INVERSE SCATTERING FOR THE BIHARMONIC WAVE
EQUATION WITH A RANDOM POTENTIAL*

PEIJUN LIt AND XU WANGH#

Abstract. We consider the inverse random potential scattering problem for the two- and three-
dimensional biharmonic wave equation in lossy media. The potential is assumed to be a microlocally
isotropic Gaussian rough field. The main contributions of the work are twofold. First, the unique
continuation principle is proved for the fourth order biharmonic wave equation with rough potentials
and the well-posedness of the direct scattering problem is established in the distribution sense.
Second, the correlation strength of the random potential is shown to be uniquely determined by the
high frequency limit of the second moment of the backscattering data averaged over the frequency
band. Moreover, we demonstrate that the expectation in the data can be removed and the data of
a single realization is sufficient for the uniqueness of the inverse problem with probability one when
the medium is lossless.
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1. Introduction. Scattering problems arise from the interaction between waves
and media. They play a fundamental role in many scientific areas such as medical
imaging, exploration geophysics, and remote sensing. Driven by significant applica-
tions, scattering problems have been extensively studied by many researchers, espe-
cially for acoustic and electromagnetic waves [8,24]. Recently, scattering problems for
biharmonic waves have attracted much attention due to their important applications
in thin plate elasticity, which include offshore runway design [31], seismic cloaks [9,28],
and platonic crystals [23]. Compared with the second order acoustic and electromag-
netic wave equations, many direct and inverse scattering problems remain unsolved
for the fourth order biharmonic wave equation [10,27].

In this paper, we consider the biharmonic wave equation with a random potential

(1.1) A%y — (K* +iok)u + pu = =5, in R%,

where d = 2 or 3, kK > 0 is the wavenumber, o > 0 is the damping coefficient, and
8y(z) == 6(z — y) denotes the point source located at y € R? with § being the Dirac
delta distribution. The term pu describes physically an external linear load added to
the system and represents a multiplicative noise from the point of view of stochastic
partial differential equations. Denote by x = (k) the complex-valued wavenumber
which is given by

k* =k +ick.

Let &, := R(k) > 0 and k; := (k) > 0, where R(-) and J(-) denote the real and
imaginary parts of a complex number, respectively. As an outgoing wave condition
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2 P. LI AND X. WANG

for the fourth order equation, the Sommerfeld radiation condition is imposed to both
the wave field v and its Laplacian Au:

(1.2) Tlggo rie (Oru — iku) = 0, Tlggo ri (0rAu —ikAu) =0, r=|z|
We refer to [30] for the radiation condition in the lossless case with ¢ = 0. In the
case where o > 0, the radiation condition can be derived using the classical procedure
(cf. [7, Theorem 3.2]) by utilizing the exponential decay property of the fundamental
solution described in (2.2).

The potential p is assumed to be a Gaussian random field defined in a complete
probability space (€, F,P), where P is the probability measure. More precisely, p is
required to satisfy the following assumption (cf. [16]).

ASsSUMPTION 1.1. Let the potential p be a real-valued centered microlocally iso-
tropic Gaussian random field of order m € (d — 1,d] in a bounded domain D C R,
i.e., the covariance operator Q, of p is a classical pseudo-differential operator with the
principal symbol p(x)|E|~™, where p is the correlation strength of p and is a function
that is compactly supported in D satisfying p € C§°(D) and p > 0.

Apparently, the regularity of the microlocally isotropic Gaussian random potential
depends on the order m. It has been proved in [21, Lemma 2.6] that the potential is
relatively regular and satisfies p € C**(D) with o € (0, 25%) if m € (d,d + 2); the
potential is rough and satisfies p € W ~&P(D) with e > 0 and p > 1 if m < d.
This work focuses on the rough case, i.e., m < d.

Given the rough potential p, the direct scattering problem is to study the well-
posedness and examine the regularity of the solution to (1.1)—(1.2); the inverse scat-
tering problem is to determine the correlation strength u of the random potential p
from some statistics of the wave field u satisfying (1.1)—(1.2). Both the direct and
inverse scattering problems pose challenges due to the rough nature of the random po-
tential p. Specifically, the equation (1.1) should be studied in the distribution sense,
treating p as a distribution. In this context, it is more reasonable to focus on the
statistics of p, such as its covariance or correlation strength, rather than attempting
to directly reconstruct p itself. The unique continuation principle is crucial for the
well-posedenss of the direct scattering problem, which is nontrivial for the biharmonic
wave equation with a rough potential. Moreover, the inverse scattering problem is
nonlinear.

The inverse scattering problems for random potentials with potential p that satisfy
Assumption 1.1 were investigated in [5, 16-19] for second-order wave equations. The
approach for two-dimensional problems involves utilizing point source illumination
and near-field data, while the three-dimensional problems require plane wave incidence
and far-field pattern analysis due to the distinct configurations in each dimension.
For the Schrédinger equation, the unique continuation principle was extended in [16]
from the integrable potential p € LP(D) with p € (1,00] (cf. [12,13,25]) to the rough
potential p € W%P(D), i.e., m = d. The uniqueness was also established for the two-
dimensional inverse problem with m € [d,d + 1). It was shown that the strength u of
the random potential p can be uniquely determined by a single realization of the near-
field data almost surely. The corresponding three-dimensional inverse problem with
m = d was studied in [5] by using the far-field pattern of the scattered field. In [19],
the authors considered a generalized setting for the three-dimensional Schrédinger
equation, where both the potential and source are random. The uniqueness was
obtained to determine the strength of the potential and source simultaneously based
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INVERSE SCATTERING FOR THE BIHARMONIC WAVE EQUATION 3

on far-field patterns. Recently, the unique continuation principle was proved in [20]
for the second order elliptic operators with rougher potentials or medium parameters
of order m € (d—1,d]. In [17], the rough model was taken to study the inverse random
potential problem for the two-dimensional elastic wave equation. It was shown that
the correlation strength of the random potential is uniquely determined by the near-
field data under the assumption m € (d — %,d]. For the three-dimensional elastic
wave equation, due to the lack of decay property of the fundamental solution with
respect to the frequency, the far-field data was utilized in [18] to uniquely determine
the strength of the random potential under the condition m € (d — %, d.

In the deterministic setting, the unique continuation principle was investigated
in [4] and [26] for the general higher order linear elliptic operators with a weak van-
ishing assumption and for the biharmonic operator with a nonlinear coefficient satis-
fying a Lipschitz-type condition, respectively. In [15], the authors studied the inverse
boundary value problem of determining a first order perturbation for the polyhar-
monic operator (—A)™ n > 2 by using the Cauchy data. It was shown in [14] that
the first order perturbation of the biharmonic operator in a bounded domain can be
uniquely determined from the knowledge of the Dirichlet-to-Neumann map given on
a part of the boundary. We refer to [11,29,30,32] and references therein for related
direct and inverse scattering problems of the biharmonic operators with regular poten-
tials. To the best of our knowledge, the unique continuation principle is not available
for the biharmonic wave equation with rough potentials.

This paper is concerned with the direct and inverse random potential scattering
problems for the two- and three-dimensional biharmonic wave equation. As previously
mentioned, the configurations for the inverse scattering problems involving second-
order wave equations differ in two and three dimensions. Nevertheless, due to the
high regularity of the fundamental solution, a unified approach can be employed to
tackle the inverse scattering problems associated with the biharmonic wave equation
in both two and three dimensions. This can be achieved by utilizing the point source
illumination and near-field data. The work contains two main contributions. First,
the unique continuation principle is proved for the biharmonic wave equation with
a rough potential and the well-posedness is established in the distribution sense for
the direct scattering problem. Second, the uniqueness is established for the inverse
scattering problem. Denote by u(x,y, k) the solution of (1.1). The scattered wave,
denoted by u?, satisfies u®(z,y, k) = u(z,y, k) —P(x,y, k), where ® is the fundamental
solution given in (2.2). We show that the correlation strength of the random potential
can be uniquely determined by the high frequency limit of the second moment of
the backscattering data, denoted as u®(x,k) := u®(x,x,k), which is averaged over
the frequency band (K,2K) as K — oo. It is noteworthy that the scattered wave
u®(x,y, k) does not exhibit any singularity when y = z, and the backscattering data
u®(z,x, k) holds significant importance in practical measurement scenarios. In the
case of a lossless medium, where the damping coefficient o = 0, we establish that the
expectation in the data can be eliminated. Moreover, we show that the uniqueness
of the inverse problem can be guaranteed with a probability of one by utilizing the
data from a single realization. Our main result for the inverse scattering problem is
summarized as follows.

THEOREM 1.2. Let p be a random potential satisfying Assumption 1.1 and U C R?
be a bounded and conver domain having a positive distance to the support D of the
strength . Assume in addition that m > gdfl ifo > 0. For anyx € U, the scattered
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4 P. LI AND X. WANG

field u® satisfies

1 2K
(1.3) Jim o [ R )P, = Tala),
where
T, = 1 L d
a(7) = 8imi(d=2) [ |z — Z|2(d—1)“(2) z

and E|u®(z, k)|? is known as the second moment of u®(z, k). In addition, in the case
of a lossless medium where o = 0, it holds that

. 1 4K? mE13 _ g 9
(1.4) Klgnooﬁ - k™= |u®(z, k)|*dk = Ty(z) P-a.s.

Moreover, the strength p of the random potential p can be uniquely determined by
{Ta()}zeuv

Hereafter, we use the notation “P-a.s.” to indicate that the formula holds with
probability one. The notation a < b stands for a < Cb, where C' is a positive constant
and may change from line to line in the proofs.

Note that the additional restrictions of m > % for d = 2 and m > 1?4 ford =3
in the case of a lossless medium (i.e., o = 0), as stated in our previous works [17,
Theorem 1.2] and [18, Theorem 1.2] respectively, can be removed for the biharmonic
wave equation. It is important to mention that the range of the order m € (d — 1, d]
specified in our current result for the inverse scattering problem with ¢ = 0 is optimal.
This means that it coincides with the range of m required in the unique continuation
principle to ensure the well-posedness of the direct scattering problem.

The rest of the paper is organized as follows. Section 2 introduces the fundamental
solution to the biharmonic wave equation. Section 3 presents the unique continuation
principle for the biharmonic wave equation with rough potentials. Based on the
Lippmann—Schwinger integral equation, the well-posedness for the direct scattering
problem is addressed in section 4. Section 5 is dedicated to the uniqueness of the
inverse scattering problem. The paper is concluded with some general remarks in
section 6.

