inequalities hold for any q satisfying 0 ≤ q ≤ p and
p > 1/2.
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B.2 Proof of Theorem 7

Recalling the boundedness of N : Hp[0, 2π]2 → Hp−1[0, 2π]2 and using (27), we have for
any χ ∈ Hp[0, 2π]2, 0 ≤ q ≤ p, p > 1/2 that

‖(Nn −N )χ‖q−1 = ‖N (Pnχ− χ)‖q−1 ≤ C1‖(Pnχ− χ)‖q ≤
C2

np−q
‖χ‖p,

where C1 and C2 are positive constants depending on q and p, q, respectively. For any
p > 1/2, it is clear to note that Nn and Nn −N are uniformly bounded from Hp[0, 2π]2 to
Hp−1[0, 2π]2.

For any ψ ∈ X2
n, it follows from Theorem 6 and Nnψ = Nψ that

‖NnDnψ −NDψ‖p+2

≤ ‖Nn(Dn −D)ψ‖p+2 + ‖(Nn −N )(Dψ − PnDψ)‖p+2 + ‖(Nn −N )PnDψ‖p+2

� ‖(Dn −D)ψ‖p+3 + ‖Dψ − PnDψ‖p+3

� 1/n‖ψ‖p + 1/n‖Dψ‖p+4 � 1/n‖ψ‖p.

Moreover, by Theorem 6, we have for any p > 1/2 thatDn andDn−D are uniformly bounded
from Hp[0, 2π]2 to Hp+3[0, 2π]2. Combining (27) and (31), and noting the boundedness of
D : Hp[0, 2π]2 → Hp+4[0, 2π]2 and the uniform boundedness of Pn : Hp+2[0, 2π]2 →
Hp+2[0, 2π]2, we obtain

‖D2
nψ −D2ψ‖p+2 ≤ ‖D2

nψ −D2ψ‖p+6

≤ ‖Dn(Dn −D)ψ‖p+6 + ‖(Dn −D)(Dψ − PnDψ)‖p+6 + ‖(Dn −D)PnDψ‖p+6

� ‖(Dn −D)ψ‖p+3 + ‖(Dψ − PnDψ)‖p+3 + 1/n‖PnDψ‖p+3

� 1/n‖ψ‖p + 1/n‖Dψ‖p+4 + 1/n‖Dψ‖p+3 � 1/n‖ψ‖p.

With the help of N1ψ ∈ X2
n, the boundedness of N2 : Hp[0, 2π]2 → Hp+1[0, 2π]2 and the

uniform boundedness of Dn − D : Hp−1[0, 2π]2 to Hp+2[0, 2π]2 and Pn : Hp−1[0, 2π]2 →
Hp−1[0, 2π]2 for p > 3

2
, we deduce

‖DnNnψ −DNψ‖p+2 = ‖(Dn −D)Nψ‖p+2

≤ ‖(Dn −D)(Nψ − PnNψ)‖p+2 + ‖(Dn −D)PnNψ‖p+2

� ‖Nψ − PnNψ‖p−1 + 1/n‖PnNψ‖p−1

≤ ‖N1ψ − PnN1ψ‖p−1 + ‖N2ψ − PnN2ψ‖p−1 + 1/n‖PnNψ‖p−1

� 1/n2‖N2ψ‖p+1 + 1/n‖Nψ‖p−1 � 1/n‖ψ‖p.

Combining the above estimates yields

‖Vnψ − Vψ‖p+2 ≤ ‖NnDnψ −NDψ‖p+2 + ‖DnNnψ −DNψ‖p+2

+ ‖D2
nψ −D2ψ‖p+2

� 1/n‖ψ‖p,

which completes the proof by noting that the operators E−1,Pn : Hp+2[0, 2π]2 → Hp+2[0, 2π]2

are uniformly bounded.
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