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Abstract. We consider the inverse random potential scattering problem for the two- and three-4
dimensional biharmonic wave equation in lossy media. The potential is assumed to be a microlocally5
isotropic Gaussian rough field. The main contributions of the work are twofold. First, the unique6
continuation principle is proved for the fourth order biharmonic wave equation with rough potentials7
and the well-posedness of the direct scattering problem is established in the distribution sense.8
Second, the correlation strength of the random potential is shown to be uniquely determined by the9
high frequency limit of the second moment of the backscattering data averaged over the frequency10
band. Moreover, we demonstrate that the expectation in the data can be removed and the data of11
a single realization is sufficient for the uniqueness of the inverse problem with probability one when12
the medium is lossless.13
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1. Introduction. Scattering problems arise from the interaction between waves17

and media. They play a fundamental role in many scientific areas such as medical18

imaging, exploration geophysics, and remote sensing. Driven by significant applica-19

tions, scattering problems have been extensively studied by many researchers, espe-20

cially for acoustic and electromagnetic waves [8,24]. Recently, scattering problems for21

biharmonic waves have attracted much attention due to their important applications22

in thin plate elasticity, which include offshore runway design [31], seismic cloaks [9,28],23

and platonic crystals [23]. Compared with the second order acoustic and electromag-24

netic wave equations, many direct and inverse scattering problems remain unsolved25

for the fourth order biharmonic wave equation [10,27].26

In this paper, we consider the biharmonic wave equation with a random potential27

(1.1) ∆2u− (k2 + iσk)u+ ρu = −δy in Rd,28

where d = 2 or 3, k > 0 is the wavenumber, σ ≥ 0 is the damping coefficient, and29

δy(x) := δ(x − y) denotes the point source located at y ∈ Rd with δ being the Dirac30

delta distribution. The term ρu describes physically an external linear load added to31

the system and represents a multiplicative noise from the point of view of stochastic32

partial differential equations. Denote by κ = κ(k) the complex-valued wavenumber33

which is given by34

κ4 = k2 + iσk.3536

Let κr := <(κ) > 0 and κi := =(κ) ≥ 0, where <(·) and =(·) denote the real and37

imaginary parts of a complex number, respectively. As an outgoing wave condition38
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2 P. LI AND X. WANG

for the fourth order equation, the Sommerfeld radiation condition is imposed to both39

the wave field u and its Laplacian ∆u:40

(1.2) lim
r→∞

r
d−1

2 (∂ru− iκu) = 0, lim
r→∞

r
d−1

2 (∂r∆u− iκ∆u) = 0, r = |x|.41

We refer to [30] for the radiation condition in the lossless case with σ = 0. In the42

case where σ > 0, the radiation condition can be derived using the classical procedure43

(cf. [7, Theorem 3.2]) by utilizing the exponential decay property of the fundamental44

solution described in (2.2).45

The potential ρ is assumed to be a Gaussian random field defined in a complete46

probability space (Ω,F ,P), where P is the probability measure. More precisely, ρ is47

required to satisfy the following assumption (cf. [16]).48

Assumption 1.1. Let the potential ρ be a real-valued centered microlocally iso-49

tropic Gaussian random field of order m ∈ (d − 1, d] in a bounded domain D ⊂ Rd,50

i.e., the covariance operator Qρ of ρ is a classical pseudo-differential operator with the51

principal symbol µ(x)|ξ|−m, where µ is the correlation strength of ρ and is a function52

that is compactly supported in D satisfying µ ∈ C∞0 (D) and µ ≥ 0.53

Apparently, the regularity of the microlocally isotropic Gaussian random potential54

depends on the order m. It has been proved in [21, Lemma 2.6] that the potential is55

relatively regular and satisfies ρ ∈ C0,α(D) with α ∈ (0, m−d2 ) if m ∈ (d, d + 2); the56

potential is rough and satisfies ρ ∈ W m−d
2 −ε,p(D) with ε > 0 and p > 1 if m ≤ d.57

This work focuses on the rough case, i.e., m ≤ d.58

Given the rough potential ρ, the direct scattering problem is to study the well-59

posedness and examine the regularity of the solution to (1.1)–(1.2); the inverse scat-60

tering problem is to determine the correlation strength µ of the random potential ρ61

from some statistics of the wave field u satisfying (1.1)–(1.2). Both the direct and62

inverse scattering problems pose challenges due to the rough nature of the random po-63

tential ρ. Specifically, the equation (1.1) should be studied in the distribution sense,64

treating ρ as a distribution. In this context, it is more reasonable to focus on the65

statistics of ρ, such as its covariance or correlation strength, rather than attempting66

to directly reconstruct ρ itself. The unique continuation principle is crucial for the67

well-posedenss of the direct scattering problem, which is nontrivial for the biharmonic68

wave equation with a rough potential. Moreover, the inverse scattering problem is69

nonlinear.70

The inverse scattering problems for random potentials with potential ρ that satisfy71

Assumption 1.1 were investigated in [5, 16–19] for second-order wave equations. The72

approach for two-dimensional problems involves utilizing point source illumination73

and near-field data, while the three-dimensional problems require plane wave incidence74

and far-field pattern analysis due to the distinct configurations in each dimension.75

For the Schrödinger equation, the unique continuation principle was extended in [16]76

from the integrable potential ρ ∈ Lp(D) with p ∈ (1,∞] (cf. [12, 13,25]) to the rough77

potential ρ ∈W−ε,p(D), i.e., m = d. The uniqueness was also established for the two-78

dimensional inverse problem with m ∈ [d, d+ 1). It was shown that the strength µ of79

the random potential ρ can be uniquely determined by a single realization of the near-80

field data almost surely. The corresponding three-dimensional inverse problem with81

m = d was studied in [5] by using the far-field pattern of the scattered field. In [19],82

the authors considered a generalized setting for the three-dimensional Schrödinger83

equation, where both the potential and source are random. The uniqueness was84

obtained to determine the strength of the potential and source simultaneously based85
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INVERSE SCATTERING FOR THE BIHARMONIC WAVE EQUATION 3

on far-field patterns. Recently, the unique continuation principle was proved in [20]86

for the second order elliptic operators with rougher potentials or medium parameters87

of order m ∈ (d−1, d]. In [17], the rough model was taken to study the inverse random88

potential problem for the two-dimensional elastic wave equation. It was shown that89

the correlation strength of the random potential is uniquely determined by the near-90

field data under the assumption m ∈ (d − 1
3 , d]. For the three-dimensional elastic91

wave equation, due to the lack of decay property of the fundamental solution with92

respect to the frequency, the far-field data was utilized in [18] to uniquely determine93

the strength of the random potential under the condition m ∈ (d− 1
5 , d].94

In the deterministic setting, the unique continuation principle was investigated95

in [4] and [26] for the general higher order linear elliptic operators with a weak van-96

ishing assumption and for the biharmonic operator with a nonlinear coefficient satis-97

fying a Lipschitz-type condition, respectively. In [15], the authors studied the inverse98

boundary value problem of determining a first order perturbation for the polyhar-99

monic operator (−∆)n, n ≥ 2 by using the Cauchy data. It was shown in [14] that100

the first order perturbation of the biharmonic operator in a bounded domain can be101

uniquely determined from the knowledge of the Dirichlet-to-Neumann map given on102

a part of the boundary. We refer to [11, 29, 30, 32] and references therein for related103

direct and inverse scattering problems of the biharmonic operators with regular poten-104

tials. To the best of our knowledge, the unique continuation principle is not available105

for the biharmonic wave equation with rough potentials.106

This paper is concerned with the direct and inverse random potential scattering107

problems for the two- and three-dimensional biharmonic wave equation. As previously108

mentioned, the configurations for the inverse scattering problems involving second-109

order wave equations differ in two and three dimensions. Nevertheless, due to the110

high regularity of the fundamental solution, a unified approach can be employed to111

tackle the inverse scattering problems associated with the biharmonic wave equation112

in both two and three dimensions. This can be achieved by utilizing the point source113

illumination and near-field data. The work contains two main contributions. First,114

the unique continuation principle is proved for the biharmonic wave equation with115

a rough potential and the well-posedness is established in the distribution sense for116

the direct scattering problem. Second, the uniqueness is established for the inverse117

scattering problem. Denote by u(x, y, k) the solution of (1.1). The scattered wave,118

denoted by us, satisfies us(x, y, k) = u(x, y, k)−Φ(x, y, k), where Φ is the fundamental119

solution given in (2.2). We show that the correlation strength of the random potential120

can be uniquely determined by the high frequency limit of the second moment of121

the backscattering data, denoted as us(x, k) := us(x, x, k), which is averaged over122

the frequency band (K, 2K) as K → ∞. It is noteworthy that the scattered wave123

us(x, y, k) does not exhibit any singularity when y = x, and the backscattering data124

us(x, x, k) holds significant importance in practical measurement scenarios. In the125

case of a lossless medium, where the damping coefficient σ = 0, we establish that the126

expectation in the data can be eliminated. Moreover, we show that the uniqueness127

of the inverse problem can be guaranteed with a probability of one by utilizing the128

data from a single realization. Our main result for the inverse scattering problem is129

summarized as follows.130

Theorem 1.2. Let ρ be a random potential satisfying Assumption 1.1 and U ⊂ Rd131

be a bounded and convex domain having a positive distance to the support D of the132

strength µ. Assume in addition that m > 6
5d−1 if σ > 0. For any x ∈ U , the scattered133
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4 P. LI AND X. WANG

field us satisfies134

(1.3) lim
K→∞

1

K

∫ 2K

K

κm+14−2d
r E|us(x, k)|2dκr = Td(x),135

where136

Td(x) :=
1

84π4(d−2)

∫
D

1

|x− z|2(d−1)
µ(z)dz137

and E|us(x, k)|2 is known as the second moment of us(x, k). In addition, in the case138

of a lossless medium where σ = 0, it holds that139

lim
K→∞

1

2K

∫ 4K2

K2

k
m+13

2 −d|us(x, k)|2dk = Td(x) P-a.s.(1.4)140
141

Moreover, the strength µ of the random potential ρ can be uniquely determined by142

{Td(x)}x∈U .143

Hereafter, we use the notation “P-a.s.” to indicate that the formula holds with144

probability one. The notation a . b stands for a ≤ Cb, where C is a positive constant145

and may change from line to line in the proofs.146

Note that the additional restrictions of m > 5
3 for d = 2 and m > 14

5 for d = 3147

in the case of a lossless medium (i.e., σ = 0), as stated in our previous works [17,148

Theorem 1.2] and [18, Theorem 1.2] respectively, can be removed for the biharmonic149

wave equation. It is important to mention that the range of the order m ∈ (d− 1, d]150

specified in our current result for the inverse scattering problem with σ = 0 is optimal.151

This means that it coincides with the range of m required in the unique continuation152

principle to ensure the well-posedness of the direct scattering problem.153

The rest of the paper is organized as follows. Section 2 introduces the fundamental154

solution to the biharmonic wave equation. Section 3 presents the unique continuation155

principle for the biharmonic wave equation with rough potentials. Based on the156

Lippmann–Schwinger integral equation, the well-posedness for the direct scattering157

problem is addressed in section 4. Section 5 is dedicated to the uniqueness of the158

inverse scattering problem. The paper is concluded with some general remarks in159

section 6.160

2. Preliminaries. In this section, we introduce the fundamental solution to the161

two- and three-dimensional biharmonic wave equation and examine some important162

properties of the integral operators defined by the fundamental solution.163

2.1. The fundamental solution. Recalling κ4 = k2 + iσk, we have from a164

straightforward calculation that165

κr = <(κ) =

[(
k4 + σ2k2

16

) 1
4

+

(√
k4 + σ2k2 + k2

8

) 1
2

] 1
2

,166

κi = =(κ) =

[(
k4 + σ2k2

16

) 1
4

−
(√

k4 + σ2k2 + k2

8

) 1
2

] 1
2

.167

168

It is clear to note that169

k
1
2κi =

 √
k4 + σ2k2 − k2

8
(
k4+σ2k2

16k4

) 1
4 + 8

(√
k4+σ2k2+k2

8k2

) 1
2

 1
2

,170
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171

where172

lim
k→∞

(√
k4 + σ2k2 − k2

)
= lim
k→∞

σ2k2

√
k4 + σ2k2 + k2

=
σ2

2
.173

Hence we get174

lim
k→∞

κr

k
1
2

= 1, lim
k→∞

k
1
2κi =

σ

4
,(2.1)175

176

which implies for sufficiently large k that the following quantities are equivalent:177

|κ| ∼ κr ∼ k
1
2 .178

Let Φ(x, y, k) be the fundamental solution to the biharmonic wave equation, i.e.,179

it satisfies180

∆2Φ(x, y, k)− κ4Φ(x, y, k) = −δ(x− y).181182

It follows from the identity ∆2−κ4 = (∆+κ2)(∆−κ2) that Φ is a linear combination183

of the fundamental solutions to the Helmholtz operator ∆ + κ2 and the modified184

Helmholtz operator ∆− κ2 (cf. [29, 30]):185

Φ(x, y, k) = − i

8κ2

(
κ

2π|x− y|

) d−2
2
(
H

(1)
d−2

2

(κ|x− y|) +
2i

π
K d−2

2
(κ|x− y|)

)
,186

187

where H
(1)
ν and Kν are the Hankel function of the first kind and the Macdonald188

function with order ν ∈ R, respectively. Noting189

Kν(z) =
π

2
iν+1H(1)

ν (iz), −π < arg z ≤ π

2
190
191

and192

H
(1)
1
2

(z) =

√
2

πz

eiz

i
,193

we have194

(2.2) Φ(x, y, k) =


− i

8κ2

(
H

(1)
0 (κ|x− y|)−H(1)

0 (iκ|x− y|)
)
, d = 2,

− 1

8πκ2|x− y|
(
eiκ|x−y| − e−κ|x−y|

)
, d = 3.