2. Preliminaries. In this section, we introduce the fundamental solution to the
two- and three-dimensional biharmonic wave equation and examine some important
properties of the integral operators defined by the fundamental solution.

2.1. The fundamental solution. Recalling x* = k% + ick, we have from a
straightforward calculation that

K+ o2k2\ T (VE T o2k 4 k2 7]

e =R(k) = [ —— ) + :
16 8

B o2\ T (VTR 4 k2 7]
m=S =" ) - g

It is clear to note that

[

1 VEkt 4+ 02k2 — k2

kQK/- =
' 8(k4+02k2)i+8(\/m+k2)%
163 8kZ
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INVERSE SCATTERING FOR THE BIHARMONIC WAVE EQUATION 5

where . )
. 4 21.2 _ 1.2 — 1 o’k :i
Jim (VI = 12) = lim s = 5
Hence we get

(2.1) lim 25 =1, lim kig = %,

k—oo k2 k—o0
which implies for sufficiently large k that the following quantities are equivalent:
K| ~ fiy ~ k2.

Let ®(z,y, k) be the fundamental solution to the biharmonic wave equation, i.e.,
it satisfies

Azq)(ma Y, k) - I€4(I)(SC, Y, k) = _6($ - y)

It follows from the identity A% —k* = (A +~x?)(A —k?) that ® is a linear combination
of the fundamental solutions to the Helmholtz operator A + x? and the modified
Helmholtz operator A — x2 (cf. [29,30]):

d—2
i £\ (.0 2i
®(z,y, k) -y (27T|50—y|> (H%Q(m|x—y|)+7TKd;2(/<a|x—y|) ;

where H,(,l) and K, are the Hankel function of the first kind and the Macdonald
function with order v € R, respectively. Noting

K,(z)= gi”"’lHl(,l)(iz), —m < argz < g
and _
2 elz
g - ]2
3 (2) Tz i’
we have
i 1 1.
~ gz o (sle —y)) — B (inlz —y))).  d=2,
_ 1K |T— _ —K|T— d — 3.
82|z — y (e € )’

The following lemma gives the regularity of ® and its dependence on the wavenum-
ber k.

LEMMA 2.1. Let G C R be any bounded domain with a strong local Lipschitz
boundary. For any fized y € R, it holds ®(-,y,k) € WY4(G) for any v € [0,1] and
q € (1, %) In particular, for any fired y € D and G having a positive distance from
D, it holds for sufficiently large k that

d—7
||(I)('7y7k)||W’Y:tZ(G) Sk 4 +g

for any v € [0,1] and ¢ > 1.
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6 P. LI AND X. WANG
Proof. Let r* := sup,¢¢ |v — y| for any fixed y € R? and rg := infeq |2 —y| > 0

if y € D. We discuss the two- and three-dimensional problems separately.
First we consider the two-dimensional case, where the fundamental solution takes

the form ®(z,y, k) = — g (HS" (k|2 — y|) + 2 Ko(r]z — y|)) for any fixed y € R.
By [6, Lemmas 2.1 and 2.2], it holds for any z € C that

(2.3) ]Hf,”(z)! < e—%(z)(l_%)i‘Hﬁl)(@”,
(2.4) K, (2)] < ge—wz)(l—%)j O @),

where v € R and © is any real number satisfying 0 < © < |z|. Choosing z = k|z — y|
and © = R(z) = k;|z — y|, we get

/ B(x,y, k)P da <[]~ / B (k| — )P < w2 / B () e
G G 0

rt r*
_H—2p/ |Hél)(/€rr)‘prdr + Iir_2p/ 1 |Hél)(/€rr){prdr,
0 Kr

where the second term is bounded due to the regularity of Hél) (ker) for r € (k71 7*).

For the first term, according to the fact Hél)(ﬁrr) ~ 2 n(k,r) asr — 0 (cf. 2, Section
9.1.8]), it holds

Ky 1
L B )P i [ 1mprdr S5 vp>eso.
0 0

We then get
19(,y, k)|l o) <oo Vp>1,e>0.

Moreover, noting

— Y Ty —Yi

0, HSY (klz — y|) = wH <n|x—y|>| —i —an”(fzIx—yl)| —
17T . . )
Ou Ko (k] — ) = -0, HGV (il — y) = =ik (sl — y)) T . ;

for i = 1,2 and using H( )( )~ i L asr — 0 (cf. [2, Section 9.1.9]), following the
same procedure we obtaln for any p’ € (1,2) that

! ’ ;D, ’ l
[ 1000 do <l [ [H00fe— )| de S v / [ () [[ v
G G

, n:l 1 r*
<k P / ———rdr + K, d /
0 (Hrr) ry !

||(I)('7Zl/,k)||wl,p/(a) < 0 Vp, c (172)

1)

p/
(nrr)‘ rdr < oo,

which shows

and hence ®(-,y, k) € Wh?'(Q).

This manuscript is for review purposes only.
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237 The interpolation [LP(G), WL (GQ)], = WT4(G) with v € [0,1] and ¢ satisfying
238 % = 1_77 + 2 (cf. [3, Theorem 6.4.5]) yields ®(-,y, k) € W74(G) for any 7 € [0,1] and
230 g e (1, 2).

240 In particular, if y € D and k is sufficiently large, then rg := inf,cq |z —y| > 0 and

241 the Hankel function has the following asymptotic expansion (cf. [2, Section 9.2.3]):

2

1

2
) ei(nr\ac—y|—%u7r—i7r)
ﬂﬂr|x - y|

21 HD (il — yl) ~ (

243 for v € R. Following from the interpolation between L(G) and W4(G) provided
244 that G is bounded with a strong local Lipschitz boundary (cf. [1, Section 7.69]), we
245 have

*

v [ 1@l do el [ [H sl = o)l S 5
G G T0

_5q
rdr < ke 20,

a

247 (krr)2
248

q - (1) q o1 _34
v [ fn (a0l do S 16l [ |H (ke - y)|"do 7 crdr S ki
250 G G ro (Ker)2
251 which leads to

_s
353 (25) 1RC g W)llwaaiey Sme T SETETR
254 for any v € [0,1] and ¢ > 1.
255 Next we examine the three-dimensional problem, where
256 O(z,y,k) = _; (eiﬁ\z—yl _ e—nlm—yl) )
e 8mr2|x — y|
257 The estimates are similar to the two-dimensional case.
258 For any y € R3, it holds
r* |einr _ efm"|q %

259 6ol S 1l ([ Par) <o v
260 0 rd

261 by utilizing the fact that [e!"" — e=""| < xr for sufficiently small 7. The derivatives of
262 O satisfy

263 / 10,,8(z, , k)| %dz
G
Ti —Yi i . /
264 :/ 3 [e““zfyl(m\x —yl = 1)+ e TV (klz —y| + 1)} dx
G | 8Tk |z —y|
T ik (; -1 —KT 1)]e
265 < |Ii|_2q/ e (inr )—1—26 (pr + 1) r?dr <oo Yg>1,
266 U
267 which implies ®(-,y, k) € WY4(G) for any v € [0,1] and ¢ > 1.
268 In particular, for y € D, a straightforward calculation gives
* . 1
T eIkt _ kTG q
269 1®C,y, k)llLae) S ’€|_2</ |Tq7"2d7“)
To
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* 1

r q
< W( / d) < ||
ro

r* q 1
[ 10ntpypras = fu=0 [ 2y g
G T0 r

Hence, for sufficiently large k, it holds

and

||(I)("y7k)||W’Y»Q(G) g |/§|72+’Y 5 k71+%

for any v € [0,1] and ¢ > 1. O

2.2. Integral operators. Define the integral operators
He@)(): = [ Bz RoC)dz,
Ku(@)() = Halpo)() = [ B2 ko)),
where ® is the fundamental solution given in (2.2) and p is the random potential

satisfying Assumption 1.1.

LEMMA 2.2. Let B and G be two bounded domains in R%, and G has a strong
local Lipschitz boundary. Assume that the wave number k is sufficiently large.
(i) The operator Hy : H=*1(B) — H®*(G) is bounded and satisfies

s— (3 Xo)

|l o1 (B),mo2(c)) Sk

for s : =81+ 59 € (0,3 — x,) with s1,82 > 0 and

o 0, o=0,
Xo = 1, o>0.
(i) The operator Hy : H=*(B) — L*°(G) is bounded and satisfies

2s4d—2(3—xo)+te
[Hkll o+ B).L= @) S k 1
for any s € (0,3 — Xa) and € > 0.
(iii) The opemtor Hk W-rP(B) - W q(G) 18 compact for any 1 < p<2<yq
satzsfymg —|— L —1 and 0 < v < min{3=x ke 3= ke 4 ( — 3)d}.

Proof. (i) Slnce the case o = 0 is discussed in [22, Lemma 3.1}, we only show the
proof for the case o > 0 where x; > 0. For any two smooth test functions ¢ € C§°(B)
and ¢ € C§°(G), we consider

(Hi(@),0) = / |£|4 O

_ L+ T\ T
(20 - T AT e

where (ﬁ and 1[1 are the Fourier transform of ¢ and v, respectively, and J~° stands
for the Bessel potential of order —s and is defined by (cf. [20])

T =F A+ P)75f)

This manuscript is for review purposes only.
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303 with F~! denoting the inverse Fourier transform.
304 The integral domain R? of (2.6) can be split into two parts

300 Q= {g ER?: ||€] — ri| > %} Q= {g ERY: ||E] — ri| < %}

307 such that (2.6) turns to be

. _ (1+ |§|2)§ 31 82
a0 (1 + |§|2)§ —S1 —S82
" T P AT o

319 =:A; + As.