195

The following lemma gives the regularity of Φ and its dependence on the wavenum-196

ber k.197

Lemma 2.1. Let G ⊂ Rd be any bounded domain with a strong local Lipschitz198

boundary. For any fixed y ∈ Rd, it holds Φ(·, y, k) ∈ W γ,q(G) for any γ ∈ [0, 1] and199

q ∈ (1, 2
γ ). In particular, for any fixed y ∈ D and G having a positive distance from200

D, it holds for sufficiently large k that201

‖Φ(·, y, k)‖Wγ,q(G) . k
d−7

4 + γ
2202

for any γ ∈ [0, 1] and q > 1.203
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6 P. LI AND X. WANG

Proof. Let r∗ := supx∈G |x− y| for any fixed y ∈ Rd and r0 := infx∈G |x− y| > 0204

if y ∈ D. We discuss the two- and three-dimensional problems separately.205

First we consider the two-dimensional case, where the fundamental solution takes206

the form Φ(x, y, k) = − i
8κ2 (H

(1)
0 (κ|x− y|) + 2i

πK0(κ|x− y|)) for any fixed y ∈ R2.207

By [6, Lemmas 2.1 and 2.2], it holds for any z ∈ C that208

∣∣H(1)
ν (z)

∣∣ ≤ e−=(z)
(

1− Θ2

|z|2

) 1
2 ∣∣H(1)

ν (Θ)
∣∣,(2.3)209

|Kν(z)| ≤ π

2
e
−<(z)

(
1− Θ2

|z|2

) 1
2 ∣∣H(1)

ν (Θ)
∣∣,(2.4)210

211

where ν ∈ R and Θ is any real number satisfying 0 < Θ ≤ |z|. Choosing z = κ|x− y|212

and Θ = <(z) = κr|x− y|, we get213 ∫
G

|Φ(x, y, k)|p dx . |κ|−2p

∫
G

∣∣H(1)
0 (κr|x− y|)

∣∣pdx . κ−2p
r

∫ r∗

0

∣∣H(1)
0 (κrr)

∣∣prdr214

=κ−2p
r

∫ κ−1
r

0

∣∣H(1)
0 (κrr)

∣∣prdr + κ−2p
r

∫ r∗

κ−1
r

∣∣H(1)
0 (κrr)

∣∣prdr,215

216

where the second term is bounded due to the regularity of H
(1)
0 (κrr) for r ∈ (κ−1

r , r∗).217

For the first term, according to the fact H
(1)
0 (κrr) ∼ 2i

π ln(κrr) as r → 0 (cf. [2, Section218

9.1.8]), it holds219 ∫ κ−1
r

0

∣∣H(1)
0 (κrr)

∣∣prdr . κ−2
r

∫ 1

0

| ln(r)|prdr . κ−2
r ∀ p > 1, ε > 0.220

We then get221

‖Φ(·, y, k)‖Lp(G) <∞ ∀ p > 1, ε > 0.222223

Moreover, noting224

∂xiH
(1)
0 (κ|x− y|) = κH

(1)′

0 (κ|x− y|)xi − yi
|x− y|

= −κH(1)
1 (κ|x− y|)xi − yi

|x− y|
,225

∂xiK0(κ|x− y|) =
iπ

2
∂xiH

(1)
0 (iκ|x− y|) = −iκK1(κ|x− y|)xi − yi

|x− y|
226
227

for i = 1, 2 and using H
(1)
1 (κrr) ∼ 2i

π
1
κrr

as r → 0 (cf. [2, Section 9.1.9]), following the228

same procedure, we obtain for any p′ ∈ (1, 2) that229 ∫
G

|∂xiΦ(x, y, k)|p
′
dx . |κ|−p

′
∫
G

∣∣∣H(1)
1 (κr|x− y|)

∣∣∣p′ dx . κ−p
′

r

∫ r∗

0

∣∣∣H(1)
1 (κrr)

∣∣∣p′ rdr230

. κ−p
′

r

∫ κ−1
r

0

1

(κrr)p
′ rdr + κ−p

′

r

∫ r∗

κ−1
r

∣∣∣H(1)
1 (κrr)

∣∣∣p′ rdr <∞,231

232

which shows233

‖Φ(·, y, k)‖W 1,p′ (G) <∞ ∀ p′ ∈ (1, 2)234
235

and hence Φ(·, y, k) ∈W 1,p′(G).236
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The interpolation [Lp(G),W 1,p′(G)]γ = W γ,q(G) with γ ∈ [0, 1] and q satisfying237
1
q = 1−γ

p + γ
p′ (cf. [3, Theorem 6.4.5]) yields Φ(·, y, k) ∈W γ,q(G) for any γ ∈ [0, 1] and238

q ∈ (1, 2
γ ).239

In particular, if y ∈ D and k is sufficiently large, then r0 := infx∈G |x−y| > 0 and240

the Hankel function has the following asymptotic expansion (cf. [2, Section 9.2.3]):241

H(1)
ν (κr|x− y|) ∼

(
2

πκr|x− y|

) 1
2

ei(κr|x−y|− 1
2νπ−

1
4π)

242

for ν ∈ R. Following from the interpolation between Lq(G) and W 1,q(G) provided243

that G is bounded with a strong local Lipschitz boundary (cf. [1, Section 7.69]), we244

have245 ∫
G

|Φ(x, y, k)|q dx . |κ|−2q

∫
G

∣∣H(1)
0 (κr|x− y|)

∣∣qdy . κ−2q
r

∫ r∗

r0

1

(κrr)
q
2

rdr . κ
− 5

2 q
r ,246

247
248 ∫

G

|∂xiΦ(x, y, k)|q dx . |κ|−q
∫
G

∣∣H(1)
1 (κr|x− y|)

∣∣qdx . κ−qr

∫ r∗

r0

1

(κrr)
q
2

rdr . κ
− 3

2 q
r ,249

250

which leads to251

‖Φ(·, y, k)‖Wγ,q(G) . κ
− 5

2 +γ
r . k−

5
4 + γ

2(2.5)252253

for any γ ∈ [0, 1] and q > 1.254

Next we examine the three-dimensional problem, where255

Φ(x, y, k) = − 1

8πκ2|x− y|

(
eiκ|x−y| − e−κ|x−y|

)
.256

The estimates are similar to the two-dimensional case.257

For any y ∈ R3, it holds258

‖Φ(·, y, k)‖Lq(G) . |κ|−2

(∫ r∗

0

|eiκr − e−κr|q

rq
r2dr

) 1
q

<∞ ∀ q > 1259
260

by utilizing the fact that |eiκr − e−κr| . κr for sufficiently small r. The derivatives of261

Φ satisfy262 ∫
G

|∂xiΦ(x, y, k)|qdx263

=

∫
G

∣∣∣∣ xi − yi
8πκ2|x− y|3

[
eiκ|x−y|(iκ|x− y| − 1) + e−κ|x−y|(κ|x− y|+ 1)

]∣∣∣∣q dx264

. |κ|−2q

∫ r∗

0

|eiκr(iκr − 1) + e−κr(κr + 1)|q

r2q
r2dr <∞ ∀ q > 1,265

266

which implies Φ(·, y, k) ∈W γ,q(G) for any γ ∈ [0, 1] and q > 1.267

In particular, for y ∈ D, a straightforward calculation gives268

‖Φ(·, y, k)‖Lq(G) . |κ|−2

(∫ r∗

r0

|eiκr − e−κr|q

rq
r2dr

) 1
q

269
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. |κ|−2

(∫ r∗

r0

r2−qdr

) 1
q

. |κ|−2
270

271

and272 ∫
G

|∂xiΦ(x, y, k)|qdx = |κ|−2q

∫ r∗

r0

|κr|q + 1

r2q
r2dr . |κ|−q.273

Hence, for sufficiently large k, it holds274

‖Φ(·, y, k)‖Wγ,q(G) . |κ|−2+γ . k−1+ γ
2275

for any γ ∈ [0, 1] and q > 1.276

2.2. Integral operators. Define the integral operators277

Hk(φ)(·) : =

∫
Rd

Φ(·, z, k)φ(z)dz,278

Kk(φ)(·) : = Hk(ρφ)(·) =

∫
Rd

Φ(·, z, k)ρ(z)φ(z)dz,279
280

where Φ is the fundamental solution given in (2.2) and ρ is the random potential281

satisfying Assumption 1.1.282

Lemma 2.2. Let B and G be two bounded domains in Rd, and G has a strong283

local Lipschitz boundary. Assume that the wave number k is sufficiently large.284

(i) The operator Hk : H−s1(B)→ Hs2(G) is bounded and satisfies285

‖Hk‖L(H−s1 (B),Hs2 (G)) . k
s−(3−χσ)

2286

for s := s1 + s2 ∈ (0, 3− χσ) with s1, s2 ≥ 0 and287

χσ :=

{
0, σ = 0,

1, σ > 0.
288

(ii) The operator Hk : H−s(B)→ L∞(G) is bounded and satisfies289

‖Hk‖L(H−s(B),L∞(G)) . k
2s+d−2(3−χσ)+ε

4290

for any s ∈ (0, 3− χσ) and ε > 0.291

(iii) The operator Hk : W−γ,p(B) → W γ,q(G) is compact for any 1 < p < 2 < q292

satisfying 1
p + 1

q = 1 and 0 < γ < min{ 3−χσ
2 , 3−χσ

2 + ( 1
q −

1
2 )d}.293

Proof. (i) Since the case σ = 0 is discussed in [22, Lemma 3.1], we only show the294

proof for the case σ > 0 where κi > 0. For any two smooth test functions φ ∈ C∞0 (B)295

and ψ ∈ C∞0 (G), we consider296

〈Hk(φ), ψ〉 =

∫
Rd

1

|ξ|4 − κ4
φ̂(ξ)ψ̂(ξ)dξ297

=

∫
Rd

(1 + |ξ|2)
s
2

(|ξ|2 + κ2)(|ξ|+ κ)(|ξ| − κ)
Ĵ−s1φ(ξ)Ĵ−s2ψ(ξ)dξ,(2.6)298

299

where φ̂ and ψ̂ are the Fourier transform of φ and ψ, respectively, and J−s stands300

for the Bessel potential of order −s and is defined by (cf. [20])301

J−sf := F−1
(
(1 + | · |2)−

s
2 f̂
)

302
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INVERSE SCATTERING FOR THE BIHARMONIC WAVE EQUATION 9

with F−1 denoting the inverse Fourier transform.303

The integral domain Rd of (2.6) can be split into two parts304

Ω1 :=
{
ξ ∈ Rd : ||ξ| − κr| >

κr

2

}
, Ω2 :=

{
ξ ∈ Rd : ||ξ| − κr| <

κr

2

}
305
306

such that (2.6) turns to be307

〈Hk(ϕ), ψ〉 =

∫
Ω1

(1 + |ξ|2)
s
2

(|ξ|2 + κ2)(|ξ|+ κ)(|ξ| − κ)
Ĵ−s1φ(ξ)Ĵ−s2ψ(ξ)dξ308

+

∫
Ω2

(1 + |ξ|2)
s
2

(|ξ|2 + κ2)(|ξ|+ κ)(|ξ| − κ)
Ĵ−s1φ(ξ)Ĵ−s2ψ(ξ)dξ309

= : Λ1 + Λ2.310311

The term Λ1 can be estimated following a similar procedure as in [22, Lemma 3.1].312

In fact, we get for s < 3 that313

|Λ1| ≤
∫

Ω1

(1 + |ξ|2)
s
2

||ξ|2 + κ2
r − κ2

i |(|ξ|+ κr)||ξ| − κr|

∣∣∣Ĵ−s1φ(ξ)Ĵ−s2ψ(ξ)
∣∣∣ dξ314

≤ 2

κr

∫
{|ξ|> 3κr

2 }∪{|ξ|<
κr
2 }

(1 + |ξ|2)
s
2

||ξ|2 + κ2
r − κ2

i |(|ξ|+ κr)

∣∣∣Ĵ−s1φ(ξ)Ĵ−s2ψ(ξ)
∣∣∣ dξ315

.
1

κ4−s
r

‖ϕ‖H−s1 (B)‖ψ‖H−s2 (G)316
317

using the fact that κi � 1 � κr for sufficiently large k according to (2.1). For Λ2,318

since the term 1
|ξ|4−κ4 is not singular for κi > 0, one can easily get319

|Λ2| ≤
∫

Ω2

(1 + |ξ|2)
s
2

||ξ|2 + κ2
r − κ2

i |(|ξ|+ κr)κi

∣∣∣Ĵ−s1φ(ξ)Ĵ−s2ψ(ξ)
∣∣∣ dξ320

.
1

κ3−s
r κi

|ϕ‖H−s1 (B)‖ψ‖H−s2 (G).321
322

As a result, using (2.1), we get323

|〈Hk(φ), ψ〉| . κs−3
r κ−1

i ‖φ‖H−s1 (B)‖ψ‖H−s2 (G) . k
s−2

2 ‖φ‖H−s1 (B)‖ψ‖H−s2 (G)324

with s < 2, which completes the proof by extending the above result to φ ∈ H−s1(B)325

and ψ ∈ H−s2(G).326

(ii) For any φ ∈ C∞0 (B), we still denote by φ its zero extension outside of B. It327

follows from the Plancherel theorem that328

Hk(φ)(x) =

∫
Rd

Φ(x, z, k)φ(z)dz329

=

∫
Rd

(1 + |ξ|2)
s
2 Φ̂(x, ξ, k)Ĵ−sφ(ξ)dξ,330

= −
∫
Rd

(1 + |ξ|2)
2s+d+ε

4

|ξ|4 − κ4
Ĵ−sφ(ξ)

(
e−ix·ξ(1 + |ξ|2)−

d+ε
4

)
dξ,331

332

where333

Φ̂(x, ξ, k) := F [Φ(x, ·, k)](ξ) =
−e−ix·ξ

|ξ|4 − κ4
334
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10 P. LI AND X. WANG

is the Fourier transform of Φ(x, y, k) with respect to y. Comparing the above integral335

with (2.6) and replacing Ĵ−s2ψ(ξ) by g(ξ) := e−ix·ξ(1 + |ξ|2)−
d+ε

4 , we obtain336

|Hk(φ)(x)| . k
2s+d+ε

2
−(3−χσ)

2 ‖φ‖H−s(B) . k
2s+d−2(3−χσ)+ε

4 ‖φ‖H−s(B),337338

which can also be extended to φ ∈ H−s(B). We mention that g ∈ H1(Rd) is utilized339

in the above estimate, which is required in the estimate of (2.6) (see e.g., [17, 20]).340

(iii) The compactness of Hk can be obtained from the boundedness shown in (i)341

and the Sobolev embedding theorem. In fact, according to the Kondrachov embedding342

theorem, the embeddings343

W−γ,p(B) ↪→ H−s1(B),344

Hs2(G) ↪→W γ,q(G)345346

are continuous under conditions 1 < p < 2 < q,347

γ < s1,
1

2
>

1

p
− s1 − γ

d
,348

γ < s2,
1

q
>

1

2
− s2 − γ

d
,349

350

and s1 + s2 ∈ (0, 3− χσ). It is easy to check that the above conditions are satisfied if351
1
p + 1

q = 1 and352

0 < γ < min

{
s1 + s2

2
,
s1 + s2

2
+ d

(
1

q
− 1

2

)}
,353

which completes the proof of (iii) due to s1 + s2 < 3− χσ.354

The estimates for the operator Kk can be obtained from the estimates of Hk given355

in Lemma 2.2 and the relation Kk(φ) = Hk(ρφ).356

Lemma 2.3. Let G ⊂ Rd be a bounded domain with a strong local Lipschitz bound-357

ary and the random potential ρ satisfy Assumption 1.1. Assume that the wave number358

k is sufficiently large.359

(i) The operator Kk : W γ,q(G) → W γ,q(G) is compact for any q ∈ (2, A) and360

γ ∈ (d−m2 , 3−χσ
2 + ( 1

q −
1
2 )d) with361

A :=


∞ if 2d−m− (3− χσ) ≤ 0,

2d

2d−m− (3− χσ)
if 2d−m− (3− χσ) > 0,

362

and satisfies363

‖Kk‖L(Wγ,q(G)) . kγ+( 1
2−

1
q )d− 3−χσ

2 P-a.s.364

(ii) The following estimates hold:365

‖Kk‖L(Hs(G)) . ks−
3−χσ

2 P-a.s.366

for any s ∈ (d−m2 , 3−χσ
2 ) and367

‖Kk‖L(Hs(G),L∞(G)) . k
2s+d−2(3−χσ)+ε

4 P-a.s.368

for any s ∈ (d−m2 , 3− χσ) and ε > 0.369
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Proof. (i) Under Assumption 1.1, it holds that ρ ∈ W m−d
2 −ε,p′(D) for any ε > 0370

and p′ > 1 based on [22, Lemma 2.2]. Then for any m ∈ (d− 1, d], q ∈ (2, A) 6= ∅ and371

γ ∈ (d−m2 , 3−χσ
2 + ( 1

q −
1
2 )d) 6= ∅, there exists some p′ > 1 such that the embedding372

W
m−d

2 −ε,p′(D) ↪→W−γ,p̃(D)373

is continuous with p̃ := q
q−2 > 1. Moreover, for any φ ∈ W γ,q(G), we have from [16,374

Lemma 2] that ρφ ∈W−γ,p(D) with 1
p + 1

q = 1 and375

‖ρφ‖W−γ,p(D) . ‖ρ‖W−γ,p̃(D)‖φ‖Wγ,q(G).(2.7)376377

Hence378

‖Kk(φ)‖Wγ,q(G) . ‖Hk‖L(W−γ,p(D),Wγ,q(G))‖ρφ‖W−γ,p(D) P-a.s.,379

which implies the compactness of Kk due to the compactness of Hk proved in Lemma380

2.2.381

To estimate the operator norm, we choose s = γ+ ( 1
2 −

1
q )d such that the embed-382

dings383

(2.8)
Hs(G) ↪→W γ,q(G),

W−γ,p(D) ↪→ H−s(D)
384

hold with p < 2 and q > 2 satisfying 1
p + 1

q = 1. The result is obtained by noting385

‖Kk(φ)‖Wγ,q(G) . ‖Kk(φ)‖Hs(G) . ‖Hk‖L(H−s(D),Hs(G))‖ρφ‖H−s(D)386

. ‖Hk‖L(H−s(D),Hs(G))‖ρφ‖W−γ,p(D)387

. kγ+( 1
2−

1
q )d− 3−χσ

2 ‖φ‖Wγ,q(G).388389

(ii) For any φ ∈ Hs(G) with s > d−m
2 , there exist γ ∈ (d−m2 , s) and q ∈ (2, A)390

satisfying 1
q >

1
2 −

s−γ
d such that the embeddings (2.8) hold. It follows from Lemma391

2.2 and (2.7) that we have392

‖Kk(φ)‖Hs(G) . ‖Hk‖L(H−s(D),Hs(G))‖ρφ‖H−s(D)393

. ‖Hk‖L(H−s(D),Hs(G))‖ρφ‖W−γ,p(D)394

. k
2s−(3−χσ)

2 ‖ρ‖W−γ,p̃(D)‖φ‖Wγ,q(G) . ks−
3−χσ

2 ‖φ‖Hs(G) P-a.s.(2.9)395396

with s ∈ (d−m2 , 3−χσ
2 ), and397

‖Kk(φ)‖L∞(G) .‖Hk‖L(H−s(D),L∞(G))‖ρφ‖H−s(D) . k
2s+d−2(3−χσ)+ε

4 ‖φ‖Hs(G) P-a.s.398399

with s ∈ (d−m2 , 3− χσ) and ε > 0.400

3. The unique continuation. This section is to investigate the unique continu-401

ation principle, which is essential for the uniqueness of the solution to the biharmonic402

wave scattering problem with a random potential. We refer to [16,20] for the unique403

continuation of the solutions to the stochastic acoustic and elastic wave equations.404
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12 P. LI AND X. WANG

Theorem 3.1. Let ρ satisfy Assumption 1.1, q ∈ (2, 2d
3d−2m−2 ) and γ ∈ (d−m2 , 1

2 +405

( 1
q −

1
2 )d2 ). If u ∈ W γ,q(Rd) is compactly supported in Rd and is a distributional406

solution to the homogeneous biharmonic wave equation407

∆2u− κ4u+ ρu = 0,408

then u ≡ 0 in Rd.409

Proof. We consider an auxiliary function v(x) := e−iη·xu(x), where the complex410

vector η is defined by411

η :=

{
(ωt, ηd)

>, d = 2,

(ωt, 0, ηd)
>, d = 3,

412

where t� 1,413

ω :=

(√
k4 + σ2k2 + k2

2

) 1
4

,414

and ηd = ηr
d + iηi

d with the real and imaginary parts being given by415

ηr
d =

(√
ω4(t2 − 1)2 + ω4 − k2 − ω2(t2 − 1)

2

) 1
2

,416

ηi
d =

(√
ω4(t2 − 1)2 + ω4 − k2 + ω2(t2 − 1)

2

) 1
2

,417
418

respectively. It is clear to note η · η = κ2 = ω2 + i(ω4 − k2)
1
2 . Moreover, a simple419

calculation shows that420

lim
t→∞

ηr
d = 0, lim

t→∞

ηi
d

t
= ω.(3.1)421

422

Then v is also compactly supported in Rd and satisfies423

∆2v + 4iη · ∇∆v − 4η>(∇2v)η − 2(η · η)∆v − 4i(η · η)(η · ∇v) = −ρv.424

Taking the Fourier transform of the above equation yields425

v = −Gη(ρv),(3.2)426427

where Gη is defined by428

Gη(f)(x) := F−1

[
f̂(ξ)

|ξ|4 + 4|ξ|2(η · ξ) + 4(η · ξ)2 + 2(η · η)|ξ|2 + 4(η · η)(η · ξ)

]
(x).429

430

Using the Plancherel theorem, we have from a straightforward calculation that431

〈Gηf, g〉 = 〈Ĝηf, ĝ〉 =

∫
Rd

f̂(ξ)ĝ(ξ)

|ξ|4 + 4|ξ|2(η · ξ) + 4(η · ξ)2 + 2κ2|ξ|2 + 4κ2(η · ξ)
dξ432

=

∫
Rd

f̂(ξ)ĝ(ξ)

(|ξ|2 + 2η · ξ + 2κ2)(|ξ|2 + 2η · ξ)
dξ433

=
1

2κ2

[ ∫
Rd

f̂(ξ)ĝ(ξ)

|ξ|2 + 2η · ξ
dξ −

∫
Rd

f̂(ξ)ĝ(ξ)

|ξ|2 + 2η · ξ + 2κ2
dξ

]
.(3.3)434
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435

It suffices to show v ≡ 0 in order to show u ≡ 0. The proof consists of two steps.436

The first step is to estimate the operator Gη in Hilbert spaces. Let G ⊂ Rd be437

a bounded domain with a strong local Lipschitz boundary containing the compact438

supports of both ρ and u. For s ∈ (0, 1
2 ), we have the following estimate:439

‖Gη‖L(H−s(G),Hs(G)) .
1

ω3−2st1−2s
.(3.4)440

441

The proof of this inequality is postponed to the subsequent lemma for the sake of442

brevity.443

The second step is to estimate the operator Gη in Sobolev spaces and show v ≡ 0444

in Rd. To extend the estimate of Gη from Hilbert spaces to Sobolev spaces, we claim445

that Gη : Lr(G)→ Lr
′
(G) is bounded and satisfies446

‖Gη‖L(Lr(G),Lr′ (G)) . 1(3.5)447
448

for some proper r and r′. In fact, it follows from the decomposition of the operator449

Gη given in (3.3) that we may rewrite it as450

Gη =
1

2κ2
(Gη,1 − Gη,2) ,451

where452

Gη,1(f)(x) := F−1

[
f̂

|ξ|2 + 2η · ξ

]
(x), Gη,2(f)(x) := F−1

[
f̂

|ξ|2 + 2η · ξ + 2κ2

]
(x).453

Next we consider the cases d = 3 and d = 2, separately.454

For d = 3, the claim (3.5) holds under the conditions455

1

r
− 1

r′
=

2

d
, min

{∣∣∣∣1r − 1

2

∣∣∣∣ , ∣∣∣∣ 1

r′
− 1

2

∣∣∣∣} >
1

2d
,456

since operators Gη,i, i = 1, 2, are both bounded from Lr(G) to Lr
′
(G) according457

to [13, Theorem 2.2] and [16, Proposition 2]. To deduce the estimate for Gη between458

the dual Sobolev spaces W−γ,p(G) and W γ,q(G) with 1
p + 1

q = 1, we consider the459

interpolation of (3.4) and (3.5). Noting460

[Lr(G), H−s(G)]θ = W−γ,p(G),461

[Lr
′
(G), Hs(G)]θ = W γ,q(G)462463

and choosing θ = 1 + ( 1
q −

1
2 )d ∈ (0, 1) and r = 2d

d+2 such that γ = θs < 1
2 + ( 1

q −
1
2 )d2 ,464

1
p = 1−θ

r + θ
2 and 1

q = 1−θ
r′ + θ

2 , we obtain465

‖Gη‖L(W−γ,p(G),Wγ,q(G)) .
1

ω(3−2s)θt(1−2s)θ
.(3.6)466

467

As is proved in [16, Lemma 2], ρv ∈ W−γ,p(G) for any v ∈ W γ,q(G), where γ is468

required to satisfy γ < 1
2 + ( 1

q −
1
2 )d2 . Hence an additional restriction on q is also469

required due to γ > d−m
2 , i.e., q < 2d

3d−2m−2 . Consequently, (3.2) leads to470

‖v‖Wγ,q(G) ≤ ‖Gη‖L(W−γ,p(G),Wγ,q(G))‖ρv‖W−γ,p(G) .
1

ω(3−2s)θt(1−2s)θ
‖v‖Wγ,q(G)471
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14 P. LI AND X. WANG

with s ∈ (0, 1
2 ), which implies v ≡ 0 by choosing t� 1.472

For d = 2, it is shown in [16, Proposition 2] that (3.5) holds for any r > 1.473

Similarly, (3.6) can be deduced from the interpolation between (3.4) and (3.5) by474

choosing r = 1 + ε with an arbitrary small parameter ε > 0 and θ = 2(1+ε)−2εq
q(1−ε) such475

that γ = θs < (1+ε)−εq
q(1−ε) . Following the same procedure as the three-dimensional case476

and letting ε → 0, we get v ≡ 0 under the restrictions γ < 1
q = 1

2 + (1
q −

1
2 )d2 and477

q < 2
2−m = 2d

3d−2m−2 .478

Lemma 3.2. Let the assumptions given in Theorem 3.1 hold and G ⊂ Rd be a479

bounded domain with a strong local Lipschitz boundary containing the compact sup-480

ports of both ρ and u. Then for s ∈ (0, 1
2 ), the operator Gη defined in Theorem 3.1481

satisfies482

‖Gη‖L(H−s(G),Hs(G)) .
1

ω3−2st1−2s
.483

484

Proof. We denote (3.3) by485

〈Gηf, g〉 =:
1

2κ2

[
A− B

]
.486

For any f, g ∈ C∞0 (G), we denote their zero extensions outside of G still by f, g for487

simplicity. Denote ξ− := (ξ1, · · · , ξd−1)> ∈ Rd−1 and ξ−− := (ξ2, · · · , ξd−1)> ∈ Rd−2488

with ξ−− = 0 if d = 2. Then A can be rewritten as489

A =

∫
Rd

f̂(ξ)ĝ(ξ)

|ξ|2 + 2ωtξ1 + 2ηdξd
dξ490

=

∫
Rd

f̂(ξ)ĝ(ξ)

(ξ1 + ωt)2 + |ξ−−|2 − ω2t2 + (ξd + ηr
d)

2 − (ηr
d)

2 + 2iηi
dξd

dξ491

=

∫
Rd

f̂(ξ)ĝ(ξ)

|ξ|2 − ω2t2 − (ηr
d)