312 The term A can be estimated following a similar procedure as in [22, Lemma 3.1].
313 In fact, we get for s < 3 that

) (14 )3
314 Al < 82
S 1'—/91 TR e e ] |7 HOT (o) de
_ 2 (1+ )}
315 <— j S1 —89
l e sz oty TEF T2~ G T |7 AOT 0108
1
%j_) 547/#_3H‘P||H*51(B)||¢||H*S2(G)

318 using the fact that x; < 1 < k, for sufficiently large k according to (2.1). For As,
319  since the term \5\“%#‘ is not singular for k; > 0, one can easily get

(1+ s O 7
. |A2|§/§22|§|2+/€?'112|(|§|+m)n THOT )| e

1
S—=— e \90||H71 Byl a-s2(c)-

r

W W
N N
N =

323 As a result, using (2.1), we get

3 52
324 [(He (@), V)| S 63726 Il =1 () 1N =s2 (@) S ° 7 110l =1 () 10 ] =52 ()

325 with s < 2, which completes the proof by extending the above result to ¢ € H*(B)
326 and ¢ € H % (G).
327 (ii) For any ¢ € C§°(B), we still denote by ¢ its zero extension outside of B. It
328 follows from the Plancherel theorem that
329 Hi(P)(z) = / O(z,2,k)p(z)dz

R4
v - / (1+[€2)5B(x, €, k)T d(€)de,

R4

2s4d+te
+ § i —ix- —dte

331 = —/ %\7—%(5)(6 S(L+ )™ )de,
332 Rd [3
333 where -

~ —e iz
334 (&, k) == F[O(z, - k)|(§) = [ =t

This manuscript is for review purposes only.
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10 P. LI AND X. WANG

is the Fourier transform of ®(x,y, k) with respect to y. Comparing the above integral
with (2.6) and replacing J—52¢)(¢) by g(£) := e ¢(1 + |§|2)_%, we obtain

2stdte (3 y,) 254+d—2(3—xo)+te

My (@)(@)| Sk = [6ll-2m) S K i 1011z~

which can also be extended to ¢ € H~*(B). We mention that g € H'(R?) is utilized
in the above estimate, which is required in the estimate of (2.6) (see e.g., [17,20]).

(iii) The compactness of Hj, can be obtained from the boundedness shown in (i)
and the Sobolev embedding theorem. In fact, according to the Kondrachov embedding
theorem, the embeddings

WP (B) — H™* (B),
H*(G) = W(G)

are continuous under conditions 1 < p < 2 < g,

1 1 s1— 7

<s1, 5> - — ,
T 2 p d

1 89 — Y

<sg, = > o — ;
TS q 2 d

and s; + s2 € (0,3 — x,). It is easy to check that the above conditions are satisfied if

1 1 _
5+g—1and
. 51+52 51+52 1 1
0 m d(=-=
=0 m{ 2 2 (q 2>}

which completes the proof of (iii) due to s1 + s2 < 3 — X4- ]

The estimates for the operator Ky, can be obtained from the estimates of Hj given
in Lemma 2.2 and the relation Kr(¢) = Hi(p).

LEMMA 2.3. Let G C R? be a bounded domain with a strong local Lipschitz bound-
ary and the random potential p satisfy Assumption 1.1. Assume that the wave number
k is sufficiently large.

(i) The operator K : WY1(G) — WTU(QG) is compact for any q € (2,A) and

v (e g (L d)d) with
00 if 2d—m—(3—x,) <0,
A= 2d
20— m— (- xy)

if 2d—m—(3—x,) >0,

and satisfies

Kkl cowaqay S KITED55E s,

(i) The following estimates hold:

3=Xa

Ikl 2(rs () Sk 2

for any s € (452, 3_%) and

Ikl ccrrs @y, (ay) Sk a P-a.s.

for any s € (d_Tm,SfXJ) and € > 0.
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Proof, (i) Under Assumption 1.1, it holds that p € W e’ (D) for any € > 0

and p’ > 1 based on [22, Lemma 2.2]. Then for any m € (d—1,d], g € (2, 4) # {) and
v e (GHm, X 4 (* — 2)d) # 0, there exists some p’ > 1 such that the embedding
W = (D) — W1P(D)

is continuous with p := q% > 1. Moreover, for any ¢ € W4(G), we have from [16,
Lemma 2] that p¢ € W"7(D) with 1 + 1 =1 and

(2.7) lpollw—r Dy S lollw =50yl Dllwa(q)-

Hence

1Kk (D) lwraiay S I Hellcow v 0y, wrv el pdllw-+rpy  P-a.s.,

which implies the compactness of Ky due to the compactness of Hj, proved in Lemma
2.2
To estimate the operator norm, we choose s = v+ (% — %)d such that the embed-
dings
H*(G) = WY(G)

(28) W9(D) <> H-*(D)

hold with p < 2 and ¢ > 2 satisfying zl) + é = 1. The result is obtained by noting
IKk(D)lwa(c) S MWKkl 1:(c) S 1 Hill e+ (), 12 18] -+ (D)

S W Hellzca— oy, me @)l PP llw v (D)

3><o

S KOO gl o)

(ii) For any ¢ € H*(G) with s > 45™ there exist v € (5™, s) and ¢ € (2, A)
satisfying % > % — 2= such that the embeddmgs (2.8) hold. It follows from Lemma
2.2 and (2.7) that we have

1Kk e ey S Hkllcca—= ),z )P0l -2 (D)
S Hell o0y, me () | P@llw =2 (D)

2s—(8—xo) 3— Xo‘

(2.9) S E=F 2 ol o) [llwa(ey S B F 6le) P-as.

with s € (452, 372X"), and

2s4d— 2<3 Xo)te

1Kk (D)= (ay SWHEN 2Dy, @) Il -+ (D) S * 6lls(c) P-a.s.

with s € (45,3 — ) and € > 0. O

3. The unique continuation. This section is to investigate the unique continu-
ation principle, which is essential for the uniqueness of the solution to the biharmonic
wave scattering problem with a random potential. We refer to [16,20] for the unique
continuation of the solutions to the stochastic acoustic and elastic wave equations.

This manuscript is for review purposes only.



12 P. LI AND X. WANG

105 THEOREM 3.1. Let p satisfy Assumption 1.1, q € (2, %) and~y € (dme, %—i—
406 (% — %)g) If u € WY9(RY) is compactly supported in R? and is a distributional
407 solution to the homogeneous biharmonic wave equation

408 APy — k*u+ pu =0,

409 then u =0 in RY.

410 Proof. We consider an auxiliary function v(z) := e~ ""%u(x), where the complex
411 vector 7 is defined by

(wt,nd)T, d=2,
= (wt, O,nd)T, d=3,

413  where t > 1,

" (\/k4 +02k? + k2>i
= 5 ,

415 and ng = n; + infi with the real and imaginary parts being given by

1

. Vw2 —1)2 +wt — k2 —w?(t?2 - 1) ?

416 ny = ,
2

. Vi —1)2 +wl — k2 +w?(t2 - 1)\ 2

417 Ng = )
418 2

119 respectively. It is clear to note -7 = k? = w? +i(w* — kQ)%. Moreover, a simple
120 calculation shows that

, : oy
1, .1 r = 1 = .
132 (3.1) th—¥<1>1<> M =0, iheo ¢

123 Then v is also compactly supported in R? and satisfies

424 A2y + 4in - VAv — 4n " (V20)n — 2(n - n)Av — 4i(n - n)(n - Vo) = —po.
425 Taking the Fourier transform of the above equation yields

136 (3.2) v = —Gy(pv),

428 where G, is defined by

(¢ — -1 f(f)
o GNE)=7 Lw TAERE 6 a0y E7 1 2 mIEE F a8
431 Using the Plancherel theorem, we have from a straightforward calculation that
E A £(©)4(8)
W Gl =@t = [ T AER(m - O 1 A0y €2 + 2P T a2 E)
" _ F(©)a(§) p

v / (EF+ 27 €+ 262) (€2 T 27-6)

N 1 f©a© ., £(©)a()

e (33) = o [/R €fran e ® /R P2y ¢ o)

This manuscript is for review purposes only.
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It suffices to show v = 0 in order to show u = 0. The proof consists of two steps.

The first step is to estimate the operator G, in Hilbert spaces. Let G C R? be
a bounded domain with a strong local Lipschitz boundary containing the compact
supports of both p and u. For s € (0, %), we have the following estimate:

1
(3.4) Gl 2o+ (@),m(60) S 5=zsgi=2s-

The proof of this inequality is postponed to the subsequent lemma for the sake of
brevity.

The second step is to estimate the operator G, in Sobolev spaces and show v =0
in R?. To extend the estimate of G, from Hilbert spaces to Sobolev spaces, we claim
that G, : L"(G) — L™ (G) is bounded and satisfies

(3.5) 1Gull 2L c),n (a)) S 1

for some proper r and r’. In fact, it follows from the decomposition of the operator
Gy given in (3.3) that we may rewrite it as

1
gn = ﬁ (g'r],l - gn,?) ’
where
f
€12 + 21 - € + 2K2

f
€2 +2n-¢

Next we consider the cases d = 3 and d = 2, separately.
For d = 3, the claim (3.5) holds under the conditions

1 1 < 1

r 2 2d’

since operators G, ;, ¢ = 1,2, are both bounded from L"(G) to L (G) according
to [13, Theorem 2.2] and [16, Proposition 2]. To deduce the estimate for G, between

the dual Sobolev spaces W~7?(G) and W?9(G) with % + % = 1, we consider the
interpolation of (3.4) and (3.5). Noting

[L7(G), H*(G)]g = WP(G),
[L7(G), H*(G)]g = WY(G)

Goa(f) (@) == F (2), Gpa(f)(@):=F" (z).
i) |

1 1
r o2

)

and choosing § = 1+ (% — %)d €(0,1) and r = % such that 7 = fs < % + (% - %)%’
%:1%04_%&1&(1%: 1; —|—g,weobtain

1
(3.6) Gl e —r (@, w60 S —E=smara—zse-

As is proved in [16, Lemma 2], pv € W~7P(G) for any v € W"(G), where 7 is

required to satisfy v < % +( l)4. Hence an additional restriction on ¢ is also

1_

q 2/2
required due to v > d_Tm, ie., qg< %. Consequently, (3.2) leads to
1

94(1—25)0 [ollwa(e)

[vllwaay < N1Gnllcqw-r(ay,wra@yllovliw-vr@) S REEH)

This manuscript is for review purposes only.
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(0, 1), which implies v = 0 by choosing ¢ > 1.

For d = 2, it is shown in [16, Proposition 2] that (3.5) holds for any » > 1.
Similarly, (3.6) can be deduced from the interpolation between (3.4) and (3.5) by

choosing

that v = 0s <

2(14€)—2eq

r = 1+ € with an arbitrary small parameter ¢ > 0 and 6 = a0=9

(14-€)—eq

1 1

such

ai—0 Following the same procedure as the three-dimensional case

and letting ¢ — 0, we get v = 0 under the restrictions v < % = % + (s — f)g and

_2
2—m

q <

q 2
_ 2d
— 3d-2m-2"

d

LEMMA 3.2. Let the assumptions given in Theorem 3.1 hold and G C R? be a
bounded domain with a strong local Lipschitz boundary containing the compact sup-
ports of both p and u. Then for s € (0, %), the operator G, defined in Theorem 5.1

satisfies

1
1ol e+ G),1:00) S 3=3ag1=2s-

Proof. We denote (3.3) by

(G0,9) = 5,5 [A—B].

For any f,g € C§°(G), we denote their zero extensions outside of G still by f,g for

simplicity. Denote £~ 1= (£1,-++ ,&;-1)T € R and ¢~

with €77 =0 if d = 2. Then A can be rewritten as

where in the last step we used the transformation of variables (£; + wt, &, - -

772)T = (517"' agd)—r and f(fla 76] — Q-
w?t? 4+ 7?2 and the transformation (& +wt, &o, -+

e 1(©3(€)
R [€]? 4 2wt&y + 2n4€a

_ / F(©)a(€) e
re (€1 wt)? + €772 — w2 + (L +mp)? — (1) + 2imja

-/ (GAGEE "
o (€ = w2 = (1) + 2ini(€a— )

= (o, ,&q—1) " €RI2

Flabl “&a+
,6a) = e_lagjf(f). Using K2 = n-n=
at+my) T e (&1, ,€a) T, we have

5o f(©)3(€) | | e

re (&1 wt)? +[E77[2 + (§a + n3)? + w?t? + (17)* — 2(ny)* + 2iny(€a + 2n3)

-/ feaE "
e [€]7 + w2+ (03)? — 2(ny)? + 2iny(Ea + 15)
It is easy to see that the function
1
€17 = w2t — (1) + 2iny(€a — )
1
6T = w22+ (Ca — ) (Ea + ) + 20y (Ea — 1)

involved in A is singular on the manifold {¢ € R? : |¢7| = wt, & = 75}, and the
function

1
€12 + w22 + (115)2 — 2(n})? + 2in,(Ea + 1))

This manuscript is for review purposes only.
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1
507 = . — -
508 §7 7 + w2 +2(n5)2 — 2(ny)? + (€a — m) (§a + ) + 2iny(Ea + 1)
509 involved in B is singular on the manifold
510 {ecrt i = ot 2 - et 60— i},

511 where 2(n})? — 2(n%)? — w?t? is equivalent to wt as t > 1 according to (3.1).

512 The estimates for 4 and B follow a similar procedure, requiring the decomposition
513 of the integral domain R? into several subdomains based on the singularity of the
514 integrands. In the following, we present a detailed analysis of the estimate for .A. The
515 analysis of B can be carried out in a similar manner and is omitted here for brevity.

516 To estimate A, we define two domains
_ wt _ Jwt _ wt
517 le{§:||§|wt|>2}{£:|§|>2}U{§:|§|<2},
wt wt 3wt
518 Qy = ET| — wt — = T — - —_— .
s vi={elel-al <5} ={e g <1< 3}
520 Based on 7 and 3, A can be split into the following two terms:
(1+1¢)° Ty Y
521 A= . — ~J 2 f (6T #g(§)dg
) o, [EP =2 — (i + (e — )~ )
(1 +1¢2)° T H AT e
522 + / T HOT g(e)de
, €17 — w?t? — () + 2iny(§a — 1)

533 =:1+1I,

525 where s € (0, %) Next is to estimate I and II, respectively.
526 Term I satisfies

/ (1+[¢P)"
2 [(J6]2 — w22 — (115)2)2 + 4(n}))2(Ea — m3)?)
(1 + |€2)*| T~ fIIT 9]

527 I <

1T TIIT gl

528 :/ : ;df
(elel>241) [(J€]2 — w22 — ()2)2 + ()26 — m)?)
28| 7—s f|| T—sg
N - (+IEPIT T,
(ele- < leanil> ) [(1€]2 — w22 = (5)2)2 + A€ — 1)?]
28| 7—s f|| T—sg
- v A+ PIT T
(elel< el <) [(€]2 — w22 — (95)2)2 + A€ — 1)?]

E%i = Il —+ :[2 —+ Ig.

533 By (3.1), we may choose a sufficiently large ¢* such that n < ¢ for all ¢ > ¢*, which
534 leads to

_ 3wt . wt N
535 7—1/w2t2+(nd)2>z, t >t
536 We then get

(1+g*)°

37 I < fs\ j,s\d
1 /{5:s>3;‘} RN D A

This manuscript is for review purposes only.



16 P. LI AND X. WANG

1 1 —_— =
538 . W|j—8f||j—59|d§
Wt Jigpe)>pty 1€
1
539 S = Mflla—=@) gl a2 )
540 (wt)?—2s @ @

541  Note also that 7731 is equivalent to wt as t — oo, which yields

2,2
14wt ey
o onef U 5+ &) 7o T oglae
(ele-1< gt lea—nyl>2ty  2Mgl€a — gl
w5 G2t Jo o O 75 75
{E:le— <t J€a—ny|> %) 2n}1&a — nj]
1 1 —_—
- </ ( n i ) 19 1Tl
(esle— <5t ea—my >y \ (W22 wilg — |12
1
545 < s (@)
o S s -5y lgll -+ ()
547 Moreover, for any £ € {&: [£7| < 4, [€q — ny| < %}, it holds
2 2 2,2
— wt wt N w R .
sis 7 =P+ lea < () + () = S ot + ()

549 Hence, for t > t*,
242 242
w=t w<t
550 Wi 4+ (h)* — €2 > 5wty > =,
551  which gives

1+ 2\s -
552 I g/{ (1+[€[%) |T =5 fIlT 5 g|d¢

ele- <t ea—my <ty €7 — w?t? — (n)?]

1
S WHJIHH*S(G)HQHH*S(G)-

555 We then conclude

1
22(7’ (3.7) 1< WHJE”H*S(G)HQHH*S(Gy
558 To estimate II, we divide it into two parts
(1+1¢)° TR RN e

s 1= [ L T (T g(€)de

Qan{€:]€a—ny >4} €]? — w?t? — (77(1)2 + 2177d(fd - 77d)

(1+1¢)° Ay I
560 + / S TR T gle)de
Qan{efea—nl<ity 1§17 — w2 — (1) + 2iny(§a — n3)

%f;é = 111 —+ 1127
563 where II; can be estimated similarly as I by utilizing the boundedness of |~ |:

1
564 I < — —s ().
i L[ < ()22 Il -9z @)
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It suffices to estimate Il where the
singularity, we denote

17

integrand is singular. To deal with the

1

ne(§) :

e — w2 —

and define the transformation

(n5)? + 2in}y(Ea — nY)

Tlng*:(fl,—gd—i-Q?];), 56923

where

3

A simple calculation yields that |¢'| = 2wt — || and the Jacobian of the transforma-

tion is
og*
23

Jat(€) = ‘det

2wt =2
— (22 .
(IE )

Moreover, it can be verified that the transformation maps the subdomain

'wt

o = {5 <

to the subdomain

Qoo 1= {{:wt< |£7| < 7a|£d_n£l| < }7

and vice versa.

wt

3wt wt

2 2

Based on Q91 and 99, II5 can be subdivided into several parts:

- | (1+ ¢’
S

rn{elea—n <ty [€12 — w2 — ()2 + 2in}(€a — 1))

[ w0+ T T

_ / {nt(g)(l e T )T
Qa2

T~59(¢)

(€% Ja (€)(1+ |£*2>878\f<£*)78\g<£*>} d¢

_ / [6(€) + 16 () Tt ()] (1 + [€

) T ()T *9(€)de

T 1(6)T —g(&)de

+ / n(€)Jaa(€) [(L+1€°2)° — (1 + [6P)°] T F(€)T—a(E)de

———

+ [ w0+ 1Py [T - THO| Tale)de

[ e Ia O+ I P THEN [T (e - T
Qa2

=: a1 + Ilz2 + 123 + Ilog4,

This manuscript is for
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18 P. LI AND X. WANG

592  where we used the fact

s [ om0 +16Pr T T g(6)de
Qo1

594 =/ n(E°)(1 + |§*|2)8j*5\f(5*)7:5\9(5*)d5*

Qo1
s :/7M€m+mWﬂ?¥@WF%qu@M
596 Qa2
597 Noting
598 ny (&) = !
o BT e — w2t — ()2 + 2ini (€5 — )

1
Y e — w2 (&5 — mh) (€5 + ) + 206 — )
) B 1
o TGP — WP+ (€ — ) (€ — ) — 2 (Ea — )
602 we get for d = 2 that
603 ha(&) : = [nu(&) + ne(§7)J2,(§)]
- B 1
oot T ETE = w2 + (&g — ) (Ea+ ) + 21 (€a — ;)
1

T =P & (G — ) (€ — 30%) — 2 (€a — 1)
A€ | — wh)? + 2(6a — 1)
(€] — wt) (€| +wt) + (€ — 1) (Ea +7))? + A(m)2(Eq — 75)?]

606 =

[N

1
607 X 1
608 [((J&=] = wt)(|€~| = Bwt) + (€a — 1) (Ea — 305))% + 4(n})?(Ea — 13)?]
609 which is bounded 1
610 ha(€) S 022 § € Qoo

611 as t > 1 according to the boundedness of £ € 5. Similarly, it holds for d = 3 and
612 t>>1 that

613 h3(§) : = [ne(&) +ne(§7)J3,6(6)]
o €717 — w2t 4 (&a — n) (Ea + 1) + 2in}y(Ea — 1)
615 + 1 - :
1§12 — w2t 4 (&a — m3)(Ea — 3ny) — 2iny(Ea — 1Y)
1
it e

618 The above estimates lead to

1

619 || < eTe)

— 1
/ L+ EP° 1T FONT #9(8)d€ S = 1 f -2 gl -+ (c)-
Qs (wt)

This manuscript is for review purposes only.