2 + 2iηi
d(ξd − ηr

d)
dξ,492

493

where in the last step we used the transformation of variables (ξ1 + ωt, ξ2, · · · , ξd +494

ηr
d)
> 7→ (ξ1, · · · , ξd)> and f̂(ξ1, · · · , ξj − a, · · · , ξd) = e−iaξj f̂(ξ). Using κ2 = η · η =495

ω2t2 + η2
d and the transformation (ξ1 +ωt, ξ2, · · · , ξd + ηr

d)
> 7→ (ξ1, · · · , ξd)>, we have496

B =

∫
Rd

f̂(ξ)ĝ(ξ)

(ξ1 + ωt)2 + |ξ−−|2 + (ξd + ηr
d)

2 + ω2t2 + (ηr
d)

2 − 2(ηi
d)

2 + 2iηi
d(ξd + 2ηr

d)
dξ497

=

∫
Rd

f̂(ξ)ĝ(ξ)

|ξ|2 + ω2t2 + (ηr
d)

2 − 2(ηi
d)

2 + 2iηi
d(ξd + ηr

d)
dξ.498

499

It is easy to see that the function500

1

|ξ|2 − ω2t2 − (ηr
d)

2 + 2iηi
d(ξd − ηr

d)
501

=
1

|ξ−|2 − ω2t2 + (ξd − ηr
d)(ξd + ηr

d) + 2iηi
d(ξd − ηr

d)
502

503

involved in A is singular on the manifold {ξ ∈ Rd : |ξ−| = ωt, ξd = ηr
d}, and the504

function505

1

|ξ|2 + ω2t2 + (ηr
d)

2 − 2(ηi
d)

2 + 2iηi
d(ξd + ηr

d)
506
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=
1

|ξ−|2 + ω2t2 + 2(ηr
d)

2 − 2(ηi
d)

2 + (ξd − ηr
d)(ξd + ηr

d) + 2iηi
d(ξd + ηr

d)
507

508

involved in B is singular on the manifold509 {
ξ ∈ Rd : |ξ−| =

√
2(ηi

d)
2 − 2(ηr

d)
2 − ω2t2, ξd = −ηr

d

}
,510

where 2(ηi
d)

2 − 2(ηr
d)

2 − ω2t2 is equivalent to ωt as t� 1 according to (3.1).511

The estimates for A and B follow a similar procedure, requiring the decomposition512

of the integral domain Rd into several subdomains based on the singularity of the513

integrands. In the following, we present a detailed analysis of the estimate for A. The514

analysis of B can be carried out in a similar manner and is omitted here for brevity.515

To estimate A, we define two domains516

Ω1 : =

{
ξ : ||ξ−| − ωt| > ωt

2

}
=

{
ξ : |ξ−| > 3ωt

2

}
∪
{
ξ : |ξ−| < ωt

2

}
,517

Ω2 : =

{
ξ : ||ξ−| − ωt| < ωt

2

}
=

{
ξ :

ωt

2
< |ξ−| < 3ωt

2

}
.518

519

Based on Ω1 and Ω2, A can be split into the following two terms:520

A =

∫
Ω1

(1 + |ξ|2)s

|ξ|2 − ω2t2 − (ηr
d)

2 + 2iηi
d(ξd − ηr

d)
Ĵ−sf(ξ)Ĵ−sg(ξ)dξ521

+

∫
Ω2

(1 + |ξ|2)s

|ξ|2 − ω2t2 − (ηr
d)

2 + 2iηi
d(ξd − ηr

d)
Ĵ−sf(ξ)Ĵ−sg(ξ)dξ522

=: I + II,523524

where s ∈ (0, 1
2 ). Next is to estimate I and II, respectively.525

Term I satisfies526

|I| ≤
∫

Ω1

(1 + |ξ|2)s[
(|ξ|2 − ω2t2 − (ηr

d)
2)2 + 4(ηi

d)
2(ξd − ηr

d)
2
] 1

2

|Ĵ−sf ||Ĵ−sg|dξ527

=

∫
{ξ:|ξ−|> 3ωt

2 }

(1 + |ξ|2)s|Ĵ−sf ||Ĵ−sg|[
(|ξ|2 − ω2t2 − (ηr

d)
2)2 + 4(ηi

d)
2(ξd − ηr

d)
2
] 1

2

dξ528

+

∫
{ξ:|ξ−|<ωt

2 ,|ξd−η
r
d|>

ωt
2 }

(1 + |ξ|2)s|Ĵ−sf ||Ĵ−sg|[
(|ξ|2 − ω2t2 − (ηr

d)
2)2 + 4(ηi

d)
2(ξd − ηr

d)
2
] 1

2

dξ529

+

∫
{ξ:|ξ−|<ωt

2 ,|ξd−η
r
d|<

ωt
2 }

(1 + |ξ|2)s|Ĵ−sf ||Ĵ−sg|[
(|ξ|2 − ω2t2 − (ηr

d)
2)2 + 4(ηi

d)
2(ξd − ηr

d)
2
] 1

2

dξ530

=: I1 + I2 + I3.531532

By (3.1), we may choose a sufficiently large t∗ such that ηr
d <

ωt
4 for all t > t∗, which533

leads to534
3ωt

2
−
√
ω2t2 + (ηr

d)
2 >

ωt

4
, t > t∗.535

We then get536

I1 ≤
∫
{ξ:|ξ|> 3ωt

2 }

(1 + |ξ|2)s

(|ξ| −
√
ω2t2 + (ηr

d)
2)(|ξ|+

√
ω2t2 + (ηr

d)
2)
|Ĵ−sf ||Ĵ−sg|dξ537
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.
1

ωt

∫
{ξ:|ξ|> 3ωt

2 }

1

|ξ|1−2s
|Ĵ−sf ||Ĵ−sg|dξ538

.
1

(ωt)2−2s
‖f‖H−s(G)‖g‖H−s(G).539

540

Note also that ηi
d is equivalent to ωt as t→∞, which yields541

I2 ≤
∫
{ξ:|ξ−|<ωt

2 ,|ξd−η
r
d|>

ωt
2 }

(1 + ω2t2

4 + ξ2
d)s

2ηi
d|ξd − ηr

d|
|Ĵ−sf ||Ĵ−sg|dξ542

.
∫
{ξ:|ξ−|<ωt

2 ,|ξd−η
r
d|>

ωt
2 }

(ωt)2s + |ξd − ηr
d|2s + (ηr

d)
2s

2ηi
d|ξd − ηr

d|
|Ĵ−sf ||Ĵ−sg|dξ543

.
∫
{ξ:|ξ−|<ωt

2 ,|ξd−η
r
d|>

ωt
2 }

(
1

(ωt)2−2s
+

1

ωt|ξd − ηr
d|1−2s

)
|Ĵ−sf ||Ĵ−sg|dξ544

.
1

(ωt)2−2s
‖f‖H−s(G)‖g‖H−s(G).545

546

Moreover, for any ξ ∈ {ξ : |ξ−| < ωt
2 , |ξd − η

r
d| < ωt

2 }, it holds547

|ξ|2 = |ξ−|2 + |ξd|2 <
(
ωt

2

)2

+

(
ωt

2
+ ηr

d

)2

=
ω2t2

2
+ ωtηr

d + (ηr
d)

2.548

Hence, for t > t∗,549

ω2t2 + (ηr
d)

2 − |ξ|2 > ω2t2

2
− ωtηr

d >
ω2t2

4
,550

which gives551

I3 ≤
∫
{ξ:|ξ−|<ωt

2 ,|ξd−η
r
d|<

ωt
2 }

(1 + |ξ|2)s

||ξ|2 − ω2t2 − (ηr
d)

2|
|Ĵ−sf ||Ĵ−sg|dξ552

.
1

(ωt)2−2s
‖f‖H−s(G)‖g‖H−s(G).553

554

We then conclude555

|I| . 1

(ωt)2−2s
‖f‖H−s(G)‖g‖H−s(G).(3.7)556

557

To estimate II, we divide it into two parts558

II =

∫
Ω2∩{ξ:|ξd−ηr

d|>
ωt
2 }

(1 + |ξ|2)s

|ξ|2 − ω2t2 − (ηr
d)

2 + 2iηi
d(ξd − ηr

d)
Ĵ−sf(ξ)Ĵ−sg(ξ)dξ559

+

∫
Ω2∩{ξ:|ξd−ηr

d|<
ωt
2 }

(1 + |ξ|2)s

|ξ|2 − ω2t2 − (ηr
d)

2 + 2iηi
d(ξd − ηr

d)
Ĵ−sf(ξ)Ĵ−sg(ξ)dξ560

=: II1 + II2,561562

where II1 can be estimated similarly as I2 by utilizing the boundedness of |ξ−|:563

|II1| .
1

(ωt)2−2s
‖f‖H−s(G)‖g‖H−s(G).564

565
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INVERSE SCATTERING FOR THE BIHARMONIC WAVE EQUATION 17

It suffices to estimate II2 where the integrand is singular. To deal with the566

singularity, we denote567

nt(ξ) :=
1

|ξ|2 − ω2t2 − (ηr
d)

2 + 2iηi
d(ξd − ηr

d)
568

and define the transformation569

τ : ξ 7→ ξ∗ = (ξ′,−ξd + 2ηr
d), ξ ∈ Ω2,570

where571

ξ′ :=

(
2ωt

|ξ−|
− 1

)
ξ−.572

A simple calculation yields that |ξ′| = 2ωt− |ξ−| and the Jacobian of the transforma-573

tion is574

Jd,t(ξ) =

∣∣∣∣det
∂ξ∗

∂ξ

∣∣∣∣ =

(
2ωt

|ξ−|
− 1

)d−2

.575

Moreover, it can be verified that the transformation maps the subdomain576

Ω21 :=

{
ξ :

ωt

2
< |ξ−| < ωt, |ξd − ηr

d| <
ωt

2

}
577

to the subdomain578

Ω22 :=

{
ξ : ωt < |ξ−| < 3ωt

2
, |ξd − ηr

d| <
ωt

2

}
,579

and vice versa.580

Based on Ω21 and Ω22, II2 can be subdivided into several parts:581

II2 =

∫
Ω2∩{ξ:|ξd−ηr

d|<
ωt
2 }

(1 + |ξ|2)s

|ξ|2 − ω2t2 − (ηr
d)

2 + 2iηi
d(ξd − ηr

d)
Ĵ−sf(ξ)Ĵ−sg(ξ)dξ582

=

∫
Ω21∪Ω22

nt(ξ)(1 + |ξ|2)sĴ−sf(ξ)Ĵ−sg(ξ)dξ583

=

∫
Ω22

[
nt(ξ)(1 + |ξ|2)sĴ−sf(ξ)Ĵ−sg(ξ)584

+ nt(ξ
∗)Jd,t(ξ)(1 + |ξ∗|2)sĴ−sf(ξ∗)Ĵ−sg(ξ∗)

]
dξ585

=

∫
Ω22

[nt(ξ) + nt(ξ
∗)Jd,t(ξ)] (1 + |ξ|2)sĴ−sf(ξ)Ĵ−sg(ξ)dξ586

+

∫
Ω22

nt(ξ
∗)Jd,t(ξ)

[
(1 + |ξ∗|2)s − (1 + |ξ|2)s

]
Ĵ−sf(ξ)Ĵ−sg(ξ)dξ587

+

∫
Ω22

nt(ξ
∗)Jd,t(ξ)(1 + |ξ∗|2)s

[
Ĵ−sf(ξ∗)− Ĵ−sf(ξ)

]
Ĵ−sg(ξ)dξ588

+

∫
Ω22

nt(ξ
∗)Jd,t(ξ)(1 + |ξ∗|2)sĴ−sf(ξ∗)

[
Ĵ−sg(ξ∗)− Ĵ−sg(ξ)

]
dξ589

=: II21 + II22 + II23 + II24,590591
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18 P. LI AND X. WANG

where we used the fact592 ∫
Ω21

nt(ξ)(1 + |ξ|2)sĴ−sf(ξ)Ĵ−sg(ξ)dξ593

=

∫
Ω21

nt(ξ
∗)(1 + |ξ∗|2)sĴ−sf(ξ∗)Ĵ−sg(ξ∗)dξ∗594

=

∫
Ω22

nt(ξ
∗)(1 + |ξ∗|2)sĴ−sf(ξ∗)Ĵ−sg(ξ∗)Jd,t(ξ)dξ.595

596

Noting597

nt(ξ
∗) =

1

|ξ∗|2 − ω2t2 − (ηr
d)

2 + 2iηi
d(ξ
∗
d − ηr

d)
598

=
1

|ξ′|2 − ω2t2 + (ξ∗d − ηr
d)(ξ

∗
d + ηr

d) + 2iηi
d(ξ
∗
d − ηr

d)
599

=
1

|ξ′|2 − ω2t2 + (ξd − ηr
d)(ξd − 3ηr

d)− 2iηi
d(ξd − ηr

d)
,600

601

we get for d = 2 that602

h2(ξ) : = |nt(ξ) + nt(ξ
∗)J2,t(ξ)|603

=

∣∣∣∣ 1

|ξ−|2 − ω2t2 + (ξd − ηr
d)(ξd + ηr

d) + 2iηi
d(ξd − ηr

d)
604

+
1

|ξ′|2 − ω2t2 + (ξd − ηr
d)(ξd − 3ηr

d)− 2iηi
d(ξd − ηr

d)

∣∣∣∣605

=
2(|ξ−| − ωt)2 + 2(ξd − ηr

d)
2[

((|ξ−| − ωt)(|ξ−|+ ωt) + (ξd − ηr
d)(ξd + ηr

d))
2 + 4(ηi

d)
2(ξd − ηr

d)
2
] 1

2

606

× 1[
((|ξ−| − ωt)(|ξ−| − 3ωt) + (ξd − ηr

d)(ξd − 3ηr
d))

2 + 4(ηi
d)

2(ξd − ηr
d)

2
] 1

2

,607

608

which is bounded609

h2(ξ) .
1

ω2t2
, ξ ∈ Ω22610

as t � 1 according to the boundedness of ξ ∈ Ω22. Similarly, it holds for d = 3 and611

t� 1 that612

h3(ξ) : = |nt(ξ) + nt(ξ
∗)J3,t(ξ)|613

=

∣∣∣∣ 1

|ξ−|2 − ω2t2 + (ξd − ηr
d)(ξd + ηr

d) + 2iηi
d(ξd − ηr

d)
614

+

2ωt
|ξ−| − 1

|ξ′|2 − ω2t2 + (ξd − ηr
d)(ξd − 3ηr

d)− 2iηi
d(ξd − ηr

d)

∣∣∣∣615

.
1

ω2t2
.616

617

The above estimates lead to618

|II21| .
1

ω2t2

∫
Ω22

(1 + |ξ|2)s|Ĵ−sf(ξ)||Ĵ−sg(ξ)|dξ . 1

(ωt)2−2s
‖f‖H−s(G)‖g‖H−s(G).619
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INVERSE SCATTERING FOR THE BIHARMONIC WAVE EQUATION 19

For II22, we apply the mean value theorem and get for some θ ∈ (0, 1) that620 ∣∣nt(ξ∗)Jd,t(ξ) [(1 + |ξ∗|2)s − (1 + |ξ|2)s
]∣∣621

=
∣∣∣nt(ξ∗)Jd,t(ξ)s (1 + θ|ξ∗|2 + (1− θ)|ξ|2

)s−1
(|ξ∗|2 − |ξ|2)

∣∣∣622

.
∣∣nt(ξ∗)Jd,t(ξ)(|ξ∗|2 − |ξ|2)

∣∣ (1 + θ|ξ∗|2 + (1− θ)|ξ|2
)s−1

623

.
(
1 + θ|ξ∗|2 + (1− θ)|ξ|2

)s−1
.