INVERSE SCATTERING FOR THE BIHARMONIC WAVE EQUATION 19

620 For 155, we apply the mean value theorem and get for some 6 € (0,1) that

621 |ne(€7)Jae(€) [(1+ 1€717)° — (1 + 1€1%)°]]

622 = [me(€) Jaa(©)s (146161 + (1 - 0)IP)" ™ (€ — 1¢]2)]

623 < [ne(€)Tar© (€717 — 1€P)] (1461717 + (1 - B)[€) "™
s— 1

2:3_1 S(I+0E P+ 1 -0)¢P) 15@’

626 where in the third step we used the following estimate similar to ho(§):
627 [74(67) Jat (€)(IE717 — €]
2wt -2 2 2
(B2 -1) “aerr-1ep)
| = WPt + (&a — my) (€ — 3ny) — 2iny(6a — )

628

(3.8)

d—2
(22— 1) Jawr(e| - wb) + s(ea — )

=
629 = - S 1.
630 (€71 = wt)(|€~| = Bwt) + (Ea — n5) (Ea — 3n5))? + 4(n})?(Ea — 15)?]
631 Therefore

1 —_— —_— 1
632 Mlao| S (@22 /922 |T =5 FONT #g(§)]d€ < WH]EHH*S(G)HQHH*S(G)-

633 Terms Ilp3 and Ilo4 can be estimated similarly by following the procedure used in [20,
634 Theorem 3.2]. In fact, it can be shown that the Bessel potential satisfies

w |TRE) - TR SlE - el [MAVT RN E) + MIVTFE)]

637  where M is the Hardy—Littlewood maximal function defined by

. IS S
638 M(f)(x) = ililg B Jown |f(y)|dy

639 with B(z,r) being the ball of center x and radius r, and satisfies (cf. [20, Theorem
640 3.2])

641 IM(VT =5 D2 ey S N flla-<(c)-
642 The above estimates, together with (3.8), yield
, e (&%) Jae (1€°1* = 1€°)] 2
643 II 5/ : 1+ 677)°
| 23| s |§*|+|£| ( | I )
611 < [MOVT=FNE) + MAVT = FE)|1T9(6)lag
1
45 < —s —s
zjj(j ~ (wt)l_gs ||f||H (G)”g”H (G)
647 and
) apr (1€ = 1€1%)]
648 IT 5/ (&) Ja L+ |€5)®
| 24| s |§*|+|§| ( | | )
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< T FENM(VT gl (€) + M(IVT*g])(¢")|de

1
S W”JI'HH_S(G)”g”H—S(G).

Hence, II satisfies
< 1
(3.9) LB W“f”H*S(G)HQHH*S(Gy

Combining (3.7) and (3.9), we obtain the estimate of .4 and get

1
G f, 9 S mmepiss I/l ll9lla—+(c)

for any f,g € C§°(G). Since C§°(G) is dense in L*(G) and H=*(G) ¢ H 1(GQ) =

LQ(G)”'”HA(@ (cf. [1, Sections 2.30, 3.13]), the above result can be extended to f, g €
H~%(G) with s € (0, 1), which completes the proof. |

Remark 3.3. The unique continuation principle established in Theorem 3.1 holds
for any damping coefficient ¢ > 0. If the medium is lossless with o = 0, the proof can
1
be simplified by letting w = kz and

-
(Kieintver=1) d=2,
T
(k%t,o,ik%\/tQ — 1) . d=3.
We refer to [25] for the unique continuation principle of the Schrédinger equation

without damping. The unique continuation principle will be utilized to show the
uniqueness of the solution to the direct scattering problem when o =0 .

77:

4. The Lippmann—Schwinger equation. In this section, we examine the well-
posedness of the scattering problem (1.1)—(1.2) by studying the equivalent Lippmann—
Schwinger integral equation.

4.1. Well-posedness. Based on the integral operators, the scattering problem
(1.1)=(1.2) can be written formally as the Lippmann—Schwinger equation

(41) U= Kku—‘erdy = Kru+ P,

where the fundamental solution ® is given in (2.2).

THEOREM 4.1. Let p satisfy Assumption 1.1. The Lippmann—Schwinger equation
(4.1) has a unique solution in W' (R?) with q € (2, 572%—) and v € (52,1 +
1_1\d
(3 -hd.

Proof. According to the compactness of the operator Ky proved in Lemma 2.3 and
the Fredholm alternative theorem, it suffices to show that the homogeneous equation

(4.2) u=Kru

has only the trivial solution u = 0.
Assume that u* is a solution to the homogeneous equation (4.2). Then it satisfies
the following equation in the distribution sense:

(4.3) A%u* — k' + pu* =0 in R

This manuscript is for review purposes only.
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Let us consider two auxiliary functions

(4.4) up = fi(Au* — k2u),  up =

52 Au* + s2u®).

2k2 (
It is clear to note that u* = ug + upr and Au* = k% (upr — ug).

Since p is compactly supported in D, there exists a constant R > 0 such that
D C Bpr with Bg being the open ball of radius R centered at zero. It can be verified
that ug and uj; satisfy the homogeneous Helmholtz and modified Helmholtz equation
with the wavenumber k, respectively, in R? \ Bx:

Aug + k2ug =0, Aupy — k2uy = 0.

Hence, ugy and uys admit the following Fourier series expansions for any r = |z| > R:

n_,mzy“NmR> .
(4.5) » it d=2,
KT ~(n) inf
(r,0) 2 K HR)UM (R)e™,
where )
n 1 T i
M (R) = %/ us(R,0)e™™do, Je {H M}

are the Fourier coefficients, and

RT n m
w00 =3 30 ) sy ),
n=0m=—n h (HR .
(4.6) if d=3,

wi(r0.) = ZIijgy“mewm»

n=0m=-—n

where h%l) and k, are the spherical and modified spherical Hankel functions, respec-
tively, satisfying

M) = [5o )L () ka(2) =\ 32Ky (), 2€C,

Y,™ are the spherical harmonics of order n, and the Fourier coefficients u(m "™(R) are
given by

AR = [ R0,V s,

If o > 0, then we have x, = R(k) > 0,k; = S(k) > 0. It follows from (2.3)-
(2.4) and (4.5)—(4.6) that wg,up and thus u*, Au* decay exponentially as r — oo.
Multiplying (4.3) by the complex conjugate of u*, integrating over B,., and applying
Green’s formula, we obtain

/ (JAu*? — k*u*|? + plu*|?) do = /aB (Au*d,u* — u*d,Au*)ds

r

This manuscript is for review purposes only.
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where v is the unit outward normal vector to 0B,.. Taking the imaginary part of the
above equation yields

_3(54)||u*|\%2(,3r) =3 [/ (Au*d,u* — w9, Au*)ds| — 0
o

r

as r — oo and hence u* = 0 in RY,

If o = 0, then & = k2 is real. By (4.5)(4.6), only ups|op, and 8,unr|op, decay
exponentially as r — oo. It is easy to verify from (4.3) that uy and wuys satisfy the
following equations in R¢:

1 1
Aug + kug — ﬁpu* =0, Aupy —kuy + ﬁpu* =0.

Indeed, based on the definition of ug given in (4.4) with k2 = k and (4.3), we have
the following relationship:

1 1 1
Aug + kug — ﬁpu* =— %(A + k) (Au* — ku™) — ﬁpu*
€
2k

Similarly, the equation for u,; can be obtained. Using the integration by parts and
the fact u* = ug + ups, we have from Green’s formula that

_ 1 1
/ uM(’?,,uMds:/ (\VUM|2+k|uM|2——p|uM|2——puMﬁ)d:c,
0B, B 2k 2k

(A%u* — E*u* + pu*) = 0.

r

— 1 1
/ uHBl,quSZ/ (\VUH|2 —k|uH\2—|——p\uH|2+—quH)dw,
dB, 2k 2k
which are well-defined since VAu* € L? _(R?) due to A%u* = k?u* — pu* with u* €

W 4(RY) and pu* € W=YP(D) (cf. (2.7)). Taking the imaginary parts of the above
two equations yields

& [/ uMal,uMds] =g {/ uH&,qus] ,
9B, o8,
which leads to

/ (|‘9V“H|2+k?\uH|2)d8:/
9B, o8

By the Sommerfeld radiation condition (1.2), the first integral on the right-hand side
of the above equation tends to zero as r — co. The second integral also tends to zero
due to the exponential decay of up;. Therefore,

1 2 —_—
O, ug — ikiuH‘ ds — 2k3 S [/ uMayuMds] .
)

B’V‘

s

T—00

lim (|8,,uH|2+k|uH\2)ds: lim / (|6,,uM|2+k|uM\2)dsZO.
B, "0 JoB,

It follows from Rellich’s lemma that uy = up = 0 in RN\ Bg and thus u* = 0 in
RN Bg. The proof is completed by applying the unique continuation in Theorem
3.1. d

The well-posedness of the scattering problem (1.1)—(1.2) can be obtained by show-
ing the equivalence to the Lippmann—Schwinger equation. The proof is similar to that
of [20, Theorem 3.5] and is omitted here for brevity.

COROLLARY 4.2. Under Assumption 1.1, the scattering problem (1.1)—(1.2) is
well-posed in the distribution sense and has a unique solution u € W) (R%), where q
and v are given in Theorem 4.1.
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4.2. Born series. Based on the Lippmann—Schwinger equation (4.1), we for-
mally define the Born series

Z un(x,y, k),
n=0

where
(4.7)
. 8) = K 1 () (@) = [ B b (2R, > 1

and ug(x, y, k) := Hr(0y)(x) = B(z,y, k).

The Born series is crucial in our arguments for the inverse scattering problem. It
helps to establish the recovery formula for the strength u of the random potential p.
Before addressing the inverse problem, we study the convergence of the Born series.

LEMMA 4.3. There exists kg > 0 such that for any wavenumber k > ko and any
fixed x,y € U with U having a positive distance to the support D, the Born series
converges to the solution of (1.1)—(1.2), i.e.,

u(@,y, k) = tn(z,y,k).
n=0

Proof. The convergence of the Born series to the solution of (1.1)—(1.2) can be
obtained by employing the same procedure as that in [17, Section 4.2] and the estimate
of ug(z,y, k) = ®(x,y, k) given in Lemma 2.1.

Moreover, the Born series admits the pointwise convergence. Using the estimates
of Hy and Ky given in Lemmas 2.2 and 2.3, we get for any s € (45 3_%) that

=
N 0
JuCoy k) =S unCow || S D IR (o k) o
n=0 ( ) n=N+1
S D IKkllee @y, poe @) 1Kk Gy 1 HEl 2oy, me o 02 Gy, k) -2 )
n=N+1

(oo}
D DN S e G L) Sl F YO (RS

n=N+1
(4.8)
g k25+d*2(§*XU)+€+(s_ 3*2Xo )N_;'_% 3 0
as N — oo for any k > ko and € > 0, where we used (2.9) and Lemma 2.1. d

5. The inverse scattering problem. This section is devoted to the inverse
scattering problem, which is to determine the strength p of the random potential
p. More specifically, the point source is assumed to be located at y = x, where
x € U is the observation point and U is the measurement domain having a positive
distance to the support D of the random potential. Therefore, only the backscattering
data is used for the inverse problem, as also discussed in [16,17] for the cases of the
Schrédinger equation and elastic wave equation. For simplicity, we use the notation
Un (2, k) := uy(x, 2z, k) for n > 1. Then the scattered field u® has the form

u’(x, k) = Z Up (2, k)
n=1
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for k > ko with ko being given in Lemma 4.3.
Next we analyze the contribution of each term in the Born series in order to
deduce the reconstruction formula and achieve the uniqueness of the inverse problem.

5.1. The analysis of u;. Based on the definitions of the Born sequence (4.7)
and the incident field ug, the leading term u; can be expressed as

(5.1) up(z, k) = Ki(uo(-, 2, k))(x) = / ®(x, 2, k)p(2)dz.
Rd
Since the fundamental solutions take different forms, the contribution of wuy is dis-

cussed for the three- and two-dimensional cases, separately.

5.1.1. The three-dimensional case. By Assumption 1.1, we have m € (2, 3]
for d = 3. Substituting the fundamental solution

1

iklt—z| _ —klz—2z|
8nkr2|r — 2| (c ¢ )

O(z, 2, k) =—
into (5.1) gives

2
elrle—z| _ o—klz—z| 2 eiklz—2'| _ o—rlz—2'|
E k
e e //< 7= 7] ) o=

XE[ (2)p(2")ldzdz"
1K|ac z|-R|lz—2"])
E ! !
87rIfil2 /]R /R o = o Ce@el)]dzdz
e2irle—z|- <1+1>E|x—z’|E Ndzd?'
(87T|"f|2)4/R3/Rs |z — z|2|x — 2|2 [p(2)p(")]dzdz

e2ik|w—z|—2R|z—2| , ,
y E[p(2)p()ldzdz

s |z —z|? |z — 2|

e(ifl)n|mfz\72iﬁ\zfz'\

E Ndzdz'
/11@3 |z — 22|z — /|2 [p(2)p(2")]dzdz

4 e(ifl)fﬂwfz\7(i+1)E|a:fz’|E S
Jr(87T|’f|2)4/11§3 /Ra |z — 22|z — 2|2 [p(2)p(2")]dzdz

2 eli—Drlr—z|-28|z z|IE Nidode!
G Lo L T o Bz

67211\:6 z| —2ik|z—2"|
/ Elp(2)p(=)dzd2’
3 JR3

|z — z|?|x — 2’|?

/
2 e 2rleel (4 Rle—'| Ndds'
W/ / Ty Bl dzdz

| — z|?|x — 2

1 e 2klz—z|—2K|z—2'| ) /
(87|k[2)4 E dzd
+<87r|n|2>4 // <Pl =T p()p(=)]dzdz
(k|lz—z|—F|z—2"])
E Ndzdz'
87r|'€|2 /]R3 /Ra | — 22[x — 2/ [o(2)p(2")]d=dz

21/1|w z|— 1+1)E|a:7z/|E Ndods!
- wmt L L e Bl s
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2 p2ir|o—z|—2m|z—2'| / ,
* (877|/£|2)4%/R3 /]R3 |z — 22|z — /]2 E[p(2)p(2")]dzdz
4 ei—1)r|z—z|=(i+1)R|z—='|
+4§W$f?@aéa P BEe)ded
(i—-1)k|z—2|—2F|z—2'|
87T|'$|2 /R3 /RB |z — 22|z — 2|2 Elp(z)p(2")]dzdz’

—2k|z—z|—2R|z—2'|
(S7k[2)4 E Ndzdz'
+@ﬂﬂ%4AaAsM—sz—yP lp(2)o(=")dzd>

2311—|—12+13—|—I4—|—I5.

For 1I;, following the procedure used in [21, Theorem 4.5], we get

1 4ki|z—2z|
I = —m —m—1
| 1‘ (87T|:‘<L|2)4 |:/D |$ — Z|4 M(z)dZKr +0 (H’r )

K

;m 674/1,\1 z| o
= GalaP) /D P w(z)dz + O (k; ).

The other terms can be estimated by utilizing the exponential decay of the inte-
grants with respect to ;. Since the estimates are analogous, we only show the detail
for Iy. Note that |z — z| is bounded below and above for any x € U and z € D. A
simple calculation yields

i(2r€,-\J;—z\+(m—nr)|w—z/|)e—2m|w—z\—(f§r+m)|w—z/|
87T|’4\ / / |z — z|2|x — 2|2

x E[p(2)p(2")]dzd?,

I, =

where
N J— p— N — ! p—
672/{,\:1: z|— (ke +ki)|z—2"| /S K M

for any M > 0 as k, — 0o. Choosing M =m + 1 gives
To| <[] Pk ™" 1/ / E[p(2)p(z)]|dzdz’ < k7™ Vazel,

where we used the equivalence between || and k, as K, — oo and the following
expression (up to a constant) of the leading term for the kernel E[p(z)p(2’)] (cf. [22
Lemma 2.4]) with d = 2, 3:

wHmlz—2,  m=d,

. ]:E z Z, ~
(5 2) [P( )p( )] {#(Z)|Z—21|mda m € (d—l,d)-

Terms I3,14 and I5 can be estimated similarly. Hence we obtain

Pkl e—4r€,|1 z|
5.3 E k L dz+0 (k;™?) Vazel.
63 B = g [ (a0 () Vae

5.1.2. The two-dimensional case. Now let us consider the two-dimensional
problem where d = 2 and m € (1,2]. The fundamental solution ® has the asymptotic
expansion (cf. [2,22])

_ Cj iklz—z| _ i—j+i —k|lz—2]
oz k) = 7-20 8x2(k|x — 2])7*2 (ie Loore ),
]:
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844  where Cy = 1 and

2879 ‘
845 C; = ;7H2l_1 4; j=> L
1=1
846 Let the truncations of ® and u; be defined as follows:
N
847 Dy (z, 2, k) jelrle—2l _ j=i+gg—rle—z| ,
1 Y ZS/@ /{\x—z|) 1( )
7=0
848 ugN)(x,k) : :/ Oy (2, k) p(2)dz,
849 R2
850 where
5 1 5
51 B2, k)| S Il Ha— 2174, @l 2 k)] S Ikl Flo — 2
852 and
833 (5.4) O(z,2,k) — On (2, 2,k) = O(|s| N 2|z — 2| ~N—3)

855 for any N € N as |k||x — 2| — oo. The following lemma gives the truncation error of
856 the fundamental solution.

857 LEMMA 5.1. For any fized x € U, N € N, v € [0,1] and ¢ > 1, it holds
g5 (5:5) 1@z, k) = @ (@, k) [wrapy S 6]~V 7217,

860 In particular, for N =0 and q € (1, %), it holds

g (5.6) 19(, - k) = ®o(-s - k) lwripxpy S [6]7277
863 Proof. Using (5.4) and
o V2 (@, 2, k) = (2,2, k)] = O(|x| ™V Ea — 2| V73),

865 we get

866 @ (2, k) — ®n(z, - k)| La(p) < |I«U|—N—%,
869 Then (5.5) follows from the space interpolation [L(D), W4(D)]., = W¢(D).
870 Similarly, (5.6) can be obtained by noting that
l"
871 1(-, -, k) = @o (-, k)| Laoxpy S k|73 / / 2= 2/ 4dz2d2') T S |l
pJp
872 and
873 @+ k) = Dol k)llwrapxp) S |62
874 for any ¢ € (1, %) d
875 Choosing N =1 and using (2.5), (5.2), and (5.4), we get for any « € U that
(1) ?
876 E|ui(z, k) —uy ' (z, k)
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/ / (2, 2, k) (B2 — B2)(w, 2/, FVE[p(2)p(=')]d=d=’
S osup [[(@+ @) (2,2, K)P)(@ — @1)(, 2, k)| / / |E[p( N|dzd2'

(z,2)€eUxD
< |s[7H

The second moment of ugl) satisfies

1 202 ikle—z| _ i—j4+i —klz—z|\ 2
1) 1 C5C; ie i—Jtze
Eluy (2, k)* = (8]r[2)* Z 212l / / ( i1 )

| — 29 F2

ielrlz— z|_1—l+2e Klz—z
|£U _ Zl|l+§

|
) Elp(z)p(=)|dzd?

K,;m 74/{]|m z| J O (n=m- -
= S J, T 0 ()

for any x € U and k, — o0.

Combining the above estimates leads to
Eluy (2, k)|? = Elul (2, k) + 2RE [u" (2, k) (u1 (2, k) — oV (2, k))]
-I—IE’ul(x,k - ugl)(a: k)|2
KM e —4ki|z—2z|
_ r d O(k-m— 11
84|/£|10/D |z — 2|2 p(z)dz + O (k; )

+O((7™ K710 2R,T) + O (k1)

—m e—4m|z—z|

K

_ T —m—11
(5.7) - 84|H|10/D M O ) Vel

The following theorem is concerned with the contribution of u; to the reconstruc-

tion formula for both the two- and three-dimensional problems.

THEOREM 5.2. Let the random potential p satisfy Assumption 1.1 and U C R? be

a bounded domain having a positive distance to the support D of the strength . For
any x € U, it holds

(5.8) lim —/ KMTU=2dE ) (2, k) P de, = Ty(x),
K—oo K K
where Ty(x) is given in Theorem 1.2. Moreover, if o =0, then it holds
1 2K
(5.9) lim —/ KM= (1K) P dk = Ty(x)  P-a.s.
K—oo K K

Proof. To prove (5.8), we consider the imaginary part of k as a function of k,,

i.e., ki = Ki(ky), which satisfies lim,, _,o0 i(ky) = 0. From (5.3) and (5.7), we get

(5.10) lim &™HA2E |y (2, k)2 = Ty(z).

Kr—00

Based on the mean value theorem, (5.8) follows from the identity

1 2K
lim k™4 24E |y (2, k)| = lim —/ kMTU=2R ) (2, k) [ dk,.