1

(ωt)2−2s
,624

625

where in the third step we used the following estimate similar to h2(ξ):626 ∣∣nt(ξ∗)Jd,t(ξ)(|ξ∗|2 − |ξ|2)
∣∣627

=

∣∣∣∣∣∣∣
(

2ωt
|ξ−| − 1

)d−2

(|ξ∗|2 − |ξ|2)

|ξ′|2 − ω2t2 + (ξd − ηr
d)(ξd − 3ηr

d)− 2iηi
d(ξd − ηr

d)

∣∣∣∣∣∣∣628

=

(
2ωt
|ξ−| − 1

)d−2 ∣∣4ωt(|ξ−| − ωt) + 4ηr
d(ξd − ηr

d)
∣∣[

((|ξ−| − ωt)(|ξ−| − 3ωt) + (ξd − ηr
d)(ξd − 3ηr

d))
2 + 4(ηi

d)
2(ξd − ηr

d)
2
] 1

2

. 1.

(3.8)

629

630

Therefore631

|II22| .
1

(ωt)2−2s

∫
Ω22

|Ĵ−sf(ξ)||Ĵ−sg(ξ)|dξ . 1

(ωt)2−2s
‖f‖H−s(G)‖g‖H−s(G).632

Terms II23 and II24 can be estimated similarly by following the procedure used in [20,633

Theorem 3.2]. In fact, it can be shown that the Bessel potential satisfies634 ∣∣Ĵ−sf(ξ∗)− Ĵ−sf(ξ)
∣∣ .∣∣|ξ∗| − |ξ|∣∣[M(|∇Ĵ−sf |)(ξ∗) +M(|∇Ĵ−sf |)(ξ∗)

]
,635

636

where M is the Hardy–Littlewood maximal function defined by637

M(f)(x) = sup
r>0

1

|B(x, r)|

∫
B(x,r)

|f(y)|dy638

with B(x, r) being the ball of center x and radius r, and satisfies (cf. [20, Theorem639

3.2])640

‖M(|∇Ĵ−sf |)‖L2(Rd) . ‖f‖H−s(G).641

The above estimates, together with (3.8), yield642

|II23| .
∫

Ω22

|nt(ξ∗)Jd,t(|ξ∗|2 − |ξ|2)|
|ξ∗|+ |ξ|

(1 + |ξ∗|2)s643

×
∣∣∣M(|∇Ĵ−sf |)(ξ∗) +M(|∇Ĵ−sf |)(ξ∗)

∣∣∣|Ĵ−sg(ξ)|dξ644

.
1

(ωt)1−2s
‖f‖H−s(G)‖g‖H−s(G)645

646

and647

|II24| .
∫

Ω22

|nt(ξ∗)Jd,t(|ξ∗|2 − |ξ|2)|
|ξ∗|+ |ξ|

(1 + |ξ∗|2)s648
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20 P. LI AND X. WANG

× |Ĵ−sf(ξ∗)|
∣∣∣M(|∇Ĵ−sg|)(ξ∗) +M(|∇Ĵ−sg|)(ξ∗)

∣∣∣dξ649

.
1

(ωt)1−2s
‖f‖H−s(G)‖g‖H−s(G).650

651

Hence, II satisfies652

|II| . 1

(ωt)1−2s
‖f‖H−s(G)‖g‖H−s(G).(3.9)653

654

Combining (3.7) and (3.9), we obtain the estimate of A and get655

|〈Gηf, g〉| .
1

ω3−2st1−2s
‖f‖H−s(G)‖g‖H−s(G)656

for any f, g ∈ C∞0 (G). Since C∞0 (G) is dense in L2(G) and H−s(G) ⊂ H−1(G) =657

L2(G)
‖·‖H−1(G) (cf. [1, Sections 2.30, 3.13]), the above result can be extended to f, g ∈658

H−s(G) with s ∈ (0, 1
2 ), which completes the proof.659

Remark 3.3. The unique continuation principle established in Theorem 3.1 holds660

for any damping coefficient σ ≥ 0. If the medium is lossless with σ = 0, the proof can661

be simplified by letting ω = k
1
2 and662

η =


(
k

1
2 t, ik

1
2

√
t2 − 1

)>
, d = 2,(

k
1
2 t, 0, ik

1
2

√
t2 − 1

)>
, d = 3.

663

We refer to [25] for the unique continuation principle of the Schrödinger equation664

without damping. The unique continuation principle will be utilized to show the665

uniqueness of the solution to the direct scattering problem when σ = 0 .666

4. The Lippmann–Schwinger equation. In this section, we examine the well-667

posedness of the scattering problem (1.1)–(1.2) by studying the equivalent Lippmann–668

Schwinger integral equation.669

4.1. Well-posedness. Based on the integral operators, the scattering problem670

(1.1)–(1.2) can be written formally as the Lippmann–Schwinger equation671

u = Kku+Hkδy = Kku+ Φ,(4.1)672673

where the fundamental solution Φ is given in (2.2).674

Theorem 4.1. Let ρ satisfy Assumption 1.1. The Lippmann–Schwinger equation675

(4.1) has a unique solution in W γ,q
loc (Rd) with q ∈ (2, 2d

3d−2m−2 ) and γ ∈ (d−m2 , 1
2 +676

( 1
q −

1
2 )d2 ).677

Proof. According to the compactness of the operator Kk proved in Lemma 2.3 and678

the Fredholm alternative theorem, it suffices to show that the homogeneous equation679

u = Kku(4.2)680681

has only the trivial solution u ≡ 0.682

Assume that u∗ is a solution to the homogeneous equation (4.2). Then it satisfies683

the following equation in the distribution sense:684

(4.3) ∆2u∗ − κ4u∗ + ρu∗ = 0 in Rd.685
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Let us consider two auxiliary functions686

uH := − 1

2κ2
(∆u∗ − κ2u∗), uM :=

1

2κ2
(∆u∗ + κ2u∗).(4.4)687

688

It is clear to note that u∗ = uH + uM and ∆u∗ = κ2(uM − uH).689

Since ρ is compactly supported in D, there exists a constant R > 0 such that690

D ⊂ BR with BR being the open ball of radius R centered at zero. It can be verified691

that uH and uM satisfy the homogeneous Helmholtz and modified Helmholtz equation692

with the wavenumber κ, respectively, in Rd \BR:693

∆uH + κ2uH = 0, ∆uM − κ2uM = 0.694

Hence, uH and uM admit the following Fourier series expansions for any r = |x| > R:695

uH(r, θ) =
∞∑

n=−∞

H
(1)
n (κr)

H
(1)
n (κR)

û
(n)
H (R)einθ,

uM (r, θ) =

∞∑
n=−∞

Kn(κr)

Kn(κR)
û

(n)
M (R)einθ,

if d = 2,(4.5)696

697

where698

û
(n)
J (R) =

1

2π

∫ 2π

0

uJ(R, θ)e−inθdθ, J ∈ {H,M}699

are the Fourier coefficients, and700

uH(r, θ, ϕ) =

∞∑
n=0

n∑
m=−n

h
(1)
n (κr)

h
(1)
n (κR)

û
(m,n)
H (R)Y mn (θ, ϕ),

uM (r, θ, ϕ) =

∞∑
n=0

n∑
m=−n

kn(κr)

kn(κR)
û

(m,n)
M (R)Y mn (θ, ϕ),

if d = 3,(4.6)701

702

where h
(1)
n and kn are the spherical and modified spherical Hankel functions, respec-703

tively, satisfying704

h(1)
n (z) =

√
π

2z
H

(1)

n+ 1
2

(z), kn(z) =

√
π

2z
Kn+ 1

2
(z), z ∈ C,705

Y mn are the spherical harmonics of order n, and the Fourier coefficients û
(m,n)
J (R) are706

given by707

û
(m,n)
J (R) =

∫
S2

uJ(R, θ, ϕ)Y mn (θ, ϕ)ds.708

If σ > 0, then we have κr = <(κ) > 0, κi = =(κ) > 0. It follows from (2.3)–709

(2.4) and (4.5)–(4.6) that uH , uM and thus u∗,∆u∗ decay exponentially as r → ∞.710

Multiplying (4.3) by the complex conjugate of u∗, integrating over Br, and applying711

Green’s formula, we obtain712 ∫
Br

(
|∆u∗|2 − κ4|u∗|2 + ρ|u∗|2

)
dx =

∫
∂Br

(
∆u∗∂νu∗ − u∗∂ν∆u∗

)
ds,713

714
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where ν is the unit outward normal vector to ∂Br. Taking the imaginary part of the715

above equation yields716

−=(κ4)‖u∗‖2L2(Br) = =
[∫

∂Br

(
∆u∗∂νu∗ − u∗∂ν∆u∗

)
ds

]
→ 0717

as r →∞ and hence u∗ ≡ 0 in Rd.718

If σ = 0, then κ = k
1
2 is real. By (4.5)–(4.6), only uM |∂Br and ∂νuM |∂Br decay719

exponentially as r → ∞. It is easy to verify from (4.3) that uH and uM satisfy the720

following equations in Rd:721

∆uH + kuH −
1

2k
ρu∗ = 0, ∆uM − kuM +

1

2k
ρu∗ = 0.722

Indeed, based on the definition of uH given in (4.4) with κ2 = k and (4.3), we have723

the following relationship:724

∆uH + kuH −
1

2k
ρu∗ =− 1

2k
(∆ + k)(∆u∗ − ku∗)− 1

2k
ρu∗725

=− 1

2k
(∆2u∗ − k2u∗ + ρu∗) = 0.726

727

Similarly, the equation for uM can be obtained. Using the integration by parts and728

the fact u∗ = uH + uM , we have from Green’s formula that729 ∫
∂Br

uM∂νuMds =

∫
Br

(
|∇uM |2 + k|uM |2 −

1

2k
ρ|uM |2 −

1

2k
ρuMuH

)
dx,730 ∫

∂Br

uH∂νuHds =

∫
Br

(
|∇uH |2 − k|uH |2 +

1

2k
ρ|uH |2 +

1

2k
ρuMuH

)
dx,731

732

which are well-defined since ∇∆u∗ ∈ L2
loc(Rd) due to ∆2u∗ = k2u∗ − ρu∗ with u∗ ∈733

W γ,q
loc (Rd) and ρu∗ ∈ W−γ,p(D) (cf. (2.7)). Taking the imaginary parts of the above734

two equations yields735

=
[∫

∂Br

uM∂νuMds

]
= =

[∫
∂Br

uH∂νuHds

]
,736

which leads to737 ∫
∂Br

(
|∂νuH |2 + k|uH |2

)
ds =

∫
∂Br

∣∣∣∂νuH − ik
1
2uH

∣∣∣2 ds− 2k
1
2=
[∫

∂Br

uM∂νuMds

]
.738

739

By the Sommerfeld radiation condition (1.2), the first integral on the right-hand side740

of the above equation tends to zero as r →∞. The second integral also tends to zero741

due to the exponential decay of uM . Therefore,742

lim
r→∞

∫
∂Br

(
|∂νuH |2 + k|uH |2

)
ds = lim

r→∞

∫
∂Br

(
|∂νuM |2 + k|uM |2

)
ds = 0.743

It follows from Rellich’s lemma that uH = uM = 0 in Rd\BR and thus u∗ ≡ 0 in744

Rd\BR. The proof is completed by applying the unique continuation in Theorem745

3.1.746

The well-posedness of the scattering problem (1.1)–(1.2) can be obtained by show-747

ing the equivalence to the Lippmann–Schwinger equation. The proof is similar to that748

of [20, Theorem 3.5] and is omitted here for brevity.749

Corollary 4.2. Under Assumption 1.1, the scattering problem (1.1)–(1.2) is750

well-posed in the distribution sense and has a unique solution u ∈W γ,q
loc (Rd), where q751

and γ are given in Theorem 4.1.752
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4.2. Born series. Based on the Lippmann–Schwinger equation (4.1), we for-753

mally define the Born series754
∞∑
n=0

un(x, y, k),755

where756

(4.7)

un(x, y, k) := Kk (un−1(·, y, k)) (x) =

∫
Rd

Φ(x, z, k)ρ(z)un−1(z, y, k)dz, n ≥ 1757

and u0(x, y, k) := Hk(δy)(x) = Φ(x, y, k).758

The Born series is crucial in our arguments for the inverse scattering problem. It759

helps to establish the recovery formula for the strength µ of the random potential ρ.760