Ky —»00 K—o0 K
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It then suffices to show (5.9) for the case o = 0, i.e., k = k, = k2 € R,. Noting

lim e *ilr=2l =1,
k— o0

and combining (2.1) and (5.8), we have

lim ™ THU29E g (2, k) |> = Ty(2).
k—o0
To replace the expectation in the above formula by the frequency average, an
asymptotic version of the law of large numbers is required. Such a replacement is an
analogue of ergodicity in the frequency domain, and has been adopted in the analysis
of stochastic inverse problems (cf. [16,17,22]).
For d = 3, consider the correlations E[uy (x, k1)u1 (z, k2)] and Eluy (x, k1 )uq (z, k2)]
with k; = n?,i = 1,2 at different wavenumbers k; and ko. Following the same
procedure as that used in [22, Lemma 4.1], we may show that

|Elut (2, k1 )us (2, k2)]| S w7 tk3* {(Hl + K2) "L+ Ky — ra|) M+ kT “EMQ] ,
|E[ur (2, k1 )u (z, k2)]| S K74k " [(fil ) B € e L o e T HEMQ} ;

where Mj, My > 0 are arbitrary integers. The above estimates indicate the asymptotic
independence of ui(z, k1) and uq(z, ko) for |k1 — ko| > 1. Then, according to [22,
Theorem 4.2], the expectation in (5.8) can be replaced by the frequency average with
respect to K:

K—oo

1 2K
lim —/ KT8 uy (2, k) ?dk = T3(2z)  P-a.s.
K Jk

For d = 2, we need to consider u&"”, which is the truncated u; with N = 3. Its

correlations at different wavenumbers can be carried out similarly as those for the
three-dimensional case (cf. [22, Lemma 4.4]). Hence

K—oo

1 2K
(5.11) lim ?/ nm+10|ug3)(x, E)|?dk = Ty(z) P-a.s.
K

The residual u; — ugg) satisfies

jur (2, k) — uf? (2, k)|
/ (<I>2 — <I>§)(x, 2, k)p(z)dz
D

H<I)2(x7 Y k) - (I)g('r7 *y k)”leq(D)Hp”W*LP(D)
P k) + (I)g(ZL',

S B)lwrze )| @ (2,5 k) — @3(2, -, K) [wr2a o) lpllw-12(D)
KT <k P-as.

AR AN YA
&
N S

for any p > 1 and ¢ satisfying % + % = 1, where we used Lemmas 2.1 and 5.1, and

p € W =<r(D) ¢ W=1P(D) for m € (1,2] and any sufficiently small ¢ € (0, ).
We have from a simple calculation that

1 2K 1 2K
lim —/ K0y (2, k)fu(f)(:n,k)\Qd/if, lim —/ KAk =0 P-a.s.
K /i K

K—oo K—oo K
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Combining the above estimate with (5.11) leads to

1 2K
lim E/ K0y (2, k) Pdk = Ty (x) P-a.s.,
K

K—oo

which completes the proof of (5.9). |
5.2. The analysis of uy. It follows from (4.7) and (5.1) that

ug(z, k) :/Rd D(z, z,k)p(2)ur (2, x, k)dz
:/ / D(z,2,k)p(2)P(z2, 2, k)p(z") (2, z, k)dzdZ,

which does not contribute to the inversion formula as stated in the following theorem.

THEOREM 5.3. Let the random potential p satisfy Assumption 1.1 and U C R?
be a bounded and convexr domain having a positive distance to the support D of the
strength p. For any x € U, it holds

1 2K
lim ?/ wMTA=2d 0 (2, k) PdRy = 0 P-aus.
K

K—oo

Proof. The proof is motivated by [16], where the inverse random potential scat-
tering problem is studied for the two-dimensional Schrodinger equation with m > d.
In what follows, we provide some details to demonstrate the differences for the bihar-
monic wave equation of rougher potentials with m € (d — 1,d].

(1) First we consider the case d = 3. As a function of z and k., us(z, k) satisfies

1 [2K 2K
7 /K KT8 ug (2, k) | dry < /K ?rm;”+7|u2(x, k)|*dk,
o K
< / min {2, —r} K ug (2, k) |*dky  P-a.s.
1 K
Then the required result is obtained by taking K — oo if the following estimate holds:
(5.12) / KT Rlug (2, k)|?dk, < 00 Va € U.
1

To deal with the product of the rough potentials in E|us(z, k)|?, we consider the
smooth modification p. := p* ¢, with p.(z) = e 2p(z/e) for £ > 0 and ¢ € C§°(R3).
Define

uge(x, k) / / (2,2, k) pe(2)®(2, 2, k) p- ()P (2, x, k)dzdz'
Rd JRd

_ / / em\w z| _ e—m|w—z\)ein\z—z/|(ein|:p—z/| _ e—n|a:—z/|)
N 87m23 |z — z||z — 2'||x — 2|
X pe(2)pe(2)dzd2

m|a: z| _ n\ajfz|)67m|z7z/|(ein|a:fz/| _ efn\zfz'\)
871'/-@2 // |z — z||z — 2'||x — 2|
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X pe(2)pe(2')dzd2’

1
=t ———=Ili(z, k,e) +

1I .
(87r2) slla(o. k€

1
(8mK2)
Note that

o 2 o0
ST s £ Y [T k),
1 i=171

2 00
< Z/l E|IL;(z, k, )| dk.,
i=1

where in the last inequality we used
|| 2T < kM < 1 VYmoe (2,3].

Based on the Fubini theorem and Fatou’s lemma, to show (5.12), it suffices to prove

(o)
sup / BITL (2, k, €)|?dk, < 00 V2 €U, i=1,2.
e€(0,1) J1

The estimates for II; and Il; are parallel, and they are similar to the procedure
used in [16,17] for the inverse potential scattering problems of the two-dimensional
acoustic and elastic wave equations without attenuation. The basic idea is to rewrite
each term II;, i = 1, 2, as the Fourier or inverse Fourier transform of some well-defined
function. In the following, we only give the estimate for II; to show the differences in
handling the attenuation.

Denote

ik|lz—z| _ —klz—2|\,—ike|lz—2| ,—Ki|z—2| j—ike |2 —z| (piK|z—2"| _ —kK|z—2]
(e e )e e e (e e )

K(z,z2,2") =

b

| — z||z = 2'||x — 2|

then II; can be rewritten as

I (2, k, €) :/ / izt == 1t =2 DK (1 2 2 po(2) pe (2 )dzd.
DJD
Define a phase function
L(z,2 )=z —z|+ |z = 2|+ |z — 2,

which is uniformly bounded below and above for any (z,2’) € D x D and = € U.
Hence the set
{(z,2)eDxD:L(z,2)=t}, t>0

is non-empty only for ¢ lying in a finite interval [Ty, T1] with 0 < Ty < 7.

For any fixed ¢ € [Tp, Ty], there exist 7 = n(#) and an open cone K = K () C RS
such that

DxD Nn{(z2):tg < L(z,2") <t1} C KN{(z,2") 1 to < L(z,2") < t1} =: T,

where tqg =t —n and t; = + 7. Letting Ty := TN {(z,2') : L(z,2') = t}, we have

/ e LK (2, 2,2 ) pe(2)pe (2 dzd2!
r
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t1 .
1013 :/ it
to

t1
1014 - / RS (1)t = FIS.] (=),
1015 to

K(z, 2,2 )|VL(2, 2")| " pe(2)pe (2" )dH (2, 2') | dt

I

1016 where H® is the Hausdorff measure on I'; and S. is compactly supported in [Ty, T1].
1017 Applying Parseval’s identity yields

o0

o1 [ Bl ko), S EIS ar, 1)
1

1019 Using Isserlis’ theorem, we obtain

1020 ]E|S’E(t)|2:/ K(x, 21, 21)K(x, 29, 25)|VL(21, 21)| "} |V L(29, 25)|
r, Jr,

1021 X E [p-(21)pe (2= (2)pe (24)] dH (21, 24)AH® (22, 25)

1022 -/ | Km0 DIVL e I VL, )1

1023 x (E[ps(21)pa(ZQ)}E[pa(m)ps(Zé)] + E[pe (21) pe (22)|E[pe (21) pe (23)]
1021 + Elpe (21)p- ()] Elp- (2)p(22)] ) AR (21, ) dH (22, ),

1026 where K and VL satisfy |K(z,2,2')] < |z — 2|7t and 0 < C; < |[VL(2,2')] < Co,
1027 respectively, for any (z,2') € D x D with z # 2’ (cf. [16]), and |[E[pe(2)p-(2")]] <
1028 |z — 2/|™737¢ for any € > 0 and m € (2,3] according to (5.2). It follows from the
1029 Holder inequality and the symmetry of the integral that

1030 EIS.(t)]* < / |21 — 21| " Yea — 2|7tz — 24|
Ty JT

1031 X 2o — 25|37 AHC (21, 25 dHO (22, 25)
1032 +/ |21 — 21| 7 Yea — 25| 7 2 — 2|3 E

r, Jr,
1033 X |2y — 25| TP AHO (21, 24)dHP (29, 25)
1034 +/ / 21 = 21| 7 22 — 25|z — 2T

Ly JIy
1035 X |24 — 20| AHO (21, 2 dH (22, 25)

2

1036 = ( |21 — 21| AHP (2, zi)) + 2/ |21 — 24| 7Y zg — 25|71

r, r, Jr,
1037 X |21 — 29| ™ 2y — 2h| T AHC (21, 2 dHO (22, 2)

2

1038 < ( |21 — z'1|m_4_6d7-l5(21,z{)>

ry

3
1039 + [/ |21 — 21| 73|20 — 25| 2 dHP (21, 21)dHO (22, zé)]
r, Jr,
3
1040 X [/ |21 — 20|33 2t — 21303 a5 (21, 2))dHO (22, zé)}
r, Jr,
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2 4
1041 < ( |21 — zi|m46d7{5(21,zi)> + < |z1 — z’1|3d7{5(zl,zi))
Iy Iy
%
1042 + </ |21 — 22|3(m3E)dﬂs(zl,zi)d"r'-ﬁ(zg,zé)) ,
1043 Iy JI'y

1044 where the boundedness of all the last three integrals can be obtained similarly to the
1045 two-dimensional problem shown in [16, Lemma 6].