Before addressing the inverse problem, we study the convergence of the Born series.761

Lemma 4.3. There exists k0 > 0 such that for any wavenumber k ≥ k0 and any762

fixed x, y ∈ U with U having a positive distance to the support D, the Born series763

converges to the solution of (1.1)–(1.2), i.e.,764

u(x, y, k) =

∞∑
n=0

un(x, y, k).765

Proof. The convergence of the Born series to the solution of (1.1)–(1.2) can be766

obtained by employing the same procedure as that in [17, Section 4.2] and the estimate767

of u0(x, y, k) = Φ(x, y, k) given in Lemma 2.1.768

Moreover, the Born series admits the pointwise convergence. Using the estimates769

of Hk and Kk given in Lemmas 2.2 and 2.3, we get for any s ∈ (d−m2 , 3−χσ
2 ) that770

∥∥∥u(·, y, k)−
N∑
n=0

un(·, y, k)
∥∥∥
L∞(U)

.
∞∑

n=N+1

‖Knk (u0(·, y, k)) ‖L∞(U)771

.
∞∑

n=N+1

‖Kk‖L(Hs(U),L∞(U))‖Kk‖n−2
L(Hs(U))‖Hk‖L(H−s(D),Hs(U))‖ρΦ(·, y, k)‖H−s(D)772

.
∞∑

n=N+1

k
2s+d−2(3−χσ)+ε

4 k(s− 3−χσ
2 )(n−2)ks−

3−χσ
2 ‖Φ(·, y, k)‖Hs(D)773

. k
2s+d−2(3−χσ)+ε

4 +(s− 3−χσ
2 )N+ d−7

4 + s
2 → 0

(4.8)

774775

as N →∞ for any k ≥ k0 and ε > 0, where we used (2.9) and Lemma 2.1.776

5. The inverse scattering problem. This section is devoted to the inverse777

scattering problem, which is to determine the strength µ of the random potential778

ρ. More specifically, the point source is assumed to be located at y = x, where779

x ∈ U is the observation point and U is the measurement domain having a positive780

distance to the support D of the random potential. Therefore, only the backscattering781

data is used for the inverse problem, as also discussed in [16, 17] for the cases of the782

Schrödinger equation and elastic wave equation. For simplicity, we use the notation783

un(x, k) := un(x, x, k) for n ≥ 1. Then the scattered field us has the form784

us(x, k) =

∞∑
n=1

un(x, k)785
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for k ≥ k0 with k0 being given in Lemma 4.3.786

Next we analyze the contribution of each term in the Born series in order to787

deduce the reconstruction formula and achieve the uniqueness of the inverse problem.788

5.1. The analysis of u1. Based on the definitions of the Born sequence (4.7)789

and the incident field u0, the leading term u1 can be expressed as790

(5.1) u1(x, k) = Kk(u0(·, x, k))(x) =

∫
Rd

Φ(x, z, k)2ρ(z)dz.791

Since the fundamental solutions take different forms, the contribution of u1 is dis-792

cussed for the three- and two-dimensional cases, separately.793

5.1.1. The three-dimensional case. By Assumption 1.1, we have m ∈ (2, 3]794

for d = 3. Substituting the fundamental solution795

Φ(x, z, k) = − 1

8πκ2|x− z|
(
eiκ|x−z| − e−κ|x−z|

)
796

into (5.1) gives797

E|u1(x, k)|2 =
1

(8π|κ|2)4

∫
R3

∫
R3

(
eiκ|x−z| − e−κ|x−z|

|x− z|

)2
(
eiκ|x−z′| − e−κ|x−z′|

|x− z′|

)2

798

× E[ρ(z)ρ(z′)]dzdz′799

=
1

(8π|κ|2)4

∫
R3

∫
R3

e2i(κ|x−z|−κ|x−z′|)

|x− z|2|x− z′|2
E[ρ(z)ρ(z′)]dzdz′800

− 2

(8π|κ|2)4

∫
R3

∫
R3

e2iκ|x−z|−(i+1)κ|x−z′|

|x− z|2|x− z′|2
E[ρ(z)ρ(z′)]dzdz′801

+
1

(8π|κ|2)4

∫
R3

∫
R3

e2iκ|x−z|−2κ|x−z′|

|x− z|2|x− z′|2
E[ρ(z)ρ(z′)]dzdz′802

− 2

(8π|κ|2)4

∫
R3

∫
R3

e(i−1)κ|x−z|−2iκ|x−z′|

|x− z|2|x− z′|2
E[ρ(z)ρ(z′)]dzdz′803

+
4

(8π|κ|2)4

∫
R3

∫
R3

e(i−1)κ|x−z|−(i+1)κ|x−z′|

|x− z|2|x− z′|2
E[ρ(z)ρ(z′)]dzdz′804

− 2

(8π|κ|2)4

∫
R3

∫
R3

e(i−1)κ|x−z|−2κ|x−z′|

|x− z|2|x− z′|2
E[ρ(z)ρ(z′)]dzdz′805

+
1

(8π|κ|2)4

∫
R3

∫
R3

e−2κ|x−z|−2iκ|x−z′|

|x− z|2|x− z′|2
E[ρ(z)ρ(z′)]dzdz′806

− 2

(8π|κ|2)4

∫
R3

∫
R3

e−2κ|x−z|−(i+1)κ|x−z′|

|x− z|2|x− z′|2
E[ρ(z)ρ(z′)]dzdz′807

+
1

(8π|κ|2)4

∫
R3

∫
R3

e−2κ|x−z|−2κ|x−z′|

|x− z|2|x− z′|2
E[ρ(z)ρ(z′)]dzdz′808

=
1

(8π|κ|2)4

∫
R3

∫
R3

e2i(κ|x−z|−κ|x−z′|)

|x− z|2|x− z′|2
E[ρ(z)ρ(z′)]dzdz′809

− 4

(8π|κ|2)4
<
∫
R3

∫
R3

e2iκ|x−z|−(i+1)κ|x−z′|

|x− z|2|x− z′|2
E[ρ(z)ρ(z′)]dzdz′810
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+
2

(8π|κ|2)4
<
∫
R3

∫
R3

e2iκ|x−z|−2κ|x−z′|

|x− z|2|x− z′|2
E[ρ(z)ρ(z′)]dzdz′811

+
4

(8π|κ|2)4

∫
R3

∫
R3

e(i−1)κ|x−z|−(i+1)κ|x−z′|

|x− z|2|x− z′|2
E[ρ(z)ρ(z′)]dzdz′812

− 4

(8π|κ|2)4
<
∫
R3

∫
R3

e(i−1)κ|x−z|−2κ|x−z′|

|x− z|2|x− z′|2
E[ρ(z)ρ(z′)]dzdz′813

+
1

(8π|κ|2)4

∫
R3

∫
R3

e−2κ|x−z|−2κ|x−z′|

|x− z|2|x− z′|2
E[ρ(z)ρ(z′)]dzdz′814

=: I1 + I2 + I3 + I4 + I5.815816

For I1, following the procedure used in [21, Theorem 4.5], we get817

|I1| =
1

(8π|κ|2)4

[ ∫
D

e−4κi|x−z|

|x− z|4
µ(z)dzκ−mr +O

(
κ−m−1

r

) ]
818

=
κ−mr

(8π|κ|2)4

∫
D

e−4κi|x−z|

|x− z|4
µ(z)dz +O

(
κ−m−9

r

)
.819

820

The other terms can be estimated by utilizing the exponential decay of the inte-821

grants with respect to κr. Since the estimates are analogous, we only show the detail822

for I2. Note that |x − z| is bounded below and above for any x ∈ U and z ∈ D. A823

simple calculation yields824

I2 =
4

(8π|κ|2)4
<
∫
D

∫
D

ei(2κr|x−z|+(κi−κr)|x−z′|)e−2κi|x−z|−(κr+κi)|x−z′|

|x− z|2|x− z′|2
825

× E[ρ(z)ρ(z′)]dzdz′,826827

where828

e−2κi|x−z|−(κr+κi)|x−z′| . κ−Mr829

for any M > 0 as κr →∞. Choosing M = m+ 1 gives830

|I2| . |κ|−8κ−m−1
r

∫
D

∫
D

|E[ρ(z)ρ(z′)]|dzdz′ . κ−m−9
r ∀ x ∈ U,831

832

where we used the equivalence between |κ| and κr as κr → ∞ and the following833

expression (up to a constant) of the leading term for the kernel E[ρ(z)ρ(z′)] (cf. [22,834

Lemma 2.4]) with d = 2, 3:835

(5.2) E[ρ(z)ρ(z′)] ∼

{
µ(z) ln |z − z′|, m = d,

µ(z)|z − z′|m−d, m ∈ (d− 1, d).
836

Terms I3, I4 and I5 can be estimated similarly. Hence we obtain837

E|u1(x, k)|2 =
κ−mr

(8π|κ|2)4

∫
D

e−4κi|x−z|

|x− z|4
µ(z)dz +O

(
κ−m−9

r

)
∀ x ∈ U.(5.3)838

839

5.1.2. The two-dimensional case. Now let us consider the two-dimensional840

problem where d = 2 and m ∈ (1, 2]. The fundamental solution Φ has the asymptotic841

expansion (cf. [2, 22])842

Φ(x, z, k) = −
∞∑
j=0

Cj

8κ2(κ|x− z|)j+ 1
2

(
ieiκ|x−z| − i−j+

1
2 e−κ|x−z|

)
,843
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where C0 = 1 and844

Cj =

√
2

π

8−j

j!

j∏
l=1

(2l − 1)2e−
iπ
4 , j ≥ 1.845

Let the truncations of Φ and u1 be defined as follows:846

ΦN (x, z, k) : = −
N∑
j=0

Cj

8κ2(κ|x− z|)j+ 1
2

(
ieiκ|x−z| − i−j+

1
2 e−κ|x−z|

)
,847

u
(N)
1 (x, k) : =

∫
R2

ΦN (x, z, k)2ρ(z)dz,848
849

where850

|Φ(x, z, k)| . |κ|− 5
2 |x− z|− 1

2 , |ΦN (x, z, k)| . |κ|− 5
2 |x− z|− 1

2851

and852

Φ(x, z, k)− ΦN (x, z, k) = O
(
|κ|−N− 7

2 |x− z|−N− 3
2

)
(5.4)853854

for any N ∈ N as |κ||x− z| → ∞. The following lemma gives the truncation error of855

the fundamental solution.856

Lemma 5.1. For any fixed x ∈ U , N ∈ N, γ ∈ [0, 1] and q > 1, it holds857

‖Φ(x, ·, k)− ΦN (x, ·, k)‖Wγ,q(D) . |κ|−N−
7
2 +γ .(5.5)858859

In particular, for N = 0 and q̃ ∈ (1, 4
3 ), it holds860

‖Φ(·, ·, k)− Φ0(·, ·, k)‖Wγ,q̃(D×D) . |κ|−
7
2 +γ .(5.6)861862

Proof. Using (5.4) and863

|∇z (Φ(x, z, k)− ΦN (x, z, k))| = O
(
|κ|−N− 5

2 |x− z|−N− 3
2

)
,864

we get865

‖Φ(x, ·, k)− ΦN (x, ·, k)‖Lq(D) . |κ|−N−
7
2 ,866

‖Φ(x, ·, k)− ΦN (x, ·, k)‖W 1,q(D) . |κ|−N−
5
2 .867868

Then (5.5) follows from the space interpolation [Lq(D),W 1,q(D)]γ = W γ,q(D).869

Similarly, (5.6) can be obtained by noting that870

‖Φ(·, ·, k)− Φ0(·, ·, k)‖Lq̃(D×D) . |κ|−
7
2

(∫
D

∫
D

|z − z′|− 3
2 q̃dzdz′

) 1
q̃

. |κ|− 7
2871

and872

‖Φ(·, ·, k)− Φ0(·, ·, k)‖W 1,q̃(D×D) . |κ|−
5
2873

for any q̃ ∈ (1, 4
3 ).874

Choosing N = 1 and using (2.5), (5.2), and (5.4), we get for any x ∈ U that875

E
∣∣∣u1(x, k)− u(1)

1 (x, k)
∣∣∣2876
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=

∫
D

∫
D

(Φ2 − Φ2
1)(x, z, k)(Φ2 − Φ2

1)(x, z′, k)E[ρ(z)ρ(z′)]dzdz′877

. sup
(x,z)∈U×D

[
|(Φ + Φ1)(x, z, k)|2|(Φ− Φ1)(x, z, k)|2

] ∫
D

∫
D

|E[ρ(z)ρ(z′)]|dzdz′878

. |κ|−14.879880

The second moment of u
(1)
1 satisfies881

E|u(1)
1 (x, k)|2 =

1

(8|κ|2)4

1∑
j,l=0

C2
jC

2
l

κ2j+1κ2l+1

∫
D

∫
D

(
ieiκ|x−z| − i−j+

1
2 e−κ|x−z|

|x− z|j+ 1
2

)2

882

×

(
ieiκ|x−z′| − i−l+

1
2 e−κ|x−z′|

|x− z′|l+ 1
2

)2

E[ρ(z)ρ(z′)]dzdz′883

=
κ−mr

84|κ|10

∫
D

e−4κi|x−z|

|x− z|2
µ(z)dz +O

(
κ−m−11

r

)
884
885

for any x ∈ U and κr →∞.886

Combining the above estimates leads to887

E|u1(x, k)|2 = E|u(1)
1 (x, k)|2 + 2<E

[
u

(1)
1 (x, k)(u1(x, k)− u(1)

1 (x, k))
]

888

+ E
∣∣u1(x, k)− u(1)

1 (x, k)
∣∣2889

=
κ−mr

84|κ|10

∫
D

e−4κi|x−z|

|x− z|2
µ(z)dz +O

(
κ−m−11

r

)
890

+O
(
(κ−mr |κ|−10)

1
2κ−7

r

)
+O

(
κ−14

r

)
891

=
κ−mr

84|κ|10

∫
D

e−4κi|x−z|

|x− z|2
µ(z)dz +O

(
κ−m−11

r

)
∀ x ∈ U.(5.7)892

893

The following theorem is concerned with the contribution of u1 to the reconstruc-894

tion formula for both the two- and three-dimensional problems.895

Theorem 5.2. Let the random potential ρ satisfy Assumption 1.1 and U ⊂ Rd be896

a bounded domain having a positive distance to the support D of the strength µ. For897

any x ∈ U , it holds898

lim
K→∞

1

K

∫ 2K

K

κm+14−2d
r E|u1(x, k)|2dκr = Td(x),(5.8)899

900

where Td(x) is given in Theorem 1.2. Moreover, if σ = 0, then it holds901

lim
K→∞

1

K

∫ 2K

K

κm+14−2d|u1(x, k)|2dκ = Td(x) P-a.s.(5.9)902
903

Proof. To prove (5.8), we consider the imaginary part of κ as a function of κr,904

i.e., κi = κi(κr), which satisfies limκr→∞ κi(κr) = 0. From (5.3) and (5.7), we get905

lim
κr→∞

κm+14−2d
r E|u1(x, k)|2 = Td(x).(5.10)906

907

Based on the mean value theorem, (5.8) follows from the identity908

lim
κr→∞

κm+14−2d
r E|u1(x, k)|2 = lim

K→∞

1

K

∫ 2K

K

κm+14−2d
r E|u1(x, k)|2dκr.909
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It then suffices to show (5.9) for the case σ = 0, i.e., κ = κr = k
1
2 ∈ R+. Noting910

lim
k→∞

e−4κi|x−z| = 1,911

and combining (2.1) and (5.8), we have912

lim
k→∞

κm+14−2dE|u1(x, k)|2 = Td(x).913
914

To replace the expectation in the above formula by the frequency average, an915

asymptotic version of the law of large numbers is required. Such a replacement is an916

analogue of ergodicity in the frequency domain, and has been adopted in the analysis917

of stochastic inverse problems (cf. [16, 17,22]).918

For d = 3, consider the correlations E[u1(x, k1)u1(x, k2)] and E[u1(x, k1)u1(x, k2)]919

with ki = κ2
i , i = 1, 2 at different wavenumbers κ1 and κ2. Following the same920

procedure as that used in [22, Lemma 4.1], we may show that921 ∣∣E[u1(x, k1)u1(x, k2)]
∣∣ . κ−4

1 κ−4
2

[
(κ1 + κ2)−m(1 + |κ1 − κ2|)−M1 + κ−M2

1 + κ−M2
2

]
,922 ∣∣E[u1(x, k1)u1(x, k2)]

∣∣ . κ−4
1 κ−4

2

[
(κ1 + κ2)−M1(1 + |κ1 − κ2|)−m + κ−M2

1 + κ−M2
2

]
,923

924

where M1,M2 > 0 are arbitrary integers. The above estimates indicate the asymptotic925

independence of u1(x, k1) and u1(x, k2) for |κ1 − κ2| � 1. Then, according to [22,926

Theorem 4.2], the expectation in (5.8) can be replaced by the frequency average with927

respect to κ:928

lim
K→∞

1

K

∫ 2K

K

κm+8|u1(x, k)|2dκ = T3(x) P-a.s.929
930

For d = 2, we need to consider u
(3)
1 , which is the truncated u1 with N = 3. Its931

correlations at different wavenumbers can be carried out similarly as those for the932

three-dimensional case (cf. [22, Lemma 4.4]). Hence933

lim
K→∞

1

K

∫ 2K

K

κm+10|u(3)
1 (x, k)|2dκ = T2(x) P-a.s.(5.11)934

935

The residual u1 − u(3)
1 satisfies936

|u1(x, k)− u(3)
1 (x, k)|937

=

∣∣∣∣∫
D

(Φ2 − Φ2
3)(x, z, k)ρ(z)dz

∣∣∣∣938

. ‖Φ2(x, ·, k)− Φ2
3(x, ·, k)‖W 1,q(D)‖ρ‖W−1,p(D)939

. ‖Φ(x, ·, k) + Φ3(x, ·, k)‖W 1,2q(D)‖Φ(x, ·, k)− Φ3(x, ·, k)‖W 1,2q(D)‖ρ‖W−1,p(D)940

. k−
3
4κ−

11
2 . κ−7 P-a.s.941942

for any p > 1 and q satisfying 1
p + 1

q = 1, where we used Lemmas 2.1 and 5.1, and943

ρ ∈ W m−2
2 −ε,p(D) ⊂ W−1,p(D) for m ∈ (1, 2] and any sufficiently small ε ∈ (0, m2 ).944

We have from a simple calculation that945

lim
K→∞

1

K

∫ 2K

K

κm+10|u1(x, k)− u(3)
1 (x, k)|2dκ . lim

K→∞

1

K

∫ 2K

K

κm−4dκ = 0 P-a.s.946

This manuscript is for review purposes only.



INVERSE SCATTERING FOR THE BIHARMONIC WAVE EQUATION 29

947

Combining the above estimate with (5.11) leads to948

lim
K→∞

1

K

∫ 2K

K

κm+10|u1(x, k)|2dκ = T2(x) P-a.s.,949
950

which completes the proof of (5.9).951

5.2. The analysis of u2. It follows from (4.7) and (5.1) that952

u2(x, k) =

∫
Rd

Φ(x, z, k)ρ(z)u1(z, x, k)dz953

=

∫
Rd

∫
Rd

Φ(x, z, k)ρ(z)Φ(z, z′, k)ρ(z′)Φ(z′, x, k)dzdz′,954
955

which does not contribute to the inversion formula as stated in the following theorem.956

Theorem 5.3. Let the random potential ρ satisfy Assumption 1.1 and U ⊂ Rd957

be a bounded and convex domain having a positive distance to the support D of the958

strength µ. For any x ∈ U , it holds959

lim
K→∞

1

K

∫ 2K

K

κm+14−2d
r |u2(x, k)|2dκr = 0 P-a.s.960

Proof. The proof is motivated by [16], where the inverse random potential scat-961

tering problem is studied for the two-dimensional Schrödinger equation with m ≥ d.962

In what follows, we provide some details to demonstrate the differences for the bihar-963

monic wave equation of rougher potentials with m ∈ (d− 1, d].964

(i) First we consider the case d = 3. As a function of x and κr, u2(x, k) satisfies965

1

K

∫ 2K

K

κm+8
r |u2(x, k)|2dκr ≤

∫ 2K

K

κr

K
κm+7

r |u2(x, k)|2dκr966

≤
∫ ∞

1

min
{

2,
κr

K

}
κm+7

r |u2(x, k)|2dκr P-a.s.967
968

Then the required result is obtained by taking K →∞ if the following estimate holds:969 ∫ ∞
1

κm+7
r E|u2(x, k)|2dκr <∞ ∀x ∈ U.(5.12)970

971

To deal with the product of the rough potentials in E|u2(x, k)|2, we consider the972

smooth modification ρε := ρ ∗ϕε with ϕε(x) = ε−2ϕ(x/ε) for ε > 0 and ϕ ∈ C∞0 (R3).973

Define974

u2,ε(x, k) : =

∫
Rd

∫
Rd

Φ(x, z, k)ρε(z)Φ(z, z′, k)ρε(z
′)Φ(z′, x, k)dzdz′975

= − 1

(8πκ2)3

∫
D

∫
D

(eiκ|x−z| − e−κ|x−z|)eiκ|z−z′|(eiκ|x−z′| − e−κ|x−z′|)
|x− z||z − z′||x− z′|

976

× ρε(z)ρε(z′)dzdz′977

+
1

(8πκ2)3

∫
D

∫
D

(eiκ|x−z| − e−κ|x−z|)e−κ|z−z′|(eiκ|x−z′| − e−κ|x−z′|)
|x− z||z − z′||x− z′|

978
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× ρε(z)ρε(z′)dzdz′979

=: − 1

(8πκ2)3
II1(x, k, ε) +

1

(8πκ2)3
II2(x, k, ε).980

981

Note that982 ∫ ∞
1

κm+7
r E|u2,ε(x, k)|2dκr .

2∑
i=1

∫ ∞
1

|κ|−12κm+7
r E|IIi(x, k, ε)|2dκr983

.
2∑
i=1

∫ ∞
1

E|IIi(x, k, ε)|2dκr,984

985

where in the last inequality we used986

|κ|−12κm+7
r ≤ κm−5

r ≤ 1 ∀m ∈ (2, 3].987

Based on the Fubini theorem and Fatou’s lemma, to show (5.12), it suffices to prove988

sup
ε∈(0,1)

∫ ∞
1

E|IIi(x, k, ε)|2dκr <∞ ∀x ∈ U, i = 1, 2.989

990

The estimates for II1 and II2 are parallel, and they are similar to the procedure991

used in [16, 17] for the inverse potential scattering problems of the two-dimensional992

acoustic and elastic wave equations without attenuation. The basic idea is to rewrite993

each term IIi, i = 1, 2, as the Fourier or inverse Fourier transform of some well-defined994

function. In the following, we only give the estimate for II1 to show the differences in995

handling the attenuation.996

Denote997

K(x, z, z′) :=
(eiκ|x−z| − e−κ|x−z|)e−iκr|x−z|e−κi|z−z′|e−iκr|z′−x|(eiκ|x−z′| − e−κ|x−z′|)

|x− z||z − z′||x− z′|
,998

then II1 can be rewritten as999

II1(x, k, ε) =

∫
D

∫
D

eiκr(|x−z|+|z−z′|+|z′−x|)K(x, z, z′)ρε(z)ρε(z
′)dzdz′.1000

1001

Define a phase function1002

L(z, z′) = |x− z|+ |z − z′|+ |z′ − x|,1003

which is uniformly bounded below and above for any (z, z′) ∈ D × D and x ∈ U .1004

Hence the set1005

{(z, z′) ∈ D ×D : L(z, z′) = t}, t > 01006

is non-empty only for t lying in a finite interval [T0, T1] with 0 < T0 < T1.1007

For any fixed t̃ ∈ [T0, T1], there exist η = η(t̃) and an open cone K = K(t̃) ⊂ R61008

such that1009

D ×D ∩ {(z, z′) : t0 < L(z, z′) < t1} ⊂ K ∩ {(z, z′) : t0 < L(z, z′) < t1} =: Γ,1010

where t0 = t̃− η and t1 = t̃+ η. Letting Γt := Γ ∩ {(z, z′) : L(z, z′) = t}, we have1011 ∫
Γ

eiκrL(z,z′)K(x, z, z′)ρε(z)ρε(z
′)dzdz′1012
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=

∫ t1

t0

eiκrt

[∫
Γt

K(x, z, z′)|∇L(z, z′)|−1ρε(z)ρε(z
′)dH5(z, z′)

]
dt1013

= :

∫ t1

t0

eiκrtSε(t)dt = F [Sε](−κr),1014

1015

where H5 is the Hausdorff measure on Γt and Sε is compactly supported in [T0, T1].1016

Applying Parseval’s identity yields1017 ∫ ∞
1

E|II1(x, k, ε)|2dκr . E‖Sε‖2L2(T0,T1).1018

Using Isserlis’ theorem, we obtain1019

E|Sε(t)|2 =

∫
Γt

∫
Γt

K(x, z1, z
′
1)K(x, z2, z′2)|∇L(z1, z

′
1)|−1|∇L(z2, z

′
2)|−1

1020

× E [ρε(z1)ρε(z
′
1)ρε(z2)ρε(z

′
2)] dH5(z1, z

′
1)dH5(z2, z

′
2)1021

=

∫
Γt

∫
Γt

K(x, z1, z
′
1)K(x, z2, z′2)|∇L(z1, z

′
1)|−1|∇L(z2, z

′
2)|−1

1022

×
(
E[ρε(z1)ρε(z

′
1)]E[ρε(z2)ρε(z

′
2)] + E[ρε(z1)ρε(z2)]E[ρε(z

′
1)ρε(z

′
2)]1023

+ E[ρε(z1)ρε(z
′
2)]E[ρε(z

′
1)ρε(z2)]

)
dH5(z1, z

′
1)dH5(z2, z

′
2),1024

1025

where K and ∇L satisfy |K(x, z, z′)| . |z − z′|−1 and 0 < C1 ≤ |∇L(z, z′)| ≤ C2,1026

respectively, for any (z, z′) ∈ D × D with z 6= z′ (cf. [16]), and |E[ρε(z)ρε(z
′)]| .1027

|z − z′|m−3−ε for any ε > 0 and m ∈ (2, 3] according to (5.2). It follows from the1028

Hölder inequality and the symmetry of the integral that1029

E|Sε(t)|2 .
∫

Γt

∫
Γt

|z1 − z′1|−1|z2 − z′2|−1|z1 − z′1|m−3−ε
1030

× |z2 − z′2|m−3−εdH5(z1, z
′
1)dH5(z2, z

′
2)1031

+

∫
Γt

∫
Γt

|z1 − z′1|−1|z2 − z′2|−1|z1 − z2|m−3−ε
1032

× |z′1 − z′2|m−3−εdH5(z1, z
′
1)dH5(z2, z

′
2)1033

+

∫
Γt

∫
Γt

|z1 − z′1|−1|z2 − z′2|−1|z1 − z′2|m−3−ε
1034

× |z′1 − z2|m−3−εdH5(z1, z
′
1)dH5(z2, z

′
2)1035

=

(∫
Γt

|z1 − z′1|m−4−εdH5(z1, z
′
1)

)2

+ 2

∫
Γt

∫
Γt

|z1 − z′1|−1|z2 − z′2|−1
1036

× |z1 − z2|m−3−ε|z′1 − z′2|m−3−εdH5(z1, z
′
1)dH5(z2, z

′
2)1037

.