1046 (ii) Next we consider the case d = 2. Define the following auxiliary functions
1047 (cf. [17, Section 5.2]) via the truncated fundamental solution ®:

1048 ug(z, k) / / Do (z, 2, k) p(2)®(2, 2, k) p(2" )@ (2, 2, k)dzdZ',
R JR4

1049 ug (2, k) / / Do (z, 2, k)p(2)® (2,2, k) p(2")Po (2, x, k)dzdZ',
Re JRa

1050 v(z, k)::/ / Do (z, 2, k) p(2)Po(2, 2", k) p(z" ) Po (2, z, k)dzdz’.

1051 Rd JRd

1052 By Lemmas 2.1, 2.3, and 5.1, we have

1053 lug(z, k) — ug,(z, k)|

1054 S lollw=e o) I[@(@, - k) = Po(@, -, k)] Ke®(, 2, k)|l .0 )

1055 S @@, k) = Ro(@, -, k)llw.za(o) |kl w20 () [R5 2, B) [lwr20 ()
1636 S ol BRI e g T

1058

1059 lugi(x, k) — ugr(x, k)|

1060 < Nollw o) 1%0(, - kYK [B(-, 2, k) = Bo (-, k) s ()

1061 S I®o(, - k)llwv2a () 1k (w20 (D) 1Ry 2, B) — o (-, 2, k)| .20 ()
1062 < Kr—7—§+4w+xa Poa.s.,

1064

1065 |ug r(x, k) — v(x, k)|

1066 S @G, k) = 2o, k) lwrapxpyll(p @ p)(Po @ Po(x,+, k) llw-2v.5(Dx D)
1067 S IR oy e () |20 (@, -, k) © R0 (-, 2, B) [ wanoe (D)

W S Y Pas,

1070 where (p, ¢) and (]5, q) are conjugate pairs with ¢ > 1, v € (3352, %—i—l) and G € (1, 3).
1071 Choosing q =
1072 we get

22 4 ¢ with a sufficiently small € > 0 in above estimates,

2K
1073 lim — KTy (2, k) — v(x, k)|?dk
Jim o [ o) — oo k)P,
K
. 1/ —T—=2+4v+x0 —17 449\ 2
1074 S lim — KTHO(M e + Kr 2 7) dk,
K—o0 K
2K
1075 < lim — (1 BmA12ed2xe 4 gl =3mH8e) i = 0 P-a.s.
K—o00 K
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Hence, to show the result in the theorem, it suffices to prove that the contribution of
v is zero. Similar to the three-dimensional case, we consider the smooth modification

el ) = / d / R e

// lem|x 2| _ —K|z— z\) m|z—z’|(i€im\z’—x\ _i%e—m\z’—x\)
% REErrE

X pe(2)pe (') dzd?!

% // 161/{\:& z| 7126 —k|z— z|) 7n|zfz’|(i6in|z’793\ 71%67“2 71’\)
3K% |z — 2|2 |z — 2'|2|2 — x|z

X pe(2)pe(2')dzdz’

1
= - I, (z, k, ) + 31215 My (z, k, ).

8/170 83Kk7

Following the same procedure as used in the three-dimensional case, we may show
o0 2 o0 ~
/ KPR o (@, k) Py < Z/ E|T;(z, k, €)|?dk, < 00 VY €U,
1 . 1

which completes the proof. O

5.3. The analysis of residual. Taking out u; and uy, we define the residual
in the Born series
o0
k) = Zun(x,k),
n=3

which has no contribution to the reconstruction formula as shown in the following
theorem.

THEOREM 5.4. Let assumptions in Theorem 5.3 hold and in addition m > gd— 1
if o > 0. Then for any x € U, it holds

khm RMIM=2dp (2 B2 =0 P-a.s.
—

Proof. Following the similar estimate in (4.8) with N = 2, we have

25—6x0 | €
—= =z 1

b )l oe ><Z||/ckuo )|y S KT

< 6s+d—%+§

~ "vr

P-a.s.

for any s € (452, 372X" ), kr > Cy, and € > 0, where Cj, = R[x(ko)] is the a constant

depending on kg given in Lemma 4.3. Hence, we obtain by choosing s = dme + ¢ that

(5.13) ﬁT+14_2d|b(x, k)|2 < ﬁfd_5m_11+6x"+13€ —0 P-a.s.

as k — oo under the condition m € (d —1,d] for ¢ = 0 or m € (£d — 1,d] for ¢ > 0,
which completes the proof. 0
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1108 5.4. The proof of Theorem 1.2. Considering the Born series of the scattered
1109 field
1110 u’(x, k) = ui(x, k) + ua(z, k) + bz, k)

1111 for k > ko with ko being given in Lemma 4.3, we obtain

1 2K
1112 —/ RMFM=2AR08 (2 k) [ d,
K Ji
1 2K 1 2K
113 — x| R B e B+ [ T B, k)P,
K Jx K Jx
1 2K
1114 + —/ kMTU=2dE (2, k)| dk,
K Jk

I 1 (2K
1115 + 2R —/ /i:"+14_2dE[u1(x7k)uz(ac,k)] dk,

K Jk

[ 2K
1116 + 2R —/ kTR [y (2, k)b(2, k) | dE,

K Jk

[ 2K
1117 + 2R —/ kP TAT2E [y (2, k)b(2, k)| dis,

K Jk
1118 =T +To+1I3+ Ty +I5s + Ts,

11 11 11
1120 where Ty SI7Z3,Ts SI715, and Zg S I3 73 .
1121 According to Theorems 5.2, 5.3, and 5.4, it is clear to note
1122 lim 7y =Ty(z), lim Z; =0, j=2,3,
1123 K—o00 K—o0
1124  which lead to
1 2K
1125 lim —/ rMTMZ2AR 18 (1) k) 2dR,y = Ty(x)
K—oo K

1126 and completes the proof of (1.3).

1127 If o =0, then Kk = K, = k2. The expectation in the above estimates can be
1128 removed due to Theorem 5.2. We then get

1 2K
1129 Td(z) = Klgnoo E /K Hm+1472d|us(x7 k)|2dli
1 4K2 m+14—2d 2 1 1
1130 = lim — k= |[u(z, k)| =k~ 2dk
K—oo K2 2
1131 lim /4K2km+13d| *(x,k)|*dk P
13 — _— 2 , -a.s.,
1132 Kgnoo 2K K2 A @

1133 which completes the proof of (1.4).
1134 The uniqueness for the recovery of the strength p from {Ty(z)},cu can be proved
1135 by following the same argument in [16, Theorem 1] or [21, Theorem 4.4].

1136 COROLLARY 5.5. The expression in (1.3) can be interchangeably substituted with
. 1 K m—+14—2d s 2
1137 (5.14) lim — Ky Elu®(z, k)|*dky = Ta(x), xe€U.
K—oco K 1
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1138

1139 In particular, for the lossless case where o =0, (1.4) can also be replaced by

2
1 K m—+413
1140 (5.15 lim — ko= s (x, k)|2dk =T, P-a.s.
o (5.9 o [ 0 (@, K) Pk = Tafa) Peas
1142 Proof. Based on the notation u® = uy + us + b, we only need to study the limits
1143 for uy, ue, and b, respectively.
1144 For uy, we denote f(x, k,) := k™ 1=24E |y (z, k)|? for simplicity. To demonstrate
1 K

1145 1 lim — dr, =T,
15 (516) Jim o [ s = Tyto),

1147  we equivalently need to prove that for any x € U and € > 0, there exists some
1148 K, = K,(z,€) > 0 such that for any K > Kj, it holds

1 K
1149 —/ fzyky)di, — Ta(x)| < e
K J;

1150 Indeed, according to (5.10), there exists Ky = Ko(xz,€) > 1 such that for any x, > K,
1151 it holds c
1152 |f(x, k) — Tu(x)] < 3

1153  Moreover, for any fixed z, f(x, k,) is uniformly bounded for s, € [1, K] according to
1154 (5.3) and (5.7). Hence, denoting C' = C(z, Ko) = sup, e, x, f (%, fir) + Tu(x) such
1155 that

1156 |f(z, k) — Ty(2)] < C Vi €1, Ko

1157 and choosing K, = C(Ko — 1)2 > 0, we deduce that for any K > max{K Ko}:

K
%/1 flx, ke )dk, — Ty(x)

1 Ko I
1159 g—/ (2, ) — Ta()|de + 7/ (2, k) — Ta()|dee
K Ji K Jk,
o <(K0—1)C' K—Koe<e+e
; —<-+-=c¢
1161 - K K 2 2 2 7
1162 which completes the proof of (5.16).
1163 For us, it is true that
NS N 2
1164 lim — Ky |ug(x, k)|*dky =0 P-a.s.,
K—oo 1

1165 and its proof is identical to that of Theorem 5.3. This can be seen by observing that

1 K 00 .
1166 —/ w24 0 (1) ) P dry < / min {1, H—} w2 (2 B [PdRy P-a.s.

1167 For term b, its estimate (5.13) implies that
1 K
1168 lim — / KMTA=2d (0 B)2dky = 0 P-as.
K—oo 1
1169 We can then deduce (5.14). If, in particular, o = 0, (5.15) can be obtained using
1170 the procedure employed in Theorem 5.2, along with the result (5.14). O
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6. Conclusion. In this paper, we have studied the random potential scattering
for biharmonic waves in lossy media. The unique continuation principle is proved
for the biharmonic wave equation with rough potentials. Based on the equivalent
Lippmann—Schwinger integral equation, the well-posedness is established for the direct
scattering problem in the distribution sense. The uniqueness is attained for the inverse
scattering problem. Particularly, we show that the correlation strength of the random
potential is uniquely determined by the high frequency limit of the second moment of
the scattered wave field averaged over the frequency band. Moreover, we demonstrate
that the expectation can be removed and the data of only a single realization is needed
almost surely to ensure the uniqueness of the inverse problem when the medium is
lossless.

Finally, we point out some important future directions along the line of this
research. In this work, the convergence of the Born series is crucial for the inverse
problem. However, this approach is not applicable to the inverse random medium
scattering problems, since the Born series for the medium scattering problem does not
converge any more in the high frequency regime. It is unclear whether the correlation
strength of the random medium can be uniquely determined by some statistics of the
wave field. Other interesting problems include the inverse random source or potential
problems for the wave equations with higher order differential operators, such as the
stochastic polyharmonic wave equation.
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