(∫
Γt

|z1 − z′1|m−4−εdH5(z1, z
′
1)

)2

1038

+

[∫
Γt

∫
Γt

|z1 − z′1|−3|z2 − z′2|−3dH5(z1, z
′
1)dH5(z2, z

′
2)

] 1
3

1039

×
[∫

Γt

∫
Γt

|z1 − z2|
3
2 (m−3−ε)|z′1 − z′2|

3
2 (m−3−ε)dH5(z1, z

′
1)dH5(z2, z

′
2)

] 2
3

1040
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.

(∫
Γt

|z1 − z′1|m−4−εdH5(z1, z
′
1)

)2

+

(∫
Γt

|z1 − z′1|−3dH5(z1, z
′
1)

) 4
3

1041

+

(∫
Γt

∫
Γt

|z1 − z2|3(m−3−ε)dH5(z1, z
′
1)dH5(z2, z

′
2)

) 4
3

,1042

1043

where the boundedness of all the last three integrals can be obtained similarly to the1044

two-dimensional problem shown in [16, Lemma 6].1045

(ii) Next we consider the case d = 2. Define the following auxiliary functions1046

(cf. [17, Section 5.2]) via the truncated fundamental solution Φ0:1047

u2,l(x, k) : =

∫
Rd

∫
Rd

Φ0(x, z, k)ρ(z)Φ(z, z′, k)ρ(z′)Φ(z′, x, k)dzdz′,1048

u2,r(x, k) : =

∫
Rd

∫
Rd

Φ0(x, z, k)ρ(z)Φ(z, z′, k)ρ(z′)Φ0(z′, x, k)dzdz′,1049

v(x, k) : =

∫
Rd

∫
Rd

Φ0(x, z, k)ρ(z)Φ0(z, z′, k)ρ(z′)Φ0(z′, x, k)dzdz′.1050
1051

By Lemmas 2.1, 2.3, and 5.1, we have1052

|u2(x, k)− u2,l(x, k)|1053

. ‖ρ‖W−γ,p(D) ‖[Φ(x, ·, k)− Φ0(x, ·, k)]KkΦ(·, x, k)‖Wγ,q(D)1054

. ‖Φ(x, ·, k)− Φ0(x, ·, k)‖Wγ,2q(D)‖Kk‖L(Wγ,2q(D))‖Φ(·, x, k)‖Wγ,2q(D)1055

. |κ|− 7
2 +γkγ−

1
q−

1
2 +χσ

2 k−
5
4 + γ

2 . κ
−7− 2

q+4γ+χσ
r P-a.s.,10561057

1058

|u2,l(x, k)− u2,r(x, k)|1059

. ‖ρ‖W−γ,p(D) ‖Φ0(x, ·, k)Kk [Φ(·, x, k)− Φ0(·, x, k)]‖Wγ,q(D)1060

. ‖Φ0(x, ·, k)‖Wγ,2q(D)‖Kk‖L(Wγ,2q(D))‖Φ(·, x, k)− Φ0(·, x, k)‖Wγ,2q(D)1061

. κ
−7− 2

q+4γ+χσ
r P-a.s.,10621063

1064

|u2,r(x, k)− v(x, k)|1065

. ‖Φ(·, ·, k)− Φ0(·, ·, k)‖Wγ,q̃(D×D)‖(ρ⊗ ρ)(Φ0 ⊗ Φ0(x, ·, k))‖W−2γ,p̃(D×D)1066

. |κ|− 7
2 +γ‖ρ‖2W−γ,∞(D)‖Φ0(x, ·, k)⊗ Φ0(·, x, k)‖W 2γ,∞(D×D)1067

. κ
− 17

2 +4γ
r P-a.s.,10681069

where (p, q) and (p̃, q̃) are conjugate pairs with q > 1, γ ∈ ( 2−m
2 , 1

2 + 1
q ), and q̃ ∈ (1, 4

3 ).1070

Choosing q = 1
1−ε and γ = 2−m

2 + ε with a sufficiently small ε > 0 in above estimates,1071

we get1072

lim
K→∞

1

K

∫ 2K

K

κm+10
r |u2(x, k)− v(x, k)|2dκr1073

. lim
K→∞

1

K

∫ 2K

K

κm+10
r

(
κ
−7− 2

q+4γ+χσ
r + κ

− 17
2 +4γ

r

)2

dκr1074

. lim
K→∞

1

K

∫ 2K

K

(
κ−3m+12ε+2χσ

r + κ1−3m+8ε
r

)
dκr = 0 P-a.s.1075
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1076

Hence, to show the result in the theorem, it suffices to prove that the contribution of1077

v is zero. Similar to the three-dimensional case, we consider the smooth modification1078

vε(x, k) : =

∫
Rd

∫
Rd

Φ0(x, z, k)ρε(z)Φ0(z, z′, k)ρε(z
′)Φ0(z′, x, k)dzdz′1079

= − i

83κ
15
2

∫
D

∫
D

(ieiκ|x−z| − i
1
2 e−κ|x−z|)eiκ|z−z′|(ieiκ|z′−x| − i

1
2 e−κ|z

′−x|)

|x− z| 12 |z − z′| 12 |z′ − x| 12
1080

× ρε(z)ρε(z′)dzdz′1081

+
i
1
2

83κ
15
2

∫
D

∫
D

(ieiκ|x−z| − i
1
2 e−κ|x−z|)e−κ|z−z

′|(ieiκ|z′−x| − i
1
2 e−κ|z

′−x|)

|x− z| 12 |z − z′| 12 |z′ − x| 12
1082

× ρε(z)ρε(z′)dzdz′1083

=: − i

83κ
15
2

ĨI1(x, k, ε) +
i
1
2

83κ
15
2

ĨI2(x, k, ε).1084
1085

Following the same procedure as used in the three-dimensional case, we may show1086 ∫ ∞
1

κm+9
r E|vε(x, k)|2dκr .

2∑
i=1

∫ ∞
1

E|ĨIi(x, k, ε)|2dκr <∞ ∀x ∈ U,1087

1088

which completes the proof.1089

5.3. The analysis of residual. Taking out u1 and u2, we define the residual1090

in the Born series1091

b(x, k) :=

∞∑
n=3

un(x, k),1092

which has no contribution to the reconstruction formula as shown in the following1093

theorem.1094

Theorem 5.4. Let assumptions in Theorem 5.3 hold and in addition m > 6
5d−11095

if σ > 0. Then for any x ∈ U , it holds1096

lim
k→∞

κm+14−2d
r |b(x, k)|2 = 0 P-a.s.1097

Proof. Following the similar estimate in (4.8) with N = 2, we have1098

‖b(·, k)‖L∞(U) ≤
∞∑
n=3

‖Knku0(·, k)‖L∞(U) . k3s+ d
2−

25−6χσ
4 + ε

41099

. κ
6s+d− 25−6χσ

2 + ε
2

r P-a.s.11001101

for any s ∈ (d−m2 , 3−χσ
2 ), κr ≥ Ck0

and ε > 0, where Ck0
= <[κ(k0)] is the a constant1102

depending on k0 given in Lemma 4.3. Hence, we obtain by choosing s = d−m
2 + ε that1103

κm+14−2d
r |b(x, k)|2 . κ6d−5m−11+6χσ+13ε

r → 0 P-a.s.(5.13)11041105

as k →∞ under the condition m ∈ (d− 1, d] for σ = 0 or m ∈ ( 6
5d− 1, d] for σ > 0,1106

which completes the proof.1107
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5.4. The proof of Theorem 1.2. Considering the Born series of the scattered1108

field1109

us(x, k) = u1(x, k) + u2(x, k) + b(x, k)1110

for k ≥ k0 with k0 being given in Lemma 4.3, we obtain1111

1

K

∫ 2K

K

κm+14−2d
r E|us(x, k)|2dκr1112

=
1

K

∫ 2K

K

κm+14−2d
r E|u1(x, k)|2dκr +

1

K

∫ 2K

K

κm+14−2d
r E|u2(x, k)|2dκr1113

+
1

K

∫ 2K

K

κm+14−2d
r E|b(x, k)|2dκr1114

+ 2<

[
1

K

∫ 2K

K

κm+14−2d
r E

[
u1(x, k)u2(x, k)

]
dκr

]
1115

+ 2<

[
1

K

∫ 2K

K

κm+14−2d
r E

[
u1(x, k)b(x, k)

]
dκr

]
1116

+ 2<

[
1

K

∫ 2K

K

κm+14−2d
r E

[
u2(x, k)b(x, k)

]
dκr

]
1117

=: I1 + I2 + I3 + I4 + I5 + I6,11181119

where I4 . I
1
2
1 I

1
2
2 , I5 . I

1
2
1 I

1
2
3 , and I6 . I

1
2
2 I

1
2
3 .1120

According to Theorems 5.2, 5.3, and 5.4, it is clear to note1121

lim
K→∞

I1 = Td(x), lim
K→∞

Ij = 0, j = 2, 3,1122
1123

which lead to1124

lim
K→∞

1

K

∫ 2K

K

κm+14−2d
r E|us(x, k)|2dκr = Td(x)1125

and completes the proof of (1.3).1126

If σ = 0, then κ = κr = k
1
2 . The expectation in the above estimates can be1127

removed due to Theorem 5.2. We then get1128

Td(x) = lim
K→∞

1

K

∫ 2K

K

κm+14−2d|us(x, k)|2dκ1129

= lim
K→∞

1

K

∫ 4K2

K2

k
m+14−2d

2 |us(x, k)|2 1

2
k−

1
2 dk1130

= lim
K→∞

1

2K

∫ 4K2

K2

k
m+13

2 −d|us(x, k)|2dk P-a.s.,1131
1132

which completes the proof of (1.4).1133

The uniqueness for the recovery of the strength µ from {Td(x)}x∈U can be proved1134

by following the same argument in [16, Theorem 1] or [21, Theorem 4.4].1135

Corollary 5.5. The expression in (1.3) can be interchangeably substituted with1136

lim
K→∞

1

K

∫ K

1

κm+14−2d
r E|us(x, k)|2dκr = Td(x), x ∈ U.(5.14)1137
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1138

In particular, for the lossless case where σ = 0, (1.4) can also be replaced by1139

lim
K→∞

1

2K

∫ K2

1

k
m+13

2 −d|us(x, k)|2dk = Td(x) P-a.s.(5.15)1140
1141

Proof. Based on the notation us = u1 + u2 + b, we only need to study the limits1142

for u1, u2, and b, respectively.1143

For u1, we denote f(x, κr) := κm+14−2d
r E|u1(x, k)|2 for simplicity. To demonstrate1144

lim
K→∞

1

K

∫ K

1

f(x, κr)dκr = Td(x),(5.16)1145
1146

we equivalently need to prove that for any x ∈ U and ε > 0, there exists some1147

K∗ = K∗(x, ε) > 0 such that for any K > K0, it holds1148 ∣∣∣∣∣ 1

K

∫ K

1

f(x, κr)dκr − Td(x)

∣∣∣∣∣ < ε.1149

Indeed, according to (5.10), there exists K0 = K0(x, ε) > 1 such that for any κr > K0,1150

it holds1151

|f(x, κr)− Td(x)| < ε

2
.1152

Moreover, for any fixed x, f(x, κr) is uniformly bounded for κr ∈ [1,K0] according to1153

(5.3) and (5.7). Hence, denoting C = C(x,K0) := supκr∈[1,K0] f(x, κr) + Td(x) such1154

that1155

|f(x, κr)− Td(x)| ≤ C ∀κr ∈ [1,K0]1156

and choosing K∗ = C(K0 − 1) 2
ε > 0, we deduce that for any K > max{K,K0}:1157 ∣∣∣∣∣ 1

K

∫ K

1

f(x, κr)dκr − Td(x)

∣∣∣∣∣1158

≤ 1

K

∫ K0

1

|f(x, κr)− Td(x)|dκr +
1

K

∫ K

K0

|f(x, κr)− Td(x)|dκr1159

≤ (K0 − 1)C

K
+
K −K0

K

ε

2
<
ε

2
+
ε

2
= ε,1160

1161

which completes the proof of (5.16).1162

For u2, it is true that1163

lim
K→∞

1

K

∫ K

1

κm+14−2d
r |u2(x, k)|2dκr = 0 P-a.s.,1164

and its proof is identical to that of Theorem 5.3. This can be seen by observing that1165

1

K

∫ K

1

κm+14−2d
r |u2(x, k)|2dκr ≤

∫ ∞
1

min
{

1,
κr

K

}
κm+14−2d

r |u2(x, k)|2dκr P-a.s.1166

For term b, its estimate (5.13) implies that1167

lim
K→∞

1

K

∫ K

1

κm+14−2d
r |b(x, k)|2dκr = 0 P-a.s.1168

We can then deduce (5.14). If, in particular, σ = 0, (5.15) can be obtained using1169

the procedure employed in Theorem 5.2, along with the result (5.14).1170
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6. Conclusion. In this paper, we have studied the random potential scattering1171

for biharmonic waves in lossy media. The unique continuation principle is proved1172

for the biharmonic wave equation with rough potentials. Based on the equivalent1173

Lippmann–Schwinger integral equation, the well-posedness is established for the direct1174

scattering problem in the distribution sense. The uniqueness is attained for the inverse1175

scattering problem. Particularly, we show that the correlation strength of the random1176

potential is uniquely determined by the high frequency limit of the second moment of1177

the scattered wave field averaged over the frequency band. Moreover, we demonstrate1178

that the expectation can be removed and the data of only a single realization is needed1179

almost surely to ensure the uniqueness of the inverse problem when the medium is1180

lossless.1181

Finally, we point out some important future directions along the line of this1182

research. In this work, the convergence of the Born series is crucial for the inverse1183

problem. However, this approach is not applicable to the inverse random medium1184

scattering problems, since the Born series for the medium scattering problem does not1185

converge any more in the high frequency regime. It is unclear whether the correlation1186

strength of the random medium can be uniquely determined by some statistics of the1187

wave field. Other interesting problems include the inverse random source or potential1188

problems for the wave equations with higher order differential operators, such as the1189

stochastic polyharmonic wave equation.1190
